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I. INTRODUCTION

A. Why topological phases of matter

Topological phases of matter are among the most robust
phases of nature [1, 2]. Their many-body wavefunction cannot
be describedwith purely localized orbitals, and the information
that defines these phases is stored non-locally, spread over
the entire system. Therefore, their physical properties, such
as their metallic boundary states or quantized responses to
external fields, are protected from local perturbations, such as
defects, impurities, or other material imperfections.

The second defining characteristic is that they have funda-
mentally different resposnses to external perturbations (e.g.
electromagnetic fields). Topological phases are defined by ob-
servables which depend only on combinations of fundamental
constants, like e, h, or c, rather than on microscopic details,
like the Fermi wave-vector, or the density of impurities. For
example, the Hall conductivity of two-dimensional insulators
is quantized by an integer times e2/h.

Topological phases and properties are found in quantum sys-
tems like electrons in insulators [1, 2] andmetals [3], ultra-cold
atomic lattices, superconductors, or particle physics. They are
also found in classical systems, like acoustic and photonic [4]
metamaterials, mechanical systems [5] and even Earth’s cli-
mate. In essence, any system that has a band structure can
have topological phases. They can also occur in strongly inter-
acting systems [6] of bosons, fermions, and even anyons (i.e.
particles that, when exchanged, acquire an arbitrary phase eiθ
rather than a ±1). Even systems without translational sym-
metry, like disordered systems and amorphous matter can be
topological [7].

The classification of topological phases complements that
of symmetry breaking. If you imagine a system of spins, these
are disordered at high-temperatures by thermal fluctuations.
At low temperatures they might order, say, into a ferromag-
netic state, with all spins pointing up. The order parameter
that captures the spontaneous breaking of rotational symme-
try (the symmetry of the high-temperature state) is the local
magnetization. Topological phases and cannot, by definition,
be described by local order parameters.
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B. What is a topological insulator

The basic property of an insulator is the absence of electri-
cally conductive states. The simplest of all insulators is the
atomic insulator, a set of disconnected atoms with electrons
forming closed shells. If these atoms form a crystal lattice, we
may use Bloch’s theorem to combine these shells into energy
bands separated by finite gaps. Since electrons are bound to
the atoms they lack kinetic energy, and the bands En(k) are
exactly flat as a function of crystal momentumk. Now imagine
slowly bringing these atoms together, forming covalent bonds
in the process. The electronic bands may now disperse with k,
and the gap sizes can change. If at all stages in the process we
retained the existence of a band gap we may say that the two
insulators, the atomic limit and the covalently bonded solid,
are smoothly connected to each other by varying a parame-
ter, in this case the strength of the covalent bonding. We call
the insulators connected to the atomic insulator in this way
topologically trivial insulators.

Topological insulators present fundamental obstructions to
reach the atomic limit. The smooth process that connects
them to the atomic insulator will always lead to a gap closing,
and with it, fundamentally different responses. This defines
topological insulators as insulators that cannot be smoothly
transformed into an atomic limit. In many instances this ob-
struction is due to an underlying symmetry; there is no path
that simultaneously keeps the gap open and respects the sym-
metry. For some insulators, the obstruction can be avoided by
simply adding additional bands. These are called fragile topo-
logical insulators (one example is the Hopf insulator, which is
only topologically sable if a system has exactly two bands).

C. Classification of topological phases

How can we classify topological phases? First we have
to define the statistics of the particles we want to describe:
are they fermions, bosons or anyons? The wave-function of
two fermions (bosons) acquires a minus (plus) sign when we
exchange two of these particles. Anyons when exchanged ac-
quire a phase, or amatrix of phases. Wewill ignore anyons and
bosons for the moment. Then we need to define whether the
phasewewant to describe is gapped or gapless. Gapped phases
are topological insulators, while gapless topological phases are
labeled topological metals. Lastly we need to specify if we are
considering phases with long-range or short-range entangle-
ment. I will ignore this latter distinction for the moment, until
the end of the notes, but loosly speaking, long-range entangled
phases require strong correlations between particles. These
are generated by for example, strong Coulomb interactions
(like in the Fractional quantum Hall effect).

Once this information is specified we will be asking three
questions to classify our systems:

• What are the symmetries of the system?

• What is the system’s dimensionality?

a

b

Figure 1. a. Lattice in real space with the unit cell. The lattice
spacing is a and the hopping amplitude between nearest-neighbours
is t. b. Dispersion relation resulting from Eq. (11).

• What are the possible topological phase that can exist
given the above?

We start by a recap with tight-binding Hamiltonians, to
which we will be asking these questions.

II. RECAP: SECOND-QUANTIZATION TIGHT-BINDING
HAMILTONIANS

The Tight-Bidning (TB) approximation relies on assuming
that electrons hop from site to site with a given probability.
In this approximation we do not really care where atoms are
sitting precisely, we just care about the connectivity of the
lattice and its symmetries. Lets set symmetries aside for the
moment.

A. Example: 1D tight-binding chain

We want to write the Hamiltonian of an infinite 1D chain of
L sites with spinless electrons hopping on it with an amplitude
t (see Fig. 1a.). We need to define how electrons are created
an anhilated at a given site i. This we do with the creation and
anhilation operators c†i and ci that satisfy the commutation
relations (12).

{ĉi, ĉ†j} = δij , {ĉi, ĉj} = {ĉ†I , ĉ
†
J} = 0 (1)

They act on the space of occupation numbers, meaning they
act on wavefunctions that look like |n1, n2, · · · , nN 〉 where
ni is the occupation number (how many particles are there)
at a given site i. Thus creating an electron on site two of
an empty lattice amounts to act with c†2|0, 0, 0, · · · , 0, 0〉 =
|0, 1, 0, · · · 0, 0〉, where an electron has been created at site i.
Since we are considering a spinless problem, only one electron
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is allowed per site. The electron operator acting on a given
site i (I omit the site index) thus satisfy:

ĉ†|0〉 = |1〉, ĉ|0〉 = 0, (2)
ĉ†|1〉 = 0, ĉ|1〉 = |0〉, (3)
ĉ†ĉ|n〉 ≡ n̂|n〉 = n|n〉, n = 0, 1 (4)

We have introduced the density operator n̂i which counts how
many particles there are at a given site i. This type of operators
act in what we called second-quantized basis. Don’t care
too much about the name (you can find more explanations
in standard textbooks like Bruus and Flensberg [8]), it just
means that instead of thinking about quantum mechanics as
you learn in undergrad, it is more practical to think in terms of
the "occupation" basis.

We are now in position towrite our second-quantizedHamil-
tonian

H =

L∑
i

tĉ†i ĉi+1 + tĉ†i+1ĉi + µn̂i (5)

Here the first terms tells us how a particle hops from sites
i+ 1 to i while the second tells us how it hops from i to i+ 1.
Because theHamiltonian needs to be hermitian, it is customary
to not write the second term and just write h.c. for hermitian
conjugate. The last term fixes the density of electrons at a
chemical potential µ. Note that we have assumed that hopping
terms between second neighbors and beyond are zero. For a
periodic chain we can also rewrite the second term as

H =

L∑
i

tĉ†i ĉi+1 + tĉ†i ĉi−1 + µn̂i (6)

Nowwe can use the translational symmetry of the chain to find
the dispersion relation (Energy versus momentum k)

ĉ†i =
1√
L

∑
k

eikxi ĉ†k (7)

ĉi =
1√
L

∑
k

e−ikxi ĉk (8)

with k = 2πn/L, which are the allowed momenta for a peri-
odic lattice of length L. Introducing this into the Hamiltonian
(6) and using that the lattice spacing is xi+1 − xi = a we get:

H =
1

L

∑
ikk′

t
(
e−i(k−k

′)xie−ika + e−i(k
′−k)xieik

′a + µ
)
ĉ†k′ ĉk

(9)
Using the completeness relation:∑

i

e−i(k−k
′)xi = Lδkk′ (10)

we get

H =
∑
k

E(k)ĉ†k ĉk, E(k) = 2t cos(ka) + µ (11)

The dispersion relation is shown Fig. 1b.

The name of the (topological) game is to understand the
symmetries of H and classify all possible phases. But I am
getting ahead of myself. Before that note that in this example,
to find the dispersion relation it was enough to express our
chain in momentum space because we only had one degree of
freedom (occupation: a site can either be empty or occupied).

B. General non-interacting second-quantized Hamiltonians

In general, non-interacting second-quantized Hamiltonians
(including (5)) can be written as:

Ĥ =

N∑
IJ

Ψ̂†IhIJΨ̂J (12)

in terms of the first-quantized (or single-particle) Hamilto-
nian hIJ with operators that satisfy cannonical commutation
relations

{Ψ̂I , Ψ̂
†
J} = δIJ , {Ψ̂I , Ψ̂J} = {Ψ̂†I , Ψ̂

†
J} = 0 (13)

The indices I and J encode all N degrees of freedom
(e.g. site, orbital, spin...). For example, the single particle
Hamiltonian for two sites with two spins corresponds to a
4× 4 matrix hIJ with I and J representing i, σ, and i = 1, 2
and σ =↑, ↓.

For crystal systems a typical workflow is to express H in
momentum space, which will leave us with a first-quantized
Hamiltonian in momentum space hIJ(k). To obtain the eigen-
values Es(k) (the bands), where s runs over the number of
degrees of freedom, we have to diagonalize hIJ(k). In our
simple example, hIJ was just a number, so no diagonalization
was needed!

Next, an historically relevant examplewherehIJ is amatrix.

C. Example 2: SSH and Rice-Mele model

The SSH model was conceived in 1979 by Su, Schrieffer
and Bardeen tomodel polyacetylene a 1D carbonmolecule [9].
As we will see, it is a nice model for topological phases in 1D.

Polyacetylene is a chain of carbon atoms. In it, the different
carbon atoms are connected by two different bonds with hop-
ping parameters t(1− δ) and t(1 + δ) (see Fig. 2a). Thus we
need a two site unit cell; we label the two carbon atoms in it A
and B. The second-quantized Hamiltonian is

H = t

L∑
i=1

[
(1−δ)c†A,icB,i+(1+δ)c†B,icA,i+1 +h.c.

]
(14)

The site index i no labels the unit-cell, and in each unit cell
there are two types of atomsA and B. Again we go to momen-
tum space using (7) and (8) such that

cα,i =
1√
L

∑
k

ei
~k·~rick,α,



4

a

b c

Figure 2. a. The SSH model has two types of hopping, strong and
weak. When adding the extra on-site energy ∆ it becomes the Rice-
Mele Model. For a finite δ we say that the chain is dimerized. The
corresponding dispersion relations without and with dimerization are
shown in b. and c..

Note that here we need an extra index α to refer to orbitals
A or B. The Hamiltonian can thus be rewritten in the form of
(12) (in momentum space) as:

H =
∑
k∈BZ,
α∈A,B

c†α,khαβ(k)cβ,k, (15)

where (setting t = 1 for now on)

hαβk =

(
0 (1− δ) + (1 + δ)eika

(1− δ) + (1 + δ)e−ika 0.

)
At this point we assume that the lattice spacing is a = 1,

dropping it out of any further expressions. From your Algebra
course you might remember that any Hermitian 2 × 2 matrix
can be expressed in terms of Pauli matrices (σi, i = x, y, z)
plus the 2×2 identity matrix (σ0), because these four matrices
are a complete basis. You can find them in Appendix D. Using
them we can rewrite hαβk as

hαβk = [(1− δ) + (1 + δ) cos k]σx +

+ [(1 + δ) sin k]σy + 0 · σz + 0 · 1 (16)
≡ ~dk · ~σ + εkσ0 (17)

where we εk = 0 in this example and we have defined a vector

~dk =
(

(1− δ) + (1 + δ) cos k, (1 + δ) sin k, 0
)
.

Diagonalizing this Hamiltonian is analtytically possible for
any ~dk and εk and results in two bands

E±k = ±|~dk|+ εk. (18)

For our particular case this reads

E±k = ±
√
d2
x + d2

y + d2
z + εk (19)

= ±
√

((1− δ) + (1 + δ) cos k)2 + ((1 + δ) sin k)2

The bands are shown in Fig. 2b and c. When δ = 0 there
is no energy for which we do not cross a gap, so the model
is gapless. For finite δ the model is dimerized and the bands
become gapped.
One more thing. Note that if we would have added an onsite

energy for the A and B sites of m and −m respectively this
would have introduced a term

Hm = m

L∑
i=1

[
c†A,icA,i − c

†
B,icB,i

]
(20)

The SSH Hamiltonian plus Hm are known as the Rice-Mele
model, and is a classical model of 1D semiconductors with
broken inversion symmetry (you will see why later on).
If we proceed as beforeHm would have added a σz term in

hαβk

hαβk = [(1− δ) + (1 + δ) cos k]σx +

+ [(1 + δ) sin k]σy +m/t · σz + 0σ0 (21)

Thus εk = 0 and

~dk =
(

(1− δ) + (1 + δ) cos k, (1 + δ) sin k,m
)
.

A finitem results in a gap too, which you can check by plotting
the updated bands

E±k = ±
√
d2
x + d2

y + d2
z + εk (22)

= ±
√

((1− δ) + (1 + δ) cos k)2 + ((1 + δ) sin k)2 +m2

However, we will see that the symmetry properties of a Hamil-
tonian with only δ or only m are very different! So lets learn
how to deal with symmetries.

III. SYMMETRIES

The concept of symmetry is deeply rooted in our under-
standing of condensed matter, and topological insulators and
metals are not an exception. Although topological phases can
exist in the absence of any symmetry, symmetry enriches their
classification, and allows to express the topological invariants
that define these phases and their responses in mathematically
simple ways. We first give a bit of background and then review
unitary and non-unitary symmetries.

