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For over 100 years, the group-theoretic characterization of crystalline solids has provided the
foundational language for diverse problems in physics and chemistry. However, the group theory of
crystals with commensurate magnetic order has remained incomplete for the past 70 years, due to the
complicated symmetries of magnetic crystals. In this work, we complete the 100-year-old problem
of crystalline group theory by deriving the small corepresentations, momentum stars, compatibility
relations, and magnetic elementary band corepresentations of the 1,421 magnetic space groups
(MSGs), which we have made freely accessible through tools on the Bilbao Crystallographic Server.
We extend Topological Quantum Chemistry to the MSGs to form a complete, real-space theory
of band topology in magnetic and nonmagnetic crystalline solids — Magnetic Topological Quantum
Chemistry (MTQC). Using MTQC, we derive the complete set of symmetry-based indicators of
electronic band topology, for which we identify symmetry-respecting bulk and anomalous surface

and hinge states.

Introduction

A crystal is defined by its discrete translation symme-
try. Over the past 140 years’?, a tremendous number
of physical phenomena have been shown to arise from
the complicated mathematical structures implied by this
otherwise simple definition of a crystal. For example,
the symmetry and group theory of crystalline solids have
been used to characterize phase transitions®, identify bi-
ological structures like the DNA double helix*, and, most
recently, to elucidate the position-space origin of topolog-
ical bands through the theories of Topological Quantum
Chemistry (TQC)>° and equivalent works”*.

In time-reversal- (7-) symmetric, periodic systems —
which most familiarly include nonmagnetic crystalline
solids — the energy (Bloch) eigenstates respect the sym-
metries of the nonmagnetic (Type-IT) Shubnikov space
group (SSGs)1%1? [see Fig. 1 and Supplementary Ap-
pendix (SA) B]. Though there are 230 Type-II SSGs,
including SSGs with complicated combinations of glide
and screw symmetries, the group theory of nonmag-
netic crystalline solids has been largely solved for over 40
years'!. In particular, the enumeration of the irreducible
momentum-space [small] corepresentations [coreps, see
SA D 2], and a partial enumeration of the space group (el-
ementary band) coreps [EBRs, see SA E] of the Type-II
SSGs were completed prior to the advent of personal and
distributed computing2'~24, In recent years, the group
theory of Type-II SSGs has facilitated a revolution in
the search for topological insulators (TIs)?°3? and topo-
logical crystalline insulators (TCIs)!"1831:32 " including

the recent discovery of higher-order TCIs (HOTIs)33 35
through TQC and related methods!? 15:19,36,

However, the 230 Type-II SSGs represent only a frac-
tion of the 1,651 (magnetic and nonmagnetic) SSGs
(MSGs and SGs, respectively, see Fig. 1 and SA B).
Specifically, while Type-II SGs contain unitary symme-
tries and 7 about any point ({77]0}), there are also Type-
I MSGs with only unitary symmetries, Type-IIT MSGs
that contain combinations of 7 and rotation or reflec-
tion (e.g. {C3. x T|0}, in which C,; is a rotation by
27 /n about the i axis), and Type-IV MSGs that contain
the combination of 7 and fractional lattice translation
({T)a/2}, in which a is an odd-integer linear combina-
tion of lattice vectors). The small (co)reps and magnetic
EBRs [MEBRs] of the MSGs are necessary for a wide
range of physical applications, including characterizing
magnetic topological semimetals (SMs)37 40 TIs*142,
and TCIs*3**, Beyond topological materials, the mag-
netic small (co)reps are also required to construct the-
ories of magnetic phase transitions with nonzero q vec-
tors from magnetic structure data obtained through neu-
tron diffraction experiments*®4%, and to characterize 7T-
breaking superconducting phases*” with nonzero Cooper-
pair momenta, such as Fulde-Ferrell-Larkin-Ovchinnikov
states®® 1. Nevertheless, due to the relative complexity
of the MSGs, and despite a number of significant partial
tabulations'®52, progress towards completing the group
theory of magnetic crystals has largely stalled for the past
70 years'O:th,