A. Unitary Symmetries

Perhaps without noticing, you have already seen an exam-
ple of unitary symmetry, which is the invariance under lattice
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translations, which allowed us to write (7) and (8). We decom-
posed H into different "Hamiltonian blocks", one for each k.
For the 1D chain these blocks were one-dimensional, and thus
we diagonalized the Hamiltonian. For the SSH and Rice-Mele
models, each k-block was two-dimensional, and thus we still
had to diagonalize it further.

This is a general thing that happenswith unitary symmetries:
If your Hamiltonian is symmetric (we will formalize this in
shortly) you can find a basis where it can be expressed as a
Block diagonal matrix.

Consider a fermionic system described by general second-
quantized Hamiltonian, H (12) and canonical relations (13).
A system is symmetric under the action of a unitary symmetry
if 1) the canonical commutation relations are preserved and
2) the Hamiltonian matrix in second-quantization commutes
with the unitary matrix that represents the symmetry.

A unitary symmetry is a symmetry that changes the
fermionic operators with a unitary matrix such that

Ψ̂I → Ψ̂
′

I =
∑
J

UIJΨ̂J ≡ ÛΨ̂I Û
−1 (23)

Ψ̂†I → Ψ̂
′†
I =

∑
J

Ψ̂†JU
∗
IJ ≡ ÛΨ̂†I Û

−1 (24)

By asking that (13) are preserved under this transformation
we demand that {Ψ̂I , Ψ̂

†
J} = Û{Ψ̂I , Ψ̂

†
J}Û−1, which implies

that UIJ is a unitary matrix (UU† = 1).
By asking that the Hamiltonian commutes with U ,

ÛĤÛ−1 = Ĥ , we arrive that the single particle Hamiltonian
must satisfy U†hU = h.

WhenU acts on the spatial indices i, j we call it a spatial uni-
tary symmetry (e.g. lattice rotations, inversions, mirrors,...).
WhenU acts on other degrees of freedomwe call it non-spatial
unitary transformation. For example, in the special case where
U acts equally on every site, U =

∏
i Ui, U is a non-spatial

on-site unitary symmetry (e.g. the unitary symmetry that flips
a spin on each site is U =

∏
i σ

i
x).

When a unitary matrix is a symmetry, it commutes with
the second-quantized Hamiltonian H . Thus we can find a
basis where both H and U are block diagonal. Each block is
called an irreducible representation (irrep) of the symmetry.
This block has a common symmetry eigenvalue (colors). Note
irreps do not necessary have the same dimension.

a. Example: Translation symmetry. As mentioned
above, when H is translationally symmetric (we have a pe-
riodic lattice), each block corresponds to a value of k. If we
have no internal degrees of freedom, like in our simpler tight-
binding chain example, each block is one dimensional. If there
are more than degrees of freedom per site then each block is
higher dimensional.

b. Example: Inversion symmetry. Let’s show that inver-
sion Î is a unitary operator. First we consider how it acts upon
the position and momentum operators,

Î x̂Î−1 = −x̂
Î p̂Î−1 = −p̂

Î[x̂, p̂]Î−1 = Ii~I−1

Figure 3. A unitary symmetry diagonalizes the Hamiltonian in
Blocks.

The first relation is by definition inversion: inversion is the op-
eration that flips all spatial coordinates. The second relation
can be intuitively understood from the fact that momentum
must transform as a velocity. Since velocity is a time deriva-
tive of the position operator, which picks up a minus sign,
momentum must also pick up a minus sign under inversion.
Finally, in the third line we have applied inversion at both sides
of the uncertainty principle. We notice that for the left hand
side to be equal to the right-hand side inversion must be a
unitary operator: Î†Î = 1. This is because Wigner showed
that unitary operators do not complex conjugate the quantity
they act on. This is unlike anti-unitary operator can always
be represented as a unitary matrix times complex conjugation
UK.
Now lets see how inversion acts on a simple example: a

molecule with two atoms with electrons hopping between
them. In this case H is a two-dimensional matrix

h =

(
0 t
t 0

)
= tσx.

The eigenvalues are E = ±t and eigenfunctions are
|ψ±〉 = (±1, 1). Inversion interchanges the two atoms from
the center, and thus it is represented by Î = σx, so [h, σx] = 0.
Notice then that |ψ±〉 are even and odd under inversion. Us-
ing the eigenvectors, we can construct a matrix UD (UD has
the eigenvectors as columns) to write h in a diagonal basis
h′ = U†DhUD = −tσz , where the upper (lower) block, which
is one-dimensional, is odd (even) under inversion.

B. Non-unitary symmetries

Unitary operators separate H in blocks. If we block diago-
nalize H by using all unitary transformations allowed by the
symmetries of H and examine one of the block-diagonalized
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sections, we have exhausted all of the unitary, commuting op-
erations. But what can we say about the blocks themselves?
We found unitary matrices that commute with the Hamilto-
nian, but we can find antiunitary matrices that either commute
or anticommute with the single-particle blocks of h. These
cases correspond to time-reversal symmetry and particle-hole
(charge-conjugation) symmetry. Their combination will form
a matrix that is unitary but anticommutes with h, which we
call chiral (or sometimes sublattice) symmetry. It is possible
to show [10] that these possibilities are exhaustive and lead to
10 possibilities, which lead to 10 different classes of strong
topological phases.

1. Time-reversal symmetry

By definition the time-reversal symmetry operator as

T̂ : t→ −t. (25)

Its action on the position and momentum operators, we
observe

T̂ x̂T̂−1 = x̂ (26)
T̂ p̂T̂−1 = −p̂. (27)

When we apply these to the uncertainty principle we find

T̂ i~T−1 = T̂ [x̂, p̂]T̂−1 = −[x̂, p̂] (28)

which implies that we should have

T̂ iT̂−1 = −i. (29)

From this last equation, we need to demand that T̂ is expressed
as a combination of a unitary matrix and complex conjugation,
i.e. time-reversal is anti-unitary:

T̂ = ÛTK (30)

For T̂ to be a symmetry it commutes with H in second quan-
tization T̂ ĤT̂−1 = Ĥ . Its action on the Fermionic operators
is [11]

Ψ̂I → Ψ̂
′

I =
∑
J

(UT )IJΨ̂J (31)

From T̂ ĤT̂−1 = Ĥ we can derive its action on the first
quantized Hamiltonian:

U†Th
∗UT = h (32)

Note that if an operator Ô is preserved under T̂ , we have
T̂ Ô(t)T̂−1 = T̂ eiĤtÔ(t)e−iĤtT̂−1 = Ô(−t).

Because of its anti-unitary nature, time-reversal can square
to±1. To see this, we can consider the difference between the
time-reversal operator acting on spinful and spinless particles.

Let’s examine T̂ acting on a spin matrix, ~S. By definition
spin is like an angular momentum. Any angular momenta ~L
transform like the vector product of ~x and ~p. Because of (26)
~L, and thus ~S has to change sign with time reversal, and we
have

T̂ ~ST̂−1 = −~S (33)

We can represent this action by a rotation around an axis, say
y and complex conjugation[12]. A rotation by π around the
y axis is represented by the operator e−iπSy thus leading to
T̂ = e−iπSyK. For spin-1/2 particles, ~S = 1

2 (σx, σy, σz).
Therefore T̂ = e−iπσy/2K = −iσyK[13]. Note that in this
case T 2 = −1. However, if we consider particles without spin
(S = 0), it is sufficient to take T̂ = K (there is no rotation
needed!) and T 2 = 1.
There is a fundamental difference between the two possibil-

ities T 2 = ±1 which is that for T 2 = −1 we have Kramers
theorem: under time-reversal symmetry we have doublets of
time-reversed states with the same energy,E. To prove it [14],
start we proceed by contradiction (a different, perhaps more
rigorous proof [12] is given in Appendix B). First, lets as-
sume that |ψ〉 and T̂ |ψ〉 are the same state. Thus, they can
only differ by a phase T̂ |ψ〉 = eiφ|ψ〉. We want to show
that they are a different state, so apply T̂ again, resulting
in T̂ 2|ψ〉 = T̂ eiφ|ψ〉 = e−iφT̂ |ψ〉. Using our assump-
tion that T |ψ〉 = eiφ|ψ〉 on the right hand side we obtain
T̂ 2|ψ〉 = e−iφeiφ|ψ〉 = |ψ〉. This is a contradiction because
we assumed that T̂ 2 = −1!. Thus T |ψ〉 and |ψ〉must be differ-
ent states. However they have the same energy. We remember
that H and T commute, [H,T ] = 0, so we can change the
order of H and T and obtain

HT |ψ〉 = TH|ψ〉 = TE|ψ〉. (34)

Therefore, given a system, there are three possibilities: time-
reversal is not a symmetry, time-reversal is a symmetry with
T̂ 2 = 1, or time-reversal is a symmetry with T̂ 2 = −1. We
have three different possibilities, presented in Table I.

time-reversal is T̂ T 2

Absent 0 -
Present +1 +1
Present −1 −1

Table I. Possibilities of time-reversal symmetries in a system. Usually
we only show the central column.

Lastly it is useful to determine what condition does time-
reversal impose on a first-quantizedHamiltonian inmomentum
space h(k). Consider the general second-quantized Hamilto-
nian in momentum space (13),

H =
∑
k

c†k,αh
αβ
k ck,β , (35)

where k corresponds to momentum and α, β can label orbitals
(but not spin!). Now we need to understand what is the action
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of time reversal on

T̂ cα,iT̂
−1 =

1√
L

∑
k

e−i
~k·~ri T̂ ck,αT̂

−1 (36)

=
1√
L

∑
k

ei
~k·~ri T̂ c−k,αT̂

−1, (37)

Note in the last line we changed k → −k. No we apply this to
the full Hamiltonian:

H = T̂HT̂−1 =
∑
k

c†−k,αT̂ h
β
k T̂
−1c−k,β , (38)

which implies that the first quantized hamiltonian has to sat-
isfy:

T̂ hkT̂
−1 = h−k. (39)

Using that T̂ is an antiunitary operator:

UTh
∗
kU
†
T = h−k. (40)

where UT is unitary (UTU†T = 1).
We have to note that if the particles are spinful cα,i,σ , with

σ =↑, ↓ transforms a bit differently (see [12]):

T̂ ci↑T̂
−1 = ci↓, (41)

T̂ ci↓T̂
−1 = −ci↑. (42)

We are now ready to check some examples:
a. Example: Zeeman field The Hamiltonian of a spin-

1/2 in a magnetic field is h = ~B · ~σ. We can check if this is
time-reversal symmetric by using T̂ = −iσyK and:

T̂ hT̂−1 = − ~B · ~σ 6= h (43)

As it should (see Eq. 33), h is not time-reversal symmetric be-
cause a magnetic field breaks time-reversal symmetry. Think
of a loop of current created by a magnetic field, and reverse the
arrow of time. The current rotates in the opposite direction, as
if the magnetic field was reversed.

b. Example: Graphene Consider a Hamiltonian:

H = kxσx + kyσy (44)

This can be spinless graphene’sHamiltonian around one valley.
Then, taking T̂ = 1K we have

KhkK = kxσx − kyσy 6= h−k (45)

Time-reversal takes us to another Hamiltonian, which happens
to be the Hamiltonian around the other valley. Thus, a single
valley in graphene breaks time-reversal, but considering the
two valleys will result in a time-reversal symmetric Hamilto-
nian. This is physically reasonable because pristine graphene
does not break time-reversal symmetry.

c. Example: Surface state of a time-reversal invariant
topological insulator Consider the same Hamiltonian:

H = kxσx + kyσy (46)

but now σ encodes the real spin. Then we need to take T̂ =
−iσyK and thus we have

ThkT
−1 = −iσyKhkiσyK = σyh

∗
kσy (47)

= σy(kxσx − kyσy)σy (48)
= −kxσx − kyσy = h−k (49)

where we have used that K2 = 1, {σi, σj} = σiσj + σjσi =
δij and σ2

i = 1. In this case the Hamiltonian is time-reversal
invariant because it satisfies (39).

2. Particle-hole symmetry

We can play a similar game with the symmetry that turns
creating particles into creating holes (anhilating particles) [11]

ΨI → Ψ
′

I = (UC)∗IJΨ†J ≡ ĈΨIĈ
−1 (50)

Ĉ is also called charge-conjugation because if flips Again,
demanding that the commutation relations are preserved we
find that UC is unitary. Demanding that the second-quantized
Hamiltonian is invariant results in a condition for the single
particle hamiltonian:

U†Ch
∗UC = −h (51)

The minus sign arises from the anti-commutation relations of
the Fermionic operators.

Therefore, from the perspective of h, the particle-hole oper-
ator is an anti-unitary operator (C = UK) that anti-commutes
with the Hamiltonian. There are again two cases depending
on whether C2 = ±1.
Following as before, it is possible to show that

1. For particle-hole symmetric H = ĈHĈ−1, if |φ〉 is an
eigenstate, so is Ĉ|φ〉 and

2. For every single-particle eigenstate at energy ε, there is
a particle-hole reversed eigenstate with energy −ε.

h|ψ〉 = ε|ψ〉
h(Ĉ|ψ〉) = −Ĉh|ψ〉

= −ε(Ĉ|ψ〉)

This operator has a classification table similar to that of
time-reversal symmetry, as shown in Table III.