In this work, we use a combination of computational
and analytic methods to derive the small (co)reps and
MEBRs of the MSGs, completing the 100-year-old prob-
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FIG. 1: Summary of results. In this work, we have de-

rived the complete sets of trivial bands [elementary band
(co)representations (EBRs), see SA E| and symmetry-
indicated, spinful, stable topological bands in the 1,651 Shub-
nikov space groups [SSGs]. The EBRs subdivide into the
physical EBRs of the 230 Type-II nonmagnetic space groups
[SGs] and the magnetic EBRs [MEBRs] of the 1,421 Type-
I, II, and IV magnetic SGs [MSGs, see SA B]'°'2. We
have additionally performed the first complete calculation of
the small (co)representations [(co)reps] and compatibility re-
lations [see SA D] for all 1,651 single and double SSGs, which
we have made accessible through the tools listed in Table I.
These results comprise the theories of Magnetic Topologi-
cal Quantum Chemistry (MTQC) and fermionic symmetry-
based indicators (double SIs)”**7¢ which apply to all pos-
sible 3D magnetic and nonmagnetic crystals with mean-field
Hamiltonians. We have also determined the physical bases
of all double (spinful) symmetry-based indicators (SIs), and
symmetry-indicated topological bulk and anomalous bound-
ary states for all 1,651 double SSGs (SA F). Lastly, the ME-
BRs of the Type-III and Type-IV MSGs computed in this
work also facilitate the complete enumeration of symmetry-
enforced magnetic topological semimetals (SMs) — examples
are provided in Fig. 4(c) and in SA D2b. In this figure, we
have used red checks to indicate areas of magnetic topologi-
cal band theory completed in this work, and we have used red
stars to indicate areas in which we have solved complete sub-
areas (such as the double SIs of the 1,651 double SSGs), but in
which there remain topological features outside of the scope
of this work, such as non-symmetry-indicated stable topolog-
ical bands'™2® and bosonic (spinless) topological crystalline
insulators (TCIs).

lem of crystalline group theory. Using the small (co)reps
and MEBRs, we construct a complete position-space the-
ory of mean-field band topology in the 1,651 single (spin-
less) and double (spinful) SSGs — Magnetic Topological
Quantum Chemistry (MTQC) — that subsumes the ear-
lier theory of TQC®S [see Fig. 2]. The completeness of
MTQC stems from the completeness of our tabulation of

BCS Applications Implemented for MTQC
Application Contents ‘ Description
MKVEC Momentum stars SADI1
of the MSGs
Corepresentations Small and full SA D2
magnetic (co)reps
MCOMPREL Compatibility relations | SA D3
in the MSGs
CorepresentationsP G| Magnetic site-symmetry| SA E1
group (co)reps
MSITESYM Magnetic small SA E2
(co)reps at one k point
induced from a site q
MBANDREP MEBRs of the MSGs SAE3

TABLE I: Applications on the Bilbao Crystallographic Server
implemented for MTQC. For this work, we have implemented
the Bilbao Crystallographic Server (BCS) programs listed in
this table to access group-theoretic properties of the MSGs
that we have computed to complete the theory of MTQC. In
order, this table contains the name of the program, the data
accessible through the program, and the section of the SA
in which the program is detailed. In addition to the proper-
ties of the MSGs listed in this table, each tool contains the
analogous properties of the 230 Type-II (nonmagnetic) SGs.
Therefore, as respectively detailed in each listed SA section,
each program in this table subsumes the content of an existing
program on the BCS.

the MEBRs. Specifically, even in MSGs in which trivial
and topological states cannot be distinguished by sym-
metry eigenvalue labels, the MEBRs provide a complete
basis for constructing and analyzing all possible lattice
models of trivial, gapless, and stable and fragile topo-
logical insulating phases (for specific examples of non-
symmetry-indicated topological phases analyzed using
EBRs, see Refs. 19,20,55,58,60). To access the data gen-
erated for this work, we have implemented several pro-
grams on the Bilbao Crystallographic Server (BCS)%1:62,
which are listed in Table I. Each of the programs listed in
Table I contains data for both the magnetic and nonmag-
netic SSGs, and therefore replaces an existing tool on the
BCS. In the Results section below, we will first describe
the underlying machinery of MTQC through which band
(co)reps in momentum space are induced from magnetic
atomic (Wannier) orbitals in position space. Next, we
will detail the topological information that can be in-
ferred from the MEBRs, which include lattice models for
magnetic exceptions to fermion doubling theorems'®3,
and symmetry-based indicators (SIs)"'316 for magnetic
SMs, T1s, and TCIs (see SA F). In particular in this work,
going beyond the earlier tabulation of the magnetic SI
groups in Ref. 16, we have for the first time generated
the complete double SI formulas, as well as symmetry-
respecting topological bulk and boundary states for all
1,651 double SSGs, which characterize spinful electronic
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FIG. 2: Magnetic Topological Quantum Chemistry in the scheme of topological band theory. The complete scheme of topological
band theory for 3D crystals, following the framework and notation established in Refs. 5,6,14,53,54. Through crystal symmetry
eigenvalues [small (co)reps] in momentum space (SA D 2), the compatibility relations (SA D 3) indicate whether a set of bands
is allowed by symmetry to be energetically isolated from other bands in the energy spectrum. If the bands are energetically
isolated, then there exist a wide range of methods for diagnosing whether the bands exhibit the stable topology of topological
insulators (TTs) and TCIg'3 15:17719:25-28,31°86.55 " fragile topology®”®® %, or the polarization-nontrivial topology of obstructed
atomic limits®>®>%%. For example, as detailed in Refs. 7,13-16,53,54, the small (co)reps of a set of isolated bands comprise
momentum-space symmetry data that can be mapped to position-space topology and boundary states through stable and

fragile SIs and real-space invariants.
topological SM, which may exhibit surface*’
band theory completed in this work.