Following similarly as for Time-reversal symmetry we can
show that, in momentum space, the single-particle Hamilto-
nian satisfies

ChkC
−1 = −h−k (52)

or

UCh
∗
kU
†
C = −h−k (53)
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particle-hole symmetry is Ĉ Ĉ2

Absent 0 -
Present +1 +1
Present −1 −1

Table II. Possibilities of particle-hole symmetry for a given system.

a. Example: BdG Hamiltonians for superconductors have
particle-hole symmetry by definition In second-quantized
Hamiltonians of superconductors we have to deal with pairing
terms, i.e. like ∆

2 (c†c† + cc). Hence, a second-quantized
Hamiltonian with pairing terms can be written in general as

H =

N∑
IJ

Ψ̂†IhIJΨ̂J +

+
1

2

N∑
IJ

Ψ̂†I∆IJΨ̂†J + Ψ̂I∆
∗
IJΨ̂J . (54)

The first line is the typical second-quantized Hamiltonian and
the second line are superconducting pairing terms. It is con-
venient to write the second quantized Hamiltonian using a
Nambu spinor which is a combination of particles Ψ†I and
holes ΨI :

χ̂† ≡ (Ψ̂†1 · · · Ψ̂
†
N , Ψ̂1 · · · Ψ̂N ) (55)

Using (55) we can write H, which is known as the Bogoliu-
vob de Gennes (BdG) Hamiltonian, as

HBdG =
1

2

2N∑
AB

χ̂†Ah
BdG
AB χ̂B (56)

where A,B now run over 2N degrees of freedom and the
first-quantized BdG is defined as

hBdG =

(
h ∆

∆∗ −hT .

)
where h = h† by Hermiticity of the Hamiltonian and ∆ =
−∆T by Fermi-statistics. Here comes the important part:
while Ψ̂ and (Ψ̂†)T are independent, χ̂ and (χ̂†)T are not:

(χ̂†)T =

(
(Ψ̂†)T

Ψ̂

)
= τx

(
Ψ̂

(Ψ̂†)T

)
= τxχ̂ (57)

and similarly χ̂† = χ̂T τx with

τx =

(
0N 1N
1N 0N

)
,

being the x Pauli matrix acting in particle-hole space with
N ×N blocks. Now, we can check what this property does to

our Hamiltonian:

HBdG =
1

2

2N∑
AB

χ̂†Ah
BdG
AB χ̂B (58)

=
1

2

2N∑
ABCD

χ̂C(τx)CAh
BdG
AB (τx)BC χ̂

†
C (59)

=
1

2

2N∑
AB

χ̂A(τxh
BdGτx)AB(χ̂†)B (60)

=
1

2

2N∑
AB

(τxh
BdGτx)AB(−χ̂†Bχ̂A + δAB) (61)

= −1

2

2N∑
AB

χ̂†B((τxh
BdGτx)BA)T χ̂A

+ Tr(τxh
BdGτx) (62)

By definition of the first-quantized BdGHamiltonian, the term
with the trace is zero, and we have:

τxh
t
BdGτx = τxh

∗
BdGτx = −hBdG (63)

Therefore, any BdG Hamiltonian has, by definition, particle-
hole symmetry.

3. Chiral symmetry

Lastly there is the possibility of having a combination of
both time-reversal and particle-hole symmetry to form the so
called chiral symmetry operator, Ŝ = Ĉ · T̂ (the alternative
definition Ŝ = T̂ · Ĉ amounts to a change of basis of the
Hamiltonian). In the space of Ĥ it is also an anti-unitary
symmetry that commutes with the Hamiltonian[10]

ŜHŜ−1 = H (64)

However, in first quantized space it is a unitary operator that
anti-commutes with the single-particle hamiltonian

S = US ≡ UTK(UCK) = UT (UC)∗

UShU
†
S = −h

UShkU
†
S = −hk (momentum space)

S is unitary and always squares to S2 = 1 [10] so there are
only two possibilities

chiral symmetry is Ĉ Ĉ2

Absent 0 -
Present +1 +1

Table III. Possibilities of chiral symmetry for a given system.
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Lastly, as happened with particle-hole symmetry the single-
particle spectrum comes in ε,−ε pairs:

h|ψ〉 = ε|ψ〉
h(S|ψ〉) = −Sh|ψ〉

= −ε(S|ψ〉)

Specifically an zero-energy state is doubly degenerate.

4. The 10-fold way

When we combine all of the possibilities of these three dif-
ferent symmetries (we can show that they are exhaustive [10]),
we wind up with a big table as shown in Table IV.

T̂ Ĉ Ŝ

± 1 ± 1 1
± 1 ∓ 1 1
± 1 0 0
0 ± 1 0
0 0 1
0 0 0

Table IV. 10-fold classification of non-unitary symmetries

This table is known as the ten-fold way or ten-fold classifica-
tion. Depending on the dimensionality we will find different
systems have different topological properties depending on
their symmetry.

IV. PHENOMENOLOGY OF TOPOLOGICAL PHASES
FROM 1D EXAMPLES: SU, SCHRIEFFER AND HEEGER,

RICE AND MELE AND KITAEV

As a summary of the previous lecture, considering that spa-
tial symmetries are unitary and block diagonalize the Hamil-
tonian, we need to consider three non-spatial symmetries:
time-reversal, particle-hole and chiral symmetries. Here is
a reminder of how they act in momentum-space on the first-
quantized Hamiltonian h:

Time-reversal symmetry: anti-unitary, commuting:
ThkT

−1 = h−k, T = UTK (65)
Particle-hole symmetry: anti-unitary, anti-commuting:

ChkC
−1 = −h−k, C = UCK (66)

Chiral symmetry: unitary, anti-commuting:
ShkS

−1 = −hk, S = US (67)

All of the different possible combinations of the presence or
absence of these symmetries (and in the case of time-reversal
and particle-hole the sign of the operator squared) leads us to
10 different possibilities.

Spatial symmetries will be also important, especially when
considering crystalline topological insulators. It is useful to

recall the action of inversion on in momentum space:

Inversion (unitary, commuting) : IhkI
−1 = h−k (68)

which follows from how a general unitary spatial symmetry
acts on a single-particle hamiltonian:

UGh(k)U†G = h(uGk) (69)

whereuG is amatrix that acts on themomentumas indicated by
the symmetry; k → −k in the case of inversion (see Ref. [11]
for more details).
Now that we know how to handle symmetries we are going

to see how different insulators with the same symmetry are
classified by topological invariants. We will be guided by two
principles

• Adiabatic principle: As explained in the introduction
previous section gapped phases that can be smoothly
connected to each other by changing the parameters of
the Hamiltonian but not closing the gap will be in the
same topological phase.

• Locality: The terms we are allowed to add to the Hamil-
tonian are local.

These restrict our discussion to zero temperature ground-
states of local Hamiltonians. This does not mean that topolog-
ical states cannot be defined out of equilibrium or for non-local
Hamiltonians, but this is too advanced for the moment. We
know will systematically go from 1D to 2D and 3D given ex-
amples of the type of phases that we can encounter in different
symmetry classes. We start with the SSH model that we al-
ready introduced above. Although we will see 1D is quite
special, this model allows to exemplify many of the common
properties of topological insulators.

A. Topological properties of the Su-Schrieffer-Heeger (SSH)
Model (1D)

From Section II C we recall that the Hamiltonian in momen-
tum space of the SSH model is

hk = ~dk · ~σ + εkσ0 (70)

where we εk = 0 and

~dk =
(

(1− δ) + (1 + δ) cos k, (1 + δ) sin k, 0
)
. (71)

Diagonalizing this Hamiltonian is analtytically possible for
any ~dk and εk and results in two bands

E±k = ±|~dk|+ εk. (72)

Since we are interested in gapped systems we ask when is
|~dk| 6= 0 satisfied (the condition for the absence of energy
levels). From (71), dz = 0 for all k. This implies that
the Hamiltonian is gapped for all ~dk so long as we don’t
hit the origin ~d = (0, 0, 0). Here we can notice something
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Figure 4. Two different paths in parameter space. If we keep δ > 0
and change k we will encircle the origin, while if we keep δ < 0 and
change k we will not encircle the origin. These two insulators are
thus only connected by a gapless phase transition, so long as dz = 0.

interesting. Depending on the value of δ, as we move in k, we
either will encircle or not the origin if we draw a closed path
in the (dx, dy) plane. This means there are two different type
of insulators which we can connect only by passing through a
gapless point. Note that this statement relies on the fact that
dz = 0 because if not the drawing above has a third axes,
allowing us to connect the two paths avoiding the origin.

So, if dz = 0 is what is needed, we need a symmetry that
can impose it. It turns out there are several ways of imposing
this, here we consider two.

• Chiral symmetry: Remember that a σz term in the
SSHHamiltonian was generated by a term like the Rice-
Mele mass (20). Wemight then consider the restrictions
imposed by the unitary chiral symmetry (from (67) we
have USdkU†S = −hk) with US = σz . Consider how
US acts on a general 2× 2 Hamiltonian

hk = dxkσx + dykσy + dzkσz + εkσ0 (73)

such that

USdkU
†
S = σz(d

x
kσx + dykσy + dzkσz + εkσ0)σz (74)

= −dxkσx − d
y
kσy + dzkσz + εkσ0 (75)

We see that if this is to be equal to−hk, chiral symmetry
S = σz imposes that both dzk = −dzk and εk = −εk,
which have thus to vanish. So indeed chiral symmetry is
enough to impose dzk = 0 (and εk = 0)! This symmetry
forbids terms like c†A,icA,i or c

†
B,icB,i.

• Inversion and Time-reversal symmetry: Since we are
dealing with spinless fermions, time-reversal symmetry

is implemented by complex-conjugation T̂ = K. Re-
calling that in this case UT = 1 and thus, from (65),
h∗k = h−k and time-reversal imposes on (73) that

dxk = dx−k (76)
dyk = −dy−k (77)
dzk = dz−k (78)
εk = ε−k (79)

While our SSH Hamiltonian satisfies these symmetries,
(it is time-reversal invariant!) time-reversal alone is not
enough to impose dz(k) = 0. For that we need an extra
symmetry which in this case is inversion.

Aswe saw, inversion sendsx to−x. Choosing our center
of inversion as the center point on the bond between the
A and B sites it corresponds to sending A to B. The
matrix that does that for us, in A,B space is σx:

σxĉ =

(
0 1
1 0

)(
ĉA
ĉB

)
=

(
ĉB
ĉA

)
. (80)

from (68), we thus have the constraint imposed by in-
version σxhkσx = h−k

dxk = dx−k (81)
dyk = −dy−k (82)
dzk = −dz−k (83)
εk = ε−k (84)

Therefore the combination of T and I imposes that
dz(k) = 0, as we wanted. This symmetry however
does not impose that εk = 0, so in this sense, TI is
a fined tuned symmetry. Often, εk does not enter the
topological properties of the system, but one should be
ware!

We can already observe some differences between these two
choices. Although both of these symmetries (Ŝ and T̂ Î) lead
to the same conclusion, the constraint that dzk = 0, as we will
see they have different physically observable consequences.
Ŝ protects a strong topological phase while T̂ Î is an example
of a crystalline topological phase because the former is a
local symmetry while inversion is a spatial symmetry which
is highly non-local (maps x→ −x).

To sum up, by our previous discussion we have two different
gapped Hamiltonians if dzk = 0: one that encloses the origin
as we change k and the other one that does not. What are the
physical differences? As we anticipated in the introduction,
topological phases have quantized observables in units of fun-
damental constants. Now we are going to see that these two
types of insulatros have a different quantized response, in this
case the polarization. Lets define it.
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B. Polarization, Berry phase and Zak phase

Spatially separated charges create a polarization. Loosely
speaking, polarization is therefore related to the position oper-
ator (see Ref. [15] for an in-depth introduction)

P ∼ 〈x〉 ∼ 〈i∂k〉 .

Quantummechanically the total polarization P is the sum over
the polarization of all occupied bands P =

∑
n∈occ Pn. Given

the intuition of (IVB) it is not surprising that the polarization
for each occupied band n is defined as

Pn = − e

2π

∫ 2π

0

dk 〈unk |i∂k|unk 〉 ≡
e

2π
Φn, (85)

where n specifies the occupied band index with corresponding
eigenvector |unk 〉. We have also defined Φn, known as the Zak
phase of band n. The Zak phase is a particular instance of
what we call a Berry phase:

γC =

∮
C
〈unk |i∂k|unk 〉, (86)

which is the integral of the Berry connection over a general
closed path C. The Zak phase corresponds to the particu-
lar choice where C is a path traversing the Brillouin Zone,
parametrized in this case by k as it goes from k = 0 to k = 2π.
Before discussing the polarization of the SSH model, let us

discuss a few properties of Pn. First, the integrand of this
expression appears so often that has its own name: the Berry
connection.

Ank = i〈unk |∂k|unk 〉, (87)

As you see it is defined for each band, and when we assign a
different phase to the state vectors,

|unk 〉 → e−iφ
n
k |unk 〉, (88)

then we see that the Berry connection transforms as

Ank → Ank + ∂kφ
n
k , (89)

This should remind you of the electromagnetic vector potential,
which upon a gauge transformation changes as ~A → ~A +
~∂φ. You might also recall that in electromagnetism nothing
should depend on the gaugewe choose. In quantummechanics,
nothing should depend on the overall phase we choose either,
so there is a parallelism here! Now if we apply (88) to our
definition of polarization:

Pn → −
e

2π

(∫ 2π

0

dk 〈unk |i∂k|unk 〉+

∫ 2π

0

dk∂kφ
n
k

)
(90)

= Pn +
e

2π
(φnk=0 − φnk=2π) (91)

Since a phase is defined up to an integer multiple of 2π we
must have (φnk=0 − φnk=2π) = 2πm where m is an integer.

Thus the Berry phase (86) is defined up to integers of 2π and
the polarization is only defined (modulo) e!

Pn = e
Φn
2π

mod(e),

This is a striking result, first obtained by D. Vanderbilt [15].
However, this is not a problem. You might recall that only
changes in polarization are actually measurable because they
are gauge independent quantities. Imagine I want to calculate
the change in polarization upon varying a given parameter λ.
If we think of λ as time the derivative of P with respect to λ
would be the current, i.e. the pumped charge in a time interval.
The change in polarization along a path is given by

∆Pn(λi → λf ) =

∫ λf

λi

dλ
dPn
dλ

(92)

= − e

2π

∫ λf

λi

dλ

∫
dk ∂λA

n
k (93)

≡ − e

2π

∫
S

dS Ωnλk (94)

Lets stop a moment. Here we have written the change in
polarization as a flux over a quantity, which we call the Berry
curvature of band n, defined as Ωnxy = ∂xA

n
y − ∂yA

n
x =

−2Im〈∂xun|∂yun〉, which thus looks a lot like a magnetic
field. For us the parameters that define the surface are λ, k
and thus we have Ωnλk = −2Im〈∂λunk (λ)|∂kunk (λ)〉. What is
interesting is that if the surface S is closed:∮

S

dS Ωnλk = 2πCn (95)

with Cn an integer called the Chern number. The last equal-
ity follows from Chern’s Theorem: the integral of the Berry
curvature over a closed 2D surface is quantized [15]. We will
encounter (95) later on when we discuss Chern insulators.
A last technical remark here: You might be wondering why

isCn not ambiguous, as happenedwith theBerry phase (86). It
turns out that this is related to a condition in Stokes’ theorem:
if you demand that your gauge choice for φk is smooth and
continuous over the whole surface S the result is guaranteed
to be gauge invariant. However, for the path C in (86) we have
many such gauge choices, that leave an ambiguity of 2π.

1. Quantized polarization as a topological invariant for the SSH
model

Now we are ready to calculate the Polarization on the two
phases of the SSH model, δ > 0 and δ < 0. An easy limit is
δ = 1, where the eigenvectors are defined as

|u1,2
k 〉 =

1√
2

(
∓eik

1

)
and we have Ek = ±1. If we carry out the differentiation and
integration in Eq. (85), then we obtain
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P =
e

2
mod(e). (96)

However, if we choose δ = −1, we see that

|u1,2
k 〉 =

1√
2

(
∓1
1

)
with Ek = ±1 leading to

P = 0 mod(e). (97)

Is this coincidence? No! In fact, you we now check that so
long as δ > 0 P = e

2 , while if δ < 0 P = 0, modulo e. To
show this recall that the SSH Hamiltonian (71) is off diagonal
(only depends on σx,y). Its off diagonal component can be
written as dx + idy = |~d|eφk provided |~d| 6= 0 for all k, which
is guaranteed in the gapped phase. In this case you can show
that the eigenvectors can be written as

|u±k 〉 =
1√
2

(
∓eiφk

1

)
If we carry out the differentiation and integration in Eq. (85),
then we obtain for the lower band

P =
e

2π

∫
BZ

dk
1

2

∂φk
∂k

= m
e

2
mod(e) (98)

The last equality follows from the fact that φk = φk+Gmodulo
an integer m times 2π, with G a lattice vector. Since this
integer cannot be changed unless |~dk| = 0 at some k, the
polarization stays pinned to e/2 when δ > 0 (m = 1) and
to 0 when δ < 0 (m = 0). See Ref. [16] for a pedagogical
discussion.
P in the SSH model is an example of a quantized response:

Polarization only depends on fundamental constants times
a half quantized integer or zero. It also suggests that these
two cases can be classified by a Z2 integer which takes the
values one or zero depending on whether P = e

2 or P = 0.
We can take this integer to be exactly Φn/2π. This acts as
a topological invariant, because, so long as the symmetries
ensuring dz = 0 are met, one cannot change continuously (i.e.
without closing the gap) between the two types of insulators.

However, this is not the whole story. Another way to see that
P is quantized is realizing that Φn is in fact 1/2 of the solid
angle swept by d̂ = ~dk/|~dk| as we change k from 0 to 2π (if
this is not clear to you, this might be more evident in the next
section, or you can convince yourself by direct computation).
Since dz = 0 because of chiral symmetry, d̂k is confined to
the (d̂x, d̂y) plane. For δ < 0 d̂k does not trace any solid
angle, leading to Φn = 0 and hence P = 0. For δ > 0 it
winds around the origin once, leading to a solid angle of 2π,
which implies Φn = π and P = e/2. This suggests that d̂ can
wind more than once, which means we can classify distinct
topological phases with an integer Z: the winding number of

Figure 5. The Berry phase of two-band models is half the solid angle
swept by d̂ = ~dk/|~dk|. For the SSH chain d̂ is confined to the plane,
and the solid angle is either zero or 2π, leading to a Berry phase of 0
or π.

dk around the origin. Indeed, any single-particle Hamiltonian
with chiral symmetry can be written as

h(k) =

(
0 qk
q†k 0

)
, (99)

for which we can define a winding number [17]

ν =
i

2π

∫
k

Tr[qk∂kq
†
k] ∈ Z (100)

which counts how many times ~dk winds around the origin (i.e.
howmany times ~dk intersects a line from the origin to infinity).
It relates to the polarization as

P = e
ν

2
mod(e). (101)

To see what is the physical differences between different ν we
need to look at a different observable: the number of edge
states.

C. The invariant from inversion eigenvalues

You might have noticed that in the Brillouin zone there are
special momenta that satisfy k = −k modulo a lattice vector:
these are k = 0, π. We may call these inversion symmetric
momenta, because inversion takes k → −k. This is true
independent of the system we are considering.
Lets take a look at the SSH Hamiltonian at these special

points. The Hamiltonian reads

hαβk = ~dk · ~σ + εkσ0 (102)

where we εk = 0 and

~dk =
(

(1− δ) + (1 + δ) cos k, (1 + δ) sin k, 0
)
. (103)
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Hence hk=0 = ((1 − δ) + (1 + δ))σx = 2σx and hk=π =
−2δσx. We immediately notice that the gap closes at k = π
when δ = 0 while it remains open at k = 0 for all δ. It
turns out, that we can use this information to track the change
of the topological phase, and define a topological invariant,
much more easily than before. To do so we must track the
band closing, and a way to do this is by symmetry labeling the
bands.

First, recall that for our SSHHamiltonian, inversionwas rep-
resented by σx. In other words our SSH Hamiltonian satisfies
σxhkσx = h−k. Observe that there are two special momenta
that under inversion are mapped to themselves, k = 0, π, up
to a reciprocal lattice vector. At this points, the Hamiltonian
commutes with inversion, which means we can label the bands
with inversion eigenvalues. Lets see how that happens. where
this is a symmetry that commutes with

The Hamiltonian at k = 0, π is very simple:

hk=0 = 2σx, hk=π = −2δσx (104)

which have eigenvalues ±2 and ∓2δ respectively. At half-
filling (one electron per site) only the lowest eigenvalue is
filled for each momentum point. Now we ask, what are the
inversion eigenvalues of the filled bands. For h0, the eigen-
values are independent of delta, and the filled state is always
the same: that with eigenvalue−2 and eigenvector 1√

2
(−1, 1).

Now this state is an eigenvector of the inversion operator with
eigenvalue ξk=0 = +1, as shown in Fig. 6 (in this example,
this is simple to see because both the Hamiltonian and inver-
sion are represented by σx). The situation is different at k = π.
If δ < 0 the filled state is 1√

2
(−1, 1) with inversion eigenvalue

ξk=π = +1 but for δ < 0 the filled state is 1√
2
(1, 1)with eigen-

value ξk=π = −1. Note that the product ξk=0ξk=π therefore
only changes when the gap closes, at δ = 0. Therefore we
can symmetry indicate the topological state of our chain by
defining:

νZ2
≡ ξk=0ξk=π = ±1 (105)

The two cases ±1 are not connected to each other unless we
cross a gapless point (see Fig. 6).

Note as well that this invariant can be viewed as the answer
to the question: is the solid angle traced by ~d equal to 0 or 2π.
A value νZ2

= −1 indicates that d̂ points along x̂ when k = 0
and along −x̂ when k = π. This means that as k is varied
from 0 to 2π, d̂ traces an arc that spans 2π radians from the
origin.

νZ2 is the first example of a topological invariant constructed
using symmetry indicators: using a unitary symmetry of our
system, we can determine whether or not the system is in a
topological state. This statement turns out to be quite general:
spatial symmetries simplify the calculation of topological in-
variants. The eigenvalues ξk=0,π that compose expressions
like (128) are known as symmetry indicators of band topol-
ogy, or simply symmetry indicators. Note that calculating the
invariant in this way we can only distinguish beteween two
values ±1, and thus it is a Z2 invariant. Sometimes using

symmetry is enough to say which state is topological, but it is
not enough to teach us about the full classification of this state
(Z vs Z2 in the SSH case). This can happen in higher dimen-
sions: e.g. the Chern number of 2D models, an invariant we
will introduce soon, can be calculated modulo an integer using
spatial symmetries, but in general it takes any integer value.

D. Edge States

While the imposition of certain symmetries is enough to
guarantee this quantized behavior, the presence (or absence)
of edge states depends on whether the type of symmetry that
protects the topological phase is spatial or not. First, lets gather
some properties of the chiral symmetry in the SSH model that
we have seen:

• εk breaks chiral symmetry (UhkU
†
S 6= −hk.) which,

for the SSH chain takes the form US = σz .

• US is local in space (does not depend on the site).

• For every state with energy ε we have another state at
energy −ε.

Imagine we have a finite SSH chain and we consider the two
limits δ = 1 and δ = −1 as in Fig. 7. Since we don’t have
periodicity, the spectrum cannot be represented as a function
of momentum k, but we can still plot it as shown in Fig. 8.
For a finite chain, the only difference between δ = 1 and
δ = −1, is that for the former case cA,i and cB,L are not
connected to any site by any term in the Hamiltonian. This is
equivalent to saying that theHamiltonian has two rows of zeros,
which implies that there are two E = 0 eigenvalues when
δ = 1. These edge states are absent when δ = −1, because
the connectivity of the lattice is different. The presence of edge
states is in fact not a coincidence of our choice of parameters,
but rather a consequence of chiral symmetry, locality of the
Hamiltonian and that δ > 0 combined. Lets see why.
Imagine we want to lift the degeneracy of the edge states

that occur at δ = 1. First, we notice that the bulk gap closes
at δ = 0. Since we want to ask if the edge states are a
topologically protected property of the gapped phase, we are
not allowed to cross δ = 0, and thus we are restricted to δ > 0.
Perhaps, you think, we can keep δ > 0 but lift the degeneracy

moving away from δ = 1, which is a suspiciously special
parameter choice. However, moving away from δ = 1 cannot
lift the degeneracy at zero. The reason is best understood if
we consider first a semi-infinite chain. In a semi-infinite chain
we have only one edge state. This localized edge state, is an
eigenstate of chiral symmetry (US = σz); all eigenstates are.
Now recall that eigenvalues come in (−E,E) pairs, and that
these pairs are related by chiral symmetry. If we only have one
localized state, we must have it at E = 0. If we only have one,
no perturbation that respects chiral symmetry can lift it from
zero, because this will imply we have a state at ±E without a
partner at ∓E. Moving back to a finite chain, our arguments
are independently true for both end states, so, even if we move
from δ = 1, the two end-states will remain at zero (they are
chiral partners).
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Figure 6. The trivial (left) and topological (right) can be distinguished by the product of inversion eigenvalues of filled bands at the two
inversion invariant points k = 0, π.

Figure 7. There are two easy limits where to see the emergence of
absence of edge states δ = 1 and δ = −1.

Aha! you say, but we can move one edge state up in energy,
say to E, and one down in energy −E, so that they form a
(−E,E) pair! Indeed, this is possible, but here is where the
locality requirement enters: to do this we need to add a term
c†A,1cB,N +h.c. that couples the two end states. However,
this would be a non-local term and would violate our locality

principle: hopping terms must be local (i.e. short range).
Lastly, we could also try a term like c†A,1cA,1 or c†B,1cB,1,
which is an onsite term and it is local. However, this term
will break chiral symmetry because it will enter like σ0 or σz ,
spoiling the condition UhkU†S 6= −hk with US = σz .
We must conclude that, as long as we do not close the gap

between the bulk states, there is noway to break the degeneracy
of the edge states without breaking the chiral symmetry that
protects the state. Moreover, we notice that even if we add
copies of the chain (say Z copies), so long as only have A to
B terms chiral symmetry will be respected, and we will have
Z copies of the edge state. This is what the index ν in (100)
counts.
One final note: What would have happened if we had used

the combination of time-reversal and inversion to protect the
topological phase? Inversion sends x → −x so P → −P .
Since P is defined only modulo e, if we have inversion sym-
metry there are two values that satisfy P = −P , which are
P = 0,

e

2
, which correspond to Zak phases of Φ = 0, π, re-

spectively. Based on polarization we could distinguish two
type of insulators, with a Z2 number: Φ/2π. It is possible to
show that chiral symmetry also suffices to quantize P = 0,

e

2
.

However, while chiral symmetry protects the edge states to be
at zero energy, safe from the bulk states, inversion and time-
reversal cannot protect zero energy edge states. To see this
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note that we could have added a term µ(c†A,1cA,1 + c†B,1cB,1)
corresponding to a term µσ0 in the Hamiltonian. This term
respects inversion symmetry, in virtue of 84. However, as
we saw before, this term can move the zero energy states away
from zero energy, and thus this crystal symmetry is not enough
to protect the edge states.

Figure 8. The left figure shows that in the case where δ = 1, c†A,1

and c†B,N drop from the Hamiltonian. Therefore it costs zero energy
to create states at the edges. These cannot be removed by any local
perturbation that preserves chiral symmetry.