. -
or hinge!®®°

states in solid-state materials. Through this calculation,
we have obtained the complete set of symmetry-indicated
3D spinful (fermionic) topological phases.

We find that many of the symmetry-indicated spin-
ful magnetic topological phases consist of familiar Weyl
SMs with surface Fermi arcs® %6, 3D quantum anoma-
lous Hall (QAH) phases constructed from layered in-
teger quantum Hall states (2D Chern insulators)*h¢7,
and axion insulators (AXIs), which are equivalent to
3D TIs with magnetically gapped surface states on par-
ticular crystal facets??:2?:%. However, we also in this
work discover the existence of previously unidentified
non-axionic magnetic HOTIs with mirror-protected he-
lical hinge states (see SA F6). We conclude by briefly
discussing future directions in magnetic group theory,
including the prediction of spinless (bosonic) TCIs, and
applications of magnetic crystal symmetry beyond mean-
field theory. We have also included an extensive set of
Supplementary Appendices and Tables containing addi-
tional details of our methodology, historical commentary,
references, documentation for the BCS programs intro-
duced in this work, and data for the EBRs and double
SIs (see SA A and G).

If the bands are instead required by symmetry to cross, then the bands characterize a
states. In this figure, the pink boxes indicate areas of topological

Results

MEBRs from magnetic atomic orbitals — To construct
the theory of MTQC, we first tabulate the EBRs of the
1,651 SSGs, which include the MEBRs of the MSGs
[Fig. 3(b) and SA E]. In each SSG, the EBRs correspond
to the independent topologically trivial bands. Specifi-
cally, each EBR corresponds to a (set of) band(s) that
can be inverse-Fourier-transformed into exponentially lo-
calized, symmetric Wannier orbitals, and the set of EBRs
in each SSG forms the basis for all energetically isolated
sets of trivial bands (i.e. bands without stable or fragile
topology)?~913-15,19,20,23,24,36,53-58,60

We begin by considering a nonmagnetic crystal that is
furnished with atomic orbitals that are sufficiently weakly
coupled as to not invert bands at any k point in the
Brillouin zone (BZ). Each atomic orbital occupies a site
in a Wyckoff position of a Type-II SG. Crucially, the
atomic orbitals on each site transform in direct sums of
the irreducible coreps of the site-symmetry group (SA C
and E 1), which is necessarily isomorphic to one of the 32
nonmagnetic point groups (PGs, see SA C1).

We next consider the case in which the crystal under-
goes a transition into a phase with lattice-commensurate
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FIG. 3: Magnetic band (co)reps from magnetic atomic orbitals. (a) A crystal with lattice-commensurate magnetic order. In
the mean-field, the basis states of the electronic Hamiltonian of the crystal in (a) are magnetic atomic orbitals (SA E1). When
weakly coupled, the magnetic atomic orbitals in (a) continue to form a set of exponentially localized, symmetric Wannier
orbitals®?32460 that transform in the (co)reps of magnetic site-symmetry groups [SA C]. (b) The magnetic site-symmetry
(co)reps in (a) induce a band (co)rep in momentum [k] space. (c¢) Correspondingly, the Bloch eigenstates of the Fourier-
transformed electronic Hamiltonian of the magnetic crystal in (a) transform in the band (co)rep in (b) [see SA E2].

magnetic order [Fig. 3(a)]. The onset of magnetism low-
ers the crystal symmetry from a Type-II SG into either a
Type-I, III, or IV MSG (see Refs. 10-12 and SA B1, B 3,
and B4, respectively). Specifically, in the limit in which
the magnetic moments are taken to be decoupled from
the underlying lattice, the crystal of moments may ap-
pear to exhibit additional symmetries, such global and
local spin rotation. However, when coupling between the
spins and the underlying lattice is not ignored, the mag-
netic phase transition strictly lowers the system symme-
try to that of a magnetic Shubnikov subgroup M of the
Type-II SG G of the parent nonmagnetic crystal''.
Hence, the magnetic order also lowers the symmetry at
each site in the crystal. This can be seen