E. Edge states from the Dirac equation

A very convenient way to analyze topological phase tran-
sitions and make analytical progress is to expand the tight-
binding Hamiltonian around relevant k points. We have al-
ready seen that compared to k = 0, k = π is a very special
point, where the gap closes if δ = 0. This is also verified if
we expand the Hamiltonian to linear order in k:

hk∼0 ≈ vF kσy + 2tσx (106)
hk∼π ≈ −vF kσy − 2tδσx (107)

where vF = t(1 + δ). The fact that the gap closes at δ = 0
is captured in the linear approximation. Now, we know that
δ > 0 and δ < 0 should be also different. Thus, if we create
a boundary between the two systems, where δ > 0 for x > 0
and δ < 0 for x < 0 we should be able to recover that there
is a zero mode at the boundary. We focus on hk∼π because,
unlike hk∼0, it depends on δ, and write it in a slightly different
notation:

hk∼π ≈ kσy +mσx (108)

Hamiltonians that are linear in momentum written in terms
of Pauli matrices are called Dirac Hamiltonians (We will use
them in other dimensions too, e.g. in 2D they take the from
(hk = kxσx + kyσx + mσz). The last term, where we have

defined m ≡ −2δ, sets the gap. It is usually called a mass
term because the dispersion relation is

hk∼π ≈ ±
√
k2 +m2 (109)

which is like a relativistic particle with massm.
Jackiw and Rebbi found out that if we allow m to change

sign as a function of position, it must host a zero mode [18].
Lets show this by choosing any profile, m(x) that satisfies
m(±∞) = ±m. In our tight-binding language this amounts
to demanding that the hoppings are inverted at some point (lets
fix that to x = 0), that we call the boundary, between a chain
with δ > 0 and a chain with δ < 0. Now somewhere in the
middle δ = 0 but can we find a E = 0 solution? To answer
this we must first write (108) in real space by using k → −i∂x
and solve the following Schrodinger equation:(

0 −i(−i∂x) +m(x)
+i(−i∂x) +m(x) 0

)
ψ = 0 (110)

and find a normalizable ψ = (ψ+, ψ−), a two component
wave-function. This amounts to solving∓∂xψ∓+m(x)ψ∓ =
0. There is only one normalizable solution:

ψ =
1

N
e−

∫ x
0
dx′m(x′)

(
1
0

)
(111)

because a solution with (0, 1) comes with a plus sing in the ex-
ponential and thus grows exponentially away from the bound-
ary. A typical choice of mass profile to see the localized
mode is m(x) = m tanh(x/λ) which interpolates between
m(±∞) = ±m by changing around the origin over a charac-
teristic distance λ. The exponential factor leads to a localized
mode with energy E = 0, just as we found previously. Ad-
ditionally, note that the Dirac Hamiltonian (108) has chiral
symmetry (US = σz) and thus this mode cannot move from
zero energy unless chiral symmetry is broken.
The low-energy, or k · p Hamiltonians are a very useful tool

to understand the emergence of edge states and topological
properties analytically in all dimensions. We will keep this
in mind when we introduce Chern insulators and topological
insulators.

F. Wannier centers and charge pumping

To close the discussion of physical properties of the SSH
model and introduce and use the Rice-Mele model we will
discuss what is known as a Thouless pump.
The notion of Thouless pump can be understood by intro-

ducing a physical interpretation of the Zak phase: it tells us
where the center of charge (known as Wannier center) is lo-
cated in the unit cell. TheWannier center is the inverse Fourier
transform of the Bloch function ψnk(r) = eik·runk(r), where
unk(r) is the cell periodic function.

|wnR〉 =
Vcell
2π

∫
BZ

eik·R|ψnk〉 (112)

The nice thing about wannier functions |wnR〉 is that as long as
ψnk(r) is a smooth function of k then wnR(r) decays rapidly
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with R. In fact they are localized near R[15] so it decays fast
with |r−R|. The center of charge of the Wannier function is
given by the diagonal element:

r̄n = 〈wn0|r̂|wn0〉 (113)

It is not difficult to show (seeChapter 3, eq. 3.96 inVanderbilt’s
book [15]) that

r̄n =
Vcell
2π

∫
BZ

〈unk|i∂k|unk〉 (114)

In 1D, this is exactly given by the Zak phase!

x̄n = a
Φn
2π

(115)

where n labels the band (to know the position of the Wannier
center in the crystal we would add an integerXi that labels the
the unit cell), and we have restored the lattice constant a.
Now recall that because of inversion symmetry Φn = 0, π.

This, in the position operator language means that the charge
center of band n is situated either on top of a site, or in the
middle of the bond. This makes sense, because these are
the only two inversion symmetric points in the unit cell! It
also tells us that the difference between these two situations is
half a lattice spacing ∆x = a/2, in other words a change in
polarization ∆P = e

a∆x = e
2 .

We are ready to define a Thouless pump which is a closed
path interpolating between these two situations. Since we now
know that in the presence of inversion symmetry the charge
center can only be either on top of a site or in the middle of the
bond, we need to break inversion symmetry to move it. This is
precisely what the Rice-Mele model parameterm does. Recall
that the Rice-Mele Hamiltonian is given by (see our discussion
close to Eq. 21)

H = dk · ~σ + εk · 1 (116)

where

dk =
(
t(1− δ) + t(1 + δ) cos k, t(1 + δ) sin k,m). (117)

The term m breaks inversion; you can check this mathemat-
ically using (68) and Î = σz . Physically this is because the
onsite staggered potential m adds an onsite energy of +m to
sitesA and−m toB sites, and thus we don’t recover the same
change upon exchanging A and B sites.

Now imagine we consider a closed path in the parameter
space set by the two free parameters of our model (δ,m),
see Fig. 9. Let’s assume that we start at (δ,m) = (−1, 0)
with P = 0 and Φz = 0, which then dictates that we place
the Wannier center of charge on a site, which is an inversion
symmetric point. Aswe cycle through values of the parameters
(δ,m), the charge distribution translates through the unit cell.
When (δ,m) = (1, 0), the charge is located at the center of the
unit cell, but when Φz = π, the charge is located at the edge
of the unit cell. Running through this cycle pumps exactly a
charge across each unit cell in the system. If we parametrize

Figure 9. Thouless pump exemplified by a closed loop in (δ,m). The
difference between 1 and and 3 is a displacement of e/2 while from
1 to 5 we have pumped exactly one charge through the unit cell.

the path by an angle φ the change in polarization is given by
Eq. 92

∆P = − e

2π

∫ 2π

0

dφ

∫ 2π/a

0

dk Ωφk. (118)

Since our path is periodic, the surface of integration is closed.
Hence by (95) we get an integer, Cn = 1 times e.
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Although the Thouless pump was predicted long ago [19],
it has only been observed recently in systems of ultra-cold
atoms [20, 21].

G. The SSH model and the 10-fold way

We have seen that if the SSH has chiral symmetry is clas-
sified by a Z invariant. When we have a topological phase
protected by a non-unitary symmetry we call it a strong topo-
logical phase. When can a model be in a strong topological
phase? The possibilities depend on which non-unitary sym-
metries this model has, and the topological invariants one can
build. All the possibilities are tabulated in V.

We see that the chiral SSH model belongs to class AIII if
it lacks time-reversal and particle hole symmetries but it is in
class BDI if it satisfies these symmetries and T 2 = 1. The
example we considered was in class BDI. To see this recall
that our electrons were spinless. Thus T 2 = 1 and T can be
chosen to be simply complex conjugation. Therefore T̂ was a
symmetry because UTh∗−kUT = hk with UT the identity.

Similarly, we will see that in other dimensions other topo-
logical phases exist for different non-unitary symmetries. We
will focus on the examples of a Chern insulator, and a 3D
Topological insulator

H. 1D insulators are obstructed insulators

What we have learned from the above is that topological
insulators have edge states, and quantized responses. How-
ever we have been able to understand all the phenomenology
in terms of Wannier states, which are exponentially localized.
As depicted in Fig. 9, we can interpolate between an atomic
insulator, where the charge centers sit at the sites, and an insu-
lator where the charge centers sit at the bonds. For this reason,
sometimes it is said that in 1D there are no true topologi-
cal insulators: all insulators are connected to atomic limits.
However, symmetry plays a crucial role: if we respect inver-
sion symmetry (inversion imposes ∆ = 0), the two insulators
cannot be connected unless we close the gap. Since there
is a symmetry obstruction to connect these two insulators, 1D
topologicalmodels are sometimes called obstructed insulators.

This contrasts what happens in higher-dimensions. We
could define topological phases as those that do not have atomic
limits. In fact, it is possible to show [15] that if you try to find
a localized Wannier basis to describe a topological phase, you
run into problems. The reason is that you cannot normalize
the states because their normalization, set by the overlap of
Wannier like functions, is guaranteed to be singular at some k
point[15].

I. Example II: Kitaev Wire

One might worry that the SSH chain is not very robust to
perturbations. For example, any hopping that couplesA atoms

to A atoms (or B to B), like second-nearest neighbours will
break chiral symmetry (introduce a term with σz or εk).
A more robust phase in 1D is a topological 1D super-

conductor protected by particle-hole symmetry. As we saw
in section III B 3 BdG Hamiltonians have exact particle-hole
symmetry. This symmetry can be used to protect topological
phases in 1D.
Kitaev proposed a model to realize this phase with spinless

electrons hopping on a 1D lattice, like in Eq. (5), but with a
nearest neighbour pairing term ∆

H = −µ
L∑
i

n̂i −
1

2

L∑
i

(tĉ†i ĉi+1 + ∆cici+1 + h.c.) (119)

Imposing periodic boundary conditions and going to k space
we can use the recipe of Sec. III B 3 to construct our BdG
hamiltonian:

H =
1

2

∑
k

χ†kh
BdG
k χk (120)

with χ†k = (c†k, c−k) and

hBdG
k =

(
εk ∆̃∗k
∆̃∗k −εk

)
(121)

with εk = −t cos(ka) − µ and ∆̃k = −i∆ sin(ka). Note
that pairing ∆ can be complex in general ∆ = |∆|eiφ, but
we will not worry about this too much. Also, sometimes a
pairing like ∆̃k is called p-wave pairing, reflecting the fact
that at small momenta the pairing term goes as k and is thus
an odd function of momentum. k-independent pairings are
called s-wave pairing. This Hamiltonian looks a lot like the
SSH model with a different choice of matrices. We can write
it as usual for 2× 2 hamiltonians:

hBdG
k = ~dBdG

k · ~τ + εkτ0 (122)

with

~dBdG
k = (0,−∆ sin(ka),−t cos(ka)− µ) (123)

and εk = 0. We have used the Pauli matrices ~τ instead of ~σ
to remind us that the 2× 2 structure of the Hamiltonian is not
physically a spin, but rather electrons and holes.
The bands are given simply by E± =

√
ε2k + |∆̃k|2 By

plotting the bands you can see that the bands have a gap,
except for µ = ±t.
As we learned in Sec. III B 3 the Nambu spinor χ is not

independent of χ. In k-space this translates to (χ†−k)t = τxχk

which imposes particle-hole symmetry: UCh∗kU
†
C = −h−k

which imposes:

dxk = −dx−k (124)
dyk = −dy−k (125)
dzk = dz−k (126)
εk = −ε−k (127)
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Class T̂ Ĉ Ŝ d = 1 d = 2 d = 3

A 0 0 0 0 Z (e.g. CI) 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z (e.g. SSH) 0 0
D 0 1 0 Z2 (e.g. Maj. wire) Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 (e.g. 2DQSH) Z2 (e.g. 3DTI)
CII -1 -1 1 2Z 0 Z2

C 0 -1 0 0 2Z 0
CI 1 -1 1 0 0 2Z

Table V. 10-fold classification of non-unitary symmetries with trivial and non-trivial classes in different dimensions.

which is indeed satisfied by (122). In the absence of any other
symmetry this model belongs to Class D of Table V. Since we
are in d = 1 We can read from the table it has a Z2 invariant
which we know how to calculate!

Assume that |dBdG
k | 6= 0, which is equivalent to assum-

ing that the bands have a gap. Then one can define again
d̂k = dBdG

k /|dBdG
k | and check its winding number. From

our discussion in the SSH we can again check how this vector
changes as wemove the momentum in from 0 to 2π. We notice
inversion is represented by τz and the same discussion leads
us to define its eigenvalues at the inversion symmetric points

νZ2
≡ ξk=0ξk=π = ±1 (128)

Once again this invariant is telling us how the vector d̂k winds
around the origin as we change k. For k = 0 it points at
−sign(t + µ)ẑ while for k = π it points at sign(t − µ)ẑ.
Hence the topological invariant is νZ2

= −1 only when µ < t,
which realizes the topological phase.

This topological phase also has edge states. They become
apparent by changing fermionic creation and anhilation oper-
ators into majorana fermions (γα,j)

cj = γB,j + iγA,j (129)

which need to satisfy:

{γα,i, γβ,j} = δαβδij γα,j = γ†α,j (130)

As an exercise you can try to derive theHamiltonian in terms of
Majorana fermions, which looks a lot like the SSHHamiltonian
(see [22]). It follows that there are two unpaired Majoranas
modes at zero energy in the topological phase.

There is a difference between the end modes in a Majorana
Chain and an SSH chain. In the SSH there is an inherent
ambiguity in the unit cell, and this can change the number of
zero modes [23]. Since the two Majorana states are formed
from one electron there is no such ambiguity in the Kitaev
chain (see Ref. [24] for a thorough discussion).

A last remark. The fact that we started with spinless elec-
trons is crucial for the stability of the phase. If you have spin,
there will be two majorana endmodes at the end of the chain,
which can form a fermion, and gap out (they will not necessar-
ily be at zero energy). Getting read of this problem, known as
fermion doubling is the reason why current attempts to isolate

Figure 10. Top left: Chern insulator model in real space with the unit
cell. The Brillouin zone is a torus, which maps the Hamiltonian into
a unit two-sphere. The number of times the unit vector d̂k covers the
unit sphere is the Chern number.

Majorana end modes in nano-wires are focused on large-spin
orbit coupled materials with a magnetic field. Their effect
combined creates an effective spinless Kitaev model. I might
add something about this in future versions of the notes, but
an excellent discussion is in the review by J. Alicea [22].

V. TOPOLOGICAL PHASES IN 2D

A. Chern Insulators and the Chern number

Chern insulators are topological insulators in class A in d =
2. They are the only topological insulators in this symmetry
class in physical dimensions (d = 1, 2, 3). In this class all
three anti-unitary symmetries are absent! and yet we can still
define a Z topological invariant. An easy example to see how
this is possible is to again consider a generic two-band model



19

in two dimensions. We can write:

hk = dk · σ + εkσ0 (131)
Ek = ±|dk|+ εk. (132)

But now k = (kx, ky). As before, |dk| 6= 0 is the condition
that ensures a gap, and we ignore εk = 0, since it does not
affect what comes next. We may again define a unit vector,

d̂k =
dk

|dk|
, (133)

which lives on the surface of a sphere with radius 1, called S2,
or the “two-sphere" (an n-sphere is designated Sn). On the
other hand, the k-vector lives on the Brillouin Zone, which has
the topology of a torus, k ∈ T 2. The definition (133) defines
a map from the Brillouin Zone torus, to the two-sphere:

k→ d̂k (134)
T 2 → S2. (135)

We learned from our SSH example that the solid angle spanned
by d̂k in the equator was a topological invariant. d̂k was
constrained to the equator because we had chiral symmetry.
Can we build an invariant even if we have no symmetry?

Lets try to find out what is the solid angle spanned by d̂k
as we move k in the Brillouin zone. Moving an infinitesimal
amount in the kx direction k → k + dkxx̂ implies an in-
finitesimal change in d̂k given by d̂k+dkxx̂− d̂k = ∂kx d̂kdkx.
Similarly for k → k + dky ŷ the change in d̂k is given by
∂ky d̂kdky (see Fig.(10)). The surface element of the two
sphere perpendicular to the surface is then

dS ≡ ∂kx d̂kdkx × ∂ky d̂kdky (136)

Now we want to know how much of the sphere’s surface is
covered by moving in the Brillouin Zone. To this end we
compute how much solid angle is sweeped by d̂k [25]

C =
1

4π

∫
d̂k · dS (137)

=
1

4π

∫
dkxdky d̂k · (∂kx d̂k × ∂ky d̂k) (138)

with C ∈ Z. The quantization is Chern’s theorem, that we
already discussed. One way to understand that you must have
an integer is that otherwise we will be defining a bounded area
on the surface of the sphere. In turn, this should correspond to
some boundary on the torus, and there are no boundaries on
the torus.

A note on nomenclature. The topological statement of this
fact is Π2(T 2) = Z. This you can read that the the mapping
from the torus to the two-sphere. The sub-index in Π, in
this case 2, is the n-sphere to which we map whatever is
inside the brackets. is characterized by an integer number. A
more intuitive example is Π1(S1) = Z. Here we are saying:
the winding a circle with a circle is an integer. Similarly
Πn(Sn) = Z. However, if we want to map a circle to a two-
sphere Π1(S2) = 0. This intuitive because every circle on the

top of the sphere can be topologically contracted to a point: all
circles on the sphere are equivalent. In general Πn(Sm) = 0
form > n.
Thus far we have only considered a two band model. In this

case the Chern number of the two bands are related: C1 =
−C2. A Chern number can be defined for any isolated band,
and is not only a property of two bandmodels. We have already
seen how to define it. Look at our definition of the change in
polarization Eq. (92) and consider λ to be a momentum in a
second direction. This immediately leads to the definition of
the Chern number Cn for each band:

Cn =
1

2π

∫
BZ

dkxdky Ωnk (139)

Ωnk = ~∇× ~Ank (140)
An

k = i〈unk|∇̃k|unk〉, (141)

We see that theChern number is the flux of theBerry curvature,
which is the curl of the Berry connection. By analogy with
Eq. (92) it is the quantized change in Polarization as we move
in momentum space.
Chern numbers are defined in two spatial dimensions (or for

cuts of higher-dimensional Brilluoin Zones as we will see later
on). Lets collect some useful properties of Cn:

1. Each isolated band in 2D has a Chern number, Cn.

2. Time-reversal symmetry implies that Cn = 0 for all
bands n. This is because time-reversal symmetry im-
plies that Ωk = −Ω−k. The Berry curvature integrated
over a periodic region (the Brillouin-Zone) yields zero.
This can be understood physically by remembering that
An

k determines the polarization, which is time-reversal
symmetric, but Ωk has an extra derivative of momen-
tum.

3. Inversion requires Ωk = Ω−k. So if a system has both
time-reversal and inversion symmetry, the Berry curva-
ture is required to be simultaneously an even and odd
function of momentum. This implies Ωk = 0.

4. The sum of the Chern numbers over all bands is zero,∑
n C

n = 0.

5. If the crystal has additional crystal symmetries (these
are always unitary) then the Berry curvature has extra
symmetry constraints.

a. Example of a Chern Insulator model The first exam-
ples of Chern bands where found in the Quantum-Hall ef-
fect, but there is a very simple Chern insulators model in two
dimensions. In real-space it is defined on a square lattice.
We need to bands, so two orbital degrees of freedom will do
c†i = (c†Ai, c

†
Bi). We define the model as [12, 26]

H = −t
∑
i

ĉ†i
(σz − iσx)

2
ĉi+ax̂ + ĉ†i

(σz − iσy)

2
ĉi+aŷ + h.c.)

+ M
∑
i

ĉ†iσz ĉi (142)
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Figure 11. The different phases of the Chern insulator model (142) are distinguished by the change in orientation of the vector d̂k, defined in
(143), at different high-symmetry points. These determine if we cover the two-sphere once or zero times (C = ±1 and C = 0, respectively ) .

Imposing periodic boundary conditions we can go to Fourier
space and find that the Hamiltonian is of the form hk = dk ·σ

dk =
(
t sin kx, t sin ky,M − t cos kx − t cos ky

)
. (143)

We may examine the (kx, ky)-plane to see where the gap van-
ishes. We notice this will occur at high symmetry points, and
we wish to determine for which values ofM/t the gap closes.
WhenM/t = −2, the gap closes at (π, π). WhenM/t = 0,
the gap closes at (0, π) and (π, 0). When M/t = 2, the gap
closes at (0, 0). We this distinguish three phases as shown at
the top figure in Fig. 11.

For this two-band model we can calculate the Chern number
by directly computing

C =
1

4π

∫
BZ

d2k d̂k ·
(
∂kx d̂k × ∂ky d̂k

)
, (144)

but there is an easier, graphical way. The graphical way simply
relies on checking d̂k at high-symmetry points and asking,
considering the whole Brillouin zone, how many times the
vector has covered the unit sphere (see Fig. 11).

We start with M
t < −2. We see from (143) that d̂k always

points down. This means that d̂k never points to the northern
hemisphere in the two-sphere. This implies that we never cover
the surface of the two-sphere and thereby the Chern number
of both bands is C = 0 (Fig. 11a).

However, when −2 < M
t < 0 we observe that d̂k around

the point (π, π), we see that d̂k now points upwards in the ẑ
direction. Because d̂k has changed sign at this k-point, this
implies that we cover the surface of the sphere once. Therefore
the Chern number of the bands is C1 = −C2 = 1 (Fig. 11b).
Once M

t > 0, d̂k will also change sign (and direction) at
the points (π, 0) and (0, π). With three up vectors and one
down, we now have Chern number of C1 = −C2 = −1
(Fig. 11c). The sign of the Chern number is a convention,
but the difference between Chern numbers between the case
M
t ≥ 0 and the case with −2 < M

t < 0 is always two.
Finally, past Mt = 2, we see that (0, 0) changes sign and we

are again led to the case in which there is no winding around
the sphere and the Chern numbers of all bands are zero again
(Fig. 11d).

B. Chern number and the Hall Conductivity

Ok, so we know how to calculate Chern numbers. But what
do they mean physically? They determine the Hall conductiv-
ity! Lets see why.
Consider a two-dimensional unit cell with side lengths of

ax and ay . The Brillouin zone is therefore defined by the
momenta 2π

ax
and 2π

ay
. We recall that the Chern number is the
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integral of the Berry curvature over the Brillouin zone,

Cn =
1

2π

∫∫
dkxdky Ωnk . (145)

To give us some physical intuition (and units!) it is useful to
phrase this equation in terms of the Zak phase. Remember
that the Zak phase is a 1D integral, so we need to cut the 2D
Brillouin zone into different kx

Φn(kx) =

∫ 2π
ay

0

dky 〈unk|i∂ky |unk〉. (146)

Remember that the Zak phase sets the average position of the
Wannier center (in this case in the y direction), which also
gives us some units

ȳ(kx) =
ay
2π

Φn(kx). (147)

Now we remember that ȳ is a periodic coordinate, it gives
us the Wannier center coordinate within a unit cell. It has to
return to itself upon changing kx from 0 to 2π up to an integer,
which is the Chern number

Φn(kx = 0)− Φn(kx = 2π/ax) = 2πCn. (148)

Fig. 12 shows how schematically how each Wannier center
moves as we move in kx. There are two possibilities, either
you traverse C unit cells in the y direction, or zero, if C = 0.
This leads to two possibilities that are depicted in Fig. 12a and
b.

So why is this related to the Hall effect? Imagine that
we have an electric field in the x direction (Ex) acting on this
Wannier center of charge. We can think of it as a semi-classical
object, a wave-packet that changes its momentum because of
Newton’s law:

~k̇x = −eEx (149)

To traverse the Brillouin zone in the x-direction, the wave
packet has to undergo a change in momentum ∆kx given by

∆kx =
2π

ax
,

which is achieved in a time (sometimes referred to as Bloch
time)

∆t =
h

eaxEx
.

Now we combining this with the knowledge that the change in
the average position, ∆ȳ, is an integer multiple of the Chern
number. By combining (147) and (148)

∆ȳn = ayCn. (150)

Then, the average velocity in the y-direction is

〈vy〉 =
∆ȳ

∆t
=
CaxayeEx

h
. (151)

To compute the Hall conductivity σyx we need to look at
the current density in the jy direction, since by definition
jy = σyxEx. The average current density is

〈jny 〉 =
e

axay
〈vy〉 (152)

=
e

axay

Cnaxay
h

eEx (153)

=
Cne

2Ex
h

= σyx, (154)

So the Chern number determines the Hall conductivity. By
the definition of Chern number we also learn that σyx = −σxy .
We also learn that σxy = 0 if time-reversal symmetry is
present, since this implies Cn = 0. Also, while we derived
this result semi-classically (because we used (149) rather than
deriving the current quantum mechanically) it holds quantum
mechanically. You can find a derivation in standard text-books,
e.g. [12, 15].
We derived the Hall conductivity for a given (filled) band n.

In general, the total Hall conductivity is the sum of all filled
states[27]:

σxy =
e2

~
∑
n

∫
BZ

dk

(2π)2
Ωnknf (εnk − µ) (155)

where nf (εnk) is the Fermi-Dirac distribution function. This
integral in general is not quantized. It is only when we have
an insulator, i.e. all filled bands have nf (εnk) = 1 and all
empty bands satisfy nf (εnk) = 0, when the Hall conductivity
is quantized

σxy =
e2

h

∑
n∈occ

∫
BZ

dk

(2π)2
Ωnk =

e2

h

∑
n∈occ

Cn (156)

C. Bulk-boundary correspondence: Chiral boundary modes

Do Chern insulators have edge states? Indeed, as happened
in 1D whenever two phases with different topological invari-
ants are placed next to each other there is something interesting
happening at the boundary. In the case of two Chern insulators
with different Chern number we are about to find that it is a
chiral edge mode (Fig. 12c).
Suppose the change in Chern number occurs as a function

of y (Fig. 12c). As in 1D our strategy will be expand our
Hamiltonian around a high symmetry point, and vary a pa-
rameter (the mass) as a function of y. As introduced earlier,
the Hamiltonian for our Chern insulator example is defined by

dk =
(
t sin kx, t sin ky,M − t cos kx − t cos ky

)
. (157)

Wewant to consider an interface between the phasewithC = 0
and C = 1, which happens, in parameter space at M/t =
−2. The transition is triggered by a gap closing at the point
(π, π), so it makes sense to expand this Hamiltonian around
this momentum

hk≈(π,π) = t(−pxσx − pxσy)−mσz. (158)
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Figure 12. a and b show the average position of the Wannier center
ȳn as we move in kx. For a non-trivial band (Cn 6= 0) each Wannier
center moves one unit cell when kx changes from 0 to 2π/a. c shows
that the interface of two Hall insulators hosts a chiral edge mode. d
shows that each edge has only one normalizable solution and they
counterpropagate.

withm = −2 + δm and pi = (ki−π) is the momentum close
to (π, π). We call this a Dirac equation, and its dispersion
relation (E± =

√
t2p2

x +m2) a gapped Dirac cone. Now to
model a boundary we can choose m(y) to be a function that
is m < −2 at y → −∞ and 0 > m > −1 at y → +∞. This
guarantees that we are building an interface between Chern
insulator C = 0 and C = 1. Following our steps in deriving
the edge modes of the SSH chain we can go to real space in
the y direction to write:

(
m(y) t(−px + ∂y)

−t(px + ∂y) −m(y)

)
ψpx(y) = Epxψpx(y) (159)

We are looking for a normalizable solution. There are two
mathematical solutions to this equation, which have dispersion
Epx = ±tpx and the form[10]

ψ±px(y) = e−ipxxe±
∫ y
0
dy′ m(y′)

(
1
±1

)
(160)

Which one we pick depends on our choice of m(y). We can
model our transition by writing it as m(y) = −2 + m0f(y)
where f(y) satisfies f(y → ±∞) = ±1. Now if m0 > 0
we are modelling an interface between a C = 0 insulator on
the left, and a C = 1 insulator on the right, as shown in Fig.
12c. In this case, the only normalizable solution is ψ−px(y).
Conversely ifm0 < 0, we are modelling an interface between
a C = 1 insulator on the left, and a C = 0 insulator on the
right, and the only normalizable solution is ψ+

px(y). Since
we can think of m0 > 0 and m0 < 0 as modeling opposite
edges of the same systems our results are telling us that two
opposing edges will have each one solution, either ψ−px(y) or
ψ+
px(y). These modes counter propagate with respect to each

other with dispersion relation Epx = −tpx and Epx = +tpx,

respectively (see Fig. 12d). Since they only in one direction
(their Fermi velocity is either positive or negative), we say that
these modes are propagating chirally.

Some final notes. From this analysis we can already see that
if the transition changed the Chern number by n units, there
would be n edge states per edge. These cannot be removed,
unless we destroy the topological phases by closing the bulk-
gap. In this sense, even if there is no symmetry to protect this
phase, we still have topological protection, since the Chern
number cannot change so long as the phase is gapped.

D. 2D Quantum Spin-Hall insulators

After the Quantum Hall effect a long-sought goal was to re-
alize topological phases without breaking time-reversal sym-
metry. This could achieve robust edge transport, but without
requiring magnetic fields. It took long to realize that there
are two ingredients to realize this dream: i) strong-spin orbit
coupling and ii) Kramers degeneracy.

To understand why strong-spin orbit coupling can act as
a magnetic field in creating topological states we may first
notice a peculiar thing of how the magnetic field couples to
electrons. In minimal substitution, we consider p to be re-
placed by p− eA. For a free particle with energy p2/2m this
means we need to consider (p− eA)2 which generates a term
p·A, among others. Amagnetic field in the z direction,Bz can
be written with the help of the gauge A = 1

2 (−Bzy,Bzx, 0)

which allows us to write p ·A = 1
2BzLz where Lz is the z

component of the orbital angular momentum of the electron
L = r × p. This should remind you of spin-orbit coupling
λsoL · S, but there are remarkable differences. First the mag-
netic field breaks time-reversal symmetry, as we can see by
noting that in 1

2BzLz only Lz changes sign and the Hamilto-
nian is not invariant anymore. In contrast, LS is time-reversal
even because bothL andS are odd under time-reversal, leaving
the product invariant. Also, unlike the magnetic field, spin-
orbit coupling can vary at the scale of the unit-cell, while the
magnetic field is constant. The strength of spin-orbit coupling
grows with heavier atoms (because it is a relativistic correction
to the electron’s motion).
We then might be tempted to think that we can take two

Chern insulators, that are time-reversed copies of each other,
and build a state that is time-reversal symmetric and topolog-
ical. This is a good idea, but we need an extra ingredient to
make it work. In a Chern insulator the chiral edge-states can-
not back scatter, they are topologically robust. However if we
make two that go on opposite directions, they can backscatter,
open up a gap, and ruin our newly build topological material.
Here is were the second ingredient comes in. As we learned

in III B 1, time-reversal symmetry is different for half-integer
spins because the operator that represents it satisfies T 2 = −1.
As a result, time-reversed states are orthogonal to each other,
but there is even a more interesting property: a time-reversal
symmetric perturbation cannot couple time-reversed states. To
show this recall that time-reversal is an anti-unitary operator
so it complex conjugates the scalar product 〈Tψ1|Tψ2〉 =
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〈ψ1|ψ2〉∗ = 〈ψ2|ψ1〉. Similarly, it satisfies:

〈Tψ1|Ĥ|Tψ2〉 = 〈ψ2|H|ψ1〉 (161)

Now lets assume that Ĥ is a perturbation that is time-reversal
symmetric, so it commutes with T̂ . This can be for example
impurities or defects so long as they are not magnetic. Now
take two conjugate pairs: |ψ2〉 = ψ and |ψ1〉 = Tψ. Inserting
them into the left-hand side of the previous equation

〈T 2ψ|Ĥ|Tψ〉 = −〈ψ|HT |ψ〉 = −〈ψ|TH|ψ〉 (162)

but the right-hand side of (161) is 〈ψ|TH|ψ〉 implying that
〈Tψ|H|ψ〉 = 0 for a time-reversal symmetric perturbationH .
This is an extremely strong result and signals that if we carry
through with our idea of opposite Chern number insulators the
edge states won’t gap out, beacuse they are Kramers pairs of
each other!

Lets introduce a couple of realistic models that exemplify
these features.

a. Example: Bernevig-Hughes-Zhang model Bernevig,
Hughes and Zhang [28] realized that a topological state
protected by time-reversal symmetry could be realized in
CdTe/HgTe quantum wells. To show this they wrote down
the low energy model around the Γ point of both materials.
There are four bands close to the Fermi level. These are given
by one spinful s band with the spin being σ =↑, ↓ and one
spinful p band (px + ipy). They showed that the symmetries
of the crystal structure, and the particular interface relevant for
experiment (which we will not discuss here) impose that the
Hamiltonian takes the form

H =
∑
k

(c†s↑, c
†
p↑, c

†
s↓, c

†
p↓)

(
h(k) 02×2

02×2 h∗(−k)

)cs↑cp↑cs↓
cp↓


(163)

defined by the 2× 2 matrix h(k) = εk + d · τ with

εk = C −D(k2
x + k2

y) (164)
dx + idy = A(kx + iky) (165)

dz = M −B(k2
x + k2

y) (166)

The parameters (A,B,C,D) are constants of the model, and
depend on the material. For this particular system B < 0 and
the sign of M depends on the well’s thinckness: M > 0 for
d < dc andM < 0 for d > dc. Note that we have conveniently
written the hamiltonian in a block structure, with each block
representing each spin, and within each block a 2×2 structure
that represents the orbital degree of freedom. In this basis,
time-reversal symmetry is apparent if we chose it to be

T̂ = iσyK ⊗ τ0 =

(
iσyK 02×2

02×2 iσyK

)
(167)

It is easy to check that each block does not have time-reversal
symmetry, but since T̂ sends h(k) → h∗(−k) and spin up to
spin down we recover (163).

To find the topological properties of this model we focus
on the vector d̂k. We can again ask how many times does this

vector cover the sphere as we go from k = 0 to k →∞. This
is a bit of a quick and dirty way, because we know that there
is a Brillouin zone. We will come back to this point later. For
k = 0 we find that d̂k=0 = (0, 0, sgn(M)), while for k →∞
we have that d̂k=0 = (0, 0, 1) (remember that B < 0). We
see that ifM > 0, the sphere is not covered, so C = 0, while
if M < 0 the sphere is covered once, so C = ±1. The sign,
is determined by how we cover it, this sign is opposite for hk
and h∗−k.

Excercise: Convince yourself by using expression (144) to
compute the Chern number.

Thus, by our discussion of Chern insulators we conclude
that this system is composed of two Chern insulators related
by time-reversal symmetry. It is now possible to write the Hall
conductivity:

σxy =
1

2
(σ↑xy + σ↓xy) =

C↑ + C↓
2

e2

h
= 0 (168)

The Hall conductivity is zero becauseC↑ = −C↓. This should
not surprise you: remember we showed that all systems with
time-reversal symmetry have an odd Berry curvature which
integrates to zero, resulting in a total Chern number of zero
and thus σxy = 0.
However the spin-Hall conductivity need not be zero:

σsxy =
1

2
(σ↑xy − σ↓xy) =

C↑ − C↓
2

e2

h
≡ Cs

e2

h
=
e2

h
(169)

We have just found a new topological phase: The quantum
spin-Hall insulator. This phase is characterized by a non-zero
spin-Chern number Cs =

C↑−C↓
2 .

If you look at table V, you see that indeed with time-reversal
symmetry that squares to −1, in d = 2 there is class AIII,
which has a topological invariant of Z2. But if the spin-Hall
conductivity is a sum of Chern numbers are Chern numbers
are integers, why don’t we have a classification Z× Z?
The reason can be understood by recalling again the effect

of time-reversal symmetry on the edges. If we have Cs = 1
we have two counter-propagating edge sates that cannot back-
scatter, per our arguments above. However, if we have Cs = 2
then we have four edge states. These can scatter by pairs, and
thus can gap out. Therefore this is topologically equivalent to
the case with Cs = 0. This is true for all even integers, so
the only topologically distinct states are Cs = 0, 1, trivial and
topological. The topological index is thus defined modulo 2,
hence theZ2 classification. This index tells us howmany pairs
of edge states we have at the boundary, again an example of
the bulk-boundary correspondence.
The spin-Hall conductivity is hard to measure directly.

However, the above was confirmed in Molenkamp’s group
in Wurzburg by looking at edge conductance [29]. Since there
are two edge states, they managed to observe a quantized con-
ductance close to 2e2/h. Currently WTe2 has shown to have
an even more accurate quantization[30].

One last comment. We argued in terms of a continuum
Hamiltonian. However, this is not entirely satisfactory,
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Figure 13. a) Two copies of Chern insulators related by time-reversal symmetry form a quantum spin-Hall effect. b) The backscattering
between edge states (arrow) is forbidden by time-reversal symmetry. c) Large spin-orbit coupling can invert bands with different symmetry
characters (green and orange). Interfacing a material with an inverted gap and a non-inverted material can lead to a topological edge state at
the boundary. d) In CdTe/HgTe quantum wells, the width of the well d controls the gap inversion of HgTe, and thus whether or not there is a
topological phase. .

because continuum models can have Chern numbers that
depend on how we regularize the Hamiltonian at k → ∞.
You can see this by keeping only terms to order k, what
Chern number would you get? If you are given a continuum
hamiltonian, but don’t have a lattice Hamiltonian, you can use
a trick to regularize it and get a lattice Hamiltonian with the
same topological properties. Simply trade ki → sin(ki) and
k2
i → 2(cos(ki)− 1). Close to Γ, these functions reduce back

to the BHZ Hamiltonian, but away from the Brillouin zone
center they will restore periodicity of the Brillouin zone.

Exercise: Show that the substitution ki → sin(ki) and
k2
i → 2(cos(ki)−1)maps h(k) to a Chern insulator model we

discussed in the previous section. Compute its Chern number
(e.g. using (144) or graphically) for M > 0 and M < 0,
with fixed A,B, and show that the topological properties are
determined by the parameter (M − 4B)/2B. Show that at
M = 0 there is a gap closing at the Γ point, which changes the
Chern number from C = 0 to C = 1.
b. Example: Kane-Mele model = 2 Copies of Haldane

model Around the same time as the above model was pro-
posed, Kane and Mele [31] realized that you can build a
topological phase without breaking time-reversal symmetry
in graphene. They proposed to think about a honeycomb lat-

tice with large spin-orbit coupling. Their model reduces to two
Chern insulator models related by time-reversal symmetry.
The Chern-insulator model in the honeycomb lattice is

known as the Haldane model [32] (see Fig. 14). It features
the normal nearest-neighbour hoppings of graphene, but also
a complex second-nearest neighbour hopping.

H =
∑
〈ij〉

t1c
†
iAcjB (170)

+
∑
〈〈ij〉〉

t2e
iφc†iAcjA + t2e

−iφc†iBcjB (171)

+ m
∑
i

c†iAciA − c
†
iBciB (172)

In momentum space it can also be written as hHald(k) =
εk + d · τ with

dxk = t1(cos(k · a1) + cos(k · a2) + 1) (173)
dyk = t1(sin(k · a1) + sin(k · a2)) (174)
dzk = m+ 2t2 sinφ(sin(k · a1)− sin(k · a2) (175)
− sin(k · (a1 − a2)))

with a1,2 the lattice vectors of the triangular lattice. which
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Figure 14. TheHaldanemodel feature complex second-nearest neigh-
bour hoppings. The phase diagram has three phases distinguished by
their Chern number. The Kane and Mele model is given by two
time-reversed copies of the Haldane model. .

defines the Kane and Mele Hamiltonian:

hKM (k) =

(
hHald(k)) 0

0 h∗Hald(−k)

)
(176)

The insight of Kane and Mele was to predict that this model
is a good description of graphenewith spin-orbit coupling [31].
Unfortunately, spin-orbit coupling is small in graphene, as it
goes with the atomic number Z, and carbon is a very light
element.

VI. 3D TOPOLOGICAL INSULATORS IN CLASS AIII

We now want to move on and consider 3D topological insu-
lators in class AIII, also protected by time-reversal symmetry
with T̂ 2 = −1. There is a simple way by thinking about SSH
models in momentum space. Later we will define a lattice
model in the square lattice that has topological properties.

To start, we will be assuming time-reversal symme-
try (UTh∗kUT = h−k) with T̂ 2 = −1, chiral symmetry
(UShkUS = −hk) and inversion symmetry (UIhkUI = h−k).
Later we will relax all but time-reversal and argue that the
topological surface states are robust.

We are going to construct our 3D topological insulator using
the 1D SSH chain. Consider the 1D-SSH Hamiltonian (71),
but doubled, a copy for each spin ↑, ↓. This means that for a
finite system we are going to have a pair of end-states at zero
energy, because of chiral symmetry. Note also, that each of
the energy bands are two-fold degenerate. This is becausethe
two bands ε↑k and ε↓k go to ε↓−k and ε↑−k, respectively, under
time-reversal, and then to ε↓k and ε↑k, respectively, under in-
version. Since we return to the same bands, we conclude that
the combination of time-reversal and inversion must make the
bands degenerate (see Fig. 15a).

Now we are ready to construct the 3D TI. Con-
sider a square Brillouin zone, which has eight
time-reversal (and inversion) invariant momenta:
(0, 0, 0), {(π, 0, 0)} , {(π, π, 0)} , (π, π, π), where the
braces indicate all permutations. Now we are going to
demand that at certain momenta our Hamiltonian for the 3D
topological insulator,HTI(kx, ky, kz) recovers the SSH chain
Hamiltonian

HTI(0, 0, kz) = htop
SSH(kz) (177)

HTI(0, π, kz) = HTI(π, 0, kz) = HTI(π, π, kz) = htr
SSH(kz)

(178)

where htop
SSH(kz) and htr

SSH(kz) are SSHHamiltonians with pa-
rameters such that they are in the topological or trivial phases.
This requirement can be schematically drawn as in Fig. 15b.
We have also drawn the inversion symmetry eigenvalues of
the lowest band. Notice that the product of all inversion eigen-
values (we take only one of the two degenerate bands) is odd.
This already motivates the definition of an invariant, just as
we did with the SSH chain:

ν =
∏
n∈occ

∏
k∈TRIM

ξk,2n = ±1 (179)

The 2n takes into account that we only need one of the two
degenerate bands to calculate the invariant. This invariant,
defined for the first time by Fu and Kane[33], signals the
presence (ν = −1) of absence (ν = 1) of robust surface
states.

To see why, lets open the chain in the z direction, and use
periodic boundary conditions in kx and ky . This will result in
a spectrum shown in Fig. 15c). If we look at the top surface for
example, we find at Γ two degenerate zero modes. These are
there because at Γ we imposed a topological SSHHamiltonian
with chiral symmetry, and we have two because we have two
spin species. Now what happens to these zero modes as we
move away from Γ? We can find out by simply counting. At Γ
there must beN−1 condution states, andN−1 valence states
because our slab is lengthN in the z direction and we have two
zero modes. These sum to 2N , as they should (two spin states
and a chain of length N ). Now, at the corners of the Brillouin
zone, we also have 2N states, but no zero modes, so they must
be distributed with N in the conduction band and N in the
valence band. We conclude that changing momentum from Γ
to the corner, the degeneracy of the zero modes is lifted, and
they disperse away from zero by pairs.

To convince yourself think about symmetries. The only
interpolation between Γ that respects the symmetries is the
one shown because time-reversa imposes εk = ε−k, and chiral
symmetry imposes that for every state at εk there is a state at
−εk. Since this occurs in any direction in the (kx, ky) plane,
we conclude there is a cone-like state at the surface. We have
found the Dirac cone.

But we already know that the dispersion of the Dirac cone
should be, to lowest order in momentum linear! Back in
III B 1 cwe showed that the linear dispersion is compatiblewith
time-reversal symmetry, so longwe don’t have a gapmσz term,
and provided it is composed by real spin. In fact, it is only time-
reversal symmetry that protects this state. If we would have
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Figure 15. Construction of a 3D TI from SSH chains. a) The spin-full
SSH chain has two doubly degenerate bands, one for each spin. b)
To construct a 3D topological insulator we first requre that the full
Hamiltonian recovers the SSH Hamiltonian at certain momenta. The
symmetry eigenvalues are also indicated. c) The full Hamiltonian
with open boundary conditions interpolates between different SSH
models, and thus lifts the degeneracy of the edge states. d) In the
continuum limit, these are the Dirac surface states, which cross at Γ.
They need not be pinned at zero energy. .

removed chiral symmetry but keep time-reversal symmetry,
the only possibility is that the cone can move up and down,
but never gap out. The only reason we used inversion is to
simplify the calculation of the topological invariant. However
this is not required; you can define the topological invariant as
a generalization of polarization in three-dimensions[34, 35]

θ =
∑
occ

∫
d3k

(4π)
εijlTr

[
Ai∂kjAl − i

2

3
AiAjAl

]
(180)

where Anmi = 〈unk |∂kiumk 〉 is the non-abelian (multiband)
Berry connection, and the trace is over occupied bands. As
you can see, this is a much more complicated expression to
evaluate than Eq. (179), but the advantage is that it delivers the
topological invariant even when inversion symmetry is absent.

Lastly, we can understand why it is a Z2 invariant and not
a Z invariant much in the same way as the QSH. For an even
number of Dirac cones, scattering processes are allowed be-
tween different Dirac cones, gapping them out. However, for
an odd number of surface states, the Dirac can gap out by
pairs, but will always leave one behind, protected by Kramers
degeracy.

Topological insulators have been observed in many materi-
als. Bi2Se3 is a textbook topological insulator with inversion
symmetry. It was predicted by the group of S.-C. Zhang in
Stanford and the Dirac cone was observed by Hasan’s group
in Princeton [1]. It was an exciting development because it
was the first time a topological phase was observed in three-
dimensions, and it did not require magnetic fields!

a. Example a. 3D topological insulator model We now
give for concreteness a lattice model for a three-dimensional

topological insulator. You can find a very complete discussion
here [34]. The matrix conventions are taken from here[36].
The model is defined on a square lattice with two orbitals

and two spins per site by a Hamiltonian

H = t
∑
i

c†i

(
Γ0 − iΓx

2

)
ci+x̂ + c†i

(
Γ0 − iΓy

2

)
ci+ŷ

+ c†i

(
Γ0 − iΓz

2

)
ci+ẑ + h.c.+M

∑
i

c†iΓ0ci (181)

where c†i = (c†i,A↑, c
†
i,A↓, c

†
i,B↑, c

†
i,B↓), Γ0 = σx ⊗ s0, Γx =

σz ⊗ sy , Γy = σz ⊗ sx, Γz = σy ⊗ s0 where si and σi
are Pauli matrices describing the spin and orbital degree of
freedom, respectively. In momentum space this Hamiltonian
takes the form

H = t
∑
k

c†kh
TI
k ck (182)

hTI
k = t sin kxΓx + t sin kyΓy + t sin kzΓz (183)

+ (M −
∑
i

cos ki)Γ0 (184)

Exercise: Show that this Hamiltonian has time-reversal and
inversion symmetry. Use the latter to calculate the topological
invariant. In the parameter regime where it is topological,
diagonalize thismodel with open boundary conditions and find
the Dirac cone. You can diagonalize it numerically, or expand
close to a high-symmetry point and use a space dependent
massM(z) to show the existence of a Dirac cone.

VII. WEYL SEMIMETALS (UNFINISHED)

To describe topological semimetals we are going to go the
opposite way we usually go: first we will describe the con-
tinuum Hamiltonian, and then use a trick to define a lattice
model. We consider a 2× 2 Hamiltonian in three-dimensions
of the form

h+ = vF kxσx + vF kyσy + vF kzσz (185)
= vFk · σ (186)

The eigenvalues are E± = ±vF |k|, so it forms a cone in
momentum space, the Weyl cone (see Fig. ??a). We notice
the two bands touch at a point, the Weyl node, and we may
ask if we can lift this defgenercy by adding any perturbation to
(187) with the sub-space of 2 × 2 matrices. This subspace is
completely spanned by the Pauli matrices σi and the identity
σ0 so, to lowest order inmoment, themost general perturbation
we can add is

hp = h+ + b · σ + b0 · σ0 (187)

with b a constant vector and b0 a constant. We observe that
there is no way to lift the degenearcy. It is simple to see why:
b can be reabsorbed by a definition of the momentum, and b0
by a definition of the zero of energies. In other words, we can
shift the cone around, but we will not open up a gap!
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Is this protection topological? Lets calculate the Berry cur-
vature of one of the eigenstates of h+. We gave the expression
of the Berry curvature of a 2 × 2 hamiltonian in terms of the
vector d̂k, which in our case is d̂k = k̂ = k/|k| = k/k (it is
the integrand of Eq. 144)

~Ωn=1
k = ~∇× ~An=1

k (188)

= d̂k ·
(
∂kx d̂k × ∂ky d̂k

)
=

k

2k3
(189)

we thus find that for the lowest band n = 1 the Berry curvature
looks like a monopole (see Fig. ??b), emanating from the
origin. Now, here we see a problem. If the Hamiltonian (187)
was to be obtained from a tight-binding model, we would
have the problem that the Berry curvature would always be
outgoing, and cannot be periodic in the Brillouin zone. We
have to conclude that there must be another monopole, a sink,
that compensates for this Chern flux. The simplest way to
compensate for this flux is to have another monopole, with
opposite flux

h− = −vFk · σ (190)

It is not difficult to show that the Berry curvature is exactly
opposite from that of h+. Thus the simplest low energyHamil-
tonian of a Weyl semimetal is

hWeyl =

(
h+ 0
0 h−

)
(191)

It is topological in the sense that only by coupling these two
monopoles to each other, we may open a gap, since each 2× 2
Hamiltonian h± is stable independently. But what allows us
to have zero in the off-diagonals?

Exercise 1 : Low-energy description of a Weyl
semimetal
AWeyl Hamiltonian of positive chirality can be defined
as:

H+ = +vfk · σ (192)

(a) Write the most general form of a constant pertur-
bation to H+. Check that it is impossible to gap
out such a Weyl Hamiltonian.
Tip: The only perturbations that can be added to
H are proportional to the Pauli matrices or the
identity.

(b) Check that the Berry curvature takes the form of a
monopole in momentum space. Give an argument
why Berry monopoles must always come in pairs
within the Brillouin zone.
Tip: You may use (or even better, prove!) that
the Berry curvature for a two band system hk =
dk · σ + εkσ0 is given by [? ]

Ωk =
1

2

dk
|dk|3

, (193)

which can be derived from

Ωi
k =

εijk

2
d̂k · (∂kj d̂k × ∂kl d̂k). (194)

which we derived in the second lecture.

(c) Double the Hamiltonian with a Weyl of the
opposite chirality H− = −vfk · σ such that
H = τz ⊗ vfk · σ where τz is a valley, or orbital
degree of freedom. What happens to the spectrum
when we add the off-diagonal termMτx ⊗ σ0?

(d) Add a perturbation of the form τ0⊗b ·σ+b0τzσ0.
Plot the spectrum for different values of
(b2 − b20)/M2 and identify the different phases.
Tip: Solve the Hamiltonian numerically in
Mathematica, or even better, argue perturbatively.

(e) Show that τ0 ⊗ b · σ and b0τzσ0 break time-
reversal T = −iσyK and inversion I = τx,
respectively. Show that it is only possible to have
Weyl fermions if either, or both symmetries are
broken.
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Exercise 2 : Lattice model for a Weyl semimetal

Consider the three-dimensional model:

Hk = t sin(kx)σx + t sin(ky)σy + (M − t
∑
i

cos(ki))σz

(195)

(a) Show that the gap closes at two points, the Weyl
cones, and give their position in momentum space.

(b) Assuming that Pauli’s matrices represent a spin
degree of freedom, show that this Hamiltonian
breaks time-reversal symmetry.
Tip: Time-reversal symmetry is given by
T = −iσyK.

(c) Set M/t = 2 and show that this model has a
surface state, known as the Fermi arc, between the
two Weyl nodes.
Tip: Check the Chern number as a function of kz .

(d) Calculate the Hall conductivity σxy , of this
model as a function of the Weyl node separation
∆KW . What happens when the nodes touch at
the Brillouin zone boundaries?
Tip: Use how the Chern number varies as a
function of kz .
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Appendix A: Useful relations

Completeness relation:∑
x

e−i(q−q
′)x = Nδqq′ (A1)

Sums to integrals:

∑
k

=
V

2π3

∫
d3k (A2)

where V = N ∗ Vcell and N = NxNyNz is the number of
primitive cells.

Appendix B: Kramers theorem

We want to show that T |φ〉 and |φ〉 are orthogonal. Con-
sider:

〈Tφ|Tψ〉 =
∑
mpr

(UmpKφp)∗ UmrKφr (B1)

=
∑
mpr

U∗mpφpUmrφ
∗
r (B2)

=
∑
pr

φpδprφ
∗
r (B3)

= 〈ψ|φ〉 (B4)

If |ψ〉 = T |φ〉 and T 2 = −1we obtain 〈Tφ|φ〉 = −〈Tφ|φ〉 =
0, so the two states are orthogonal. They have the same energy,
per Eq. (34).

Appendix C: Pauli matrices

σx =

(
0 1
1 0

)

σx =

(
0 −i
i 0

)

σx =

(
1 0
0 −1

)
These matrices satisfy the following properties: σ2

i = 1,
σi, σj = 2δij and σi, σj = 0 and [σi, σj ] = 2iεabcσc and
σi, σj = 0, where εabc is the Levi-Civita symbol.

Appendix D: Exact results for two-band Hamiltonians

Any first-quantized two-band Bloch Hamiltonian can be
written as

h = ~dk · ~σ + εk · 1 (D1)
(D2)

The energies can be calculated exactly by squaring the Hamil-
tonian and using the properties of Pauli matrices:

E±k = ±|~dk|+ εk. (D3)

The exact eigenvectors take the form:

|+ k〉 =
1√

2|~d|(dz + |~d|)

(
dz + |~d|
dx + idy

)
(D4)

| − k〉 =
1√

2|~d|(dz + |~d|)

(
idy − idx
dz + |~d|

)
(D5)
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The normalized Hamiltonian h =
~d

|~d|
· ~σ ≡ d̂ · ~σ can be

parametrized in spherical coordinates as

d̂ = (sin θ cosφ, sin θ sinφ, cos θ) (D6)
(D7)

The corresponding eigenvalues are ±1 with eigenvectors

|+ k〉 =

(
cos θ2e

−iφ

sin θ
2

)
(D8)

| − k〉 =

(
sin θ

2e
−iφ

− cos θ2

)
(D9)
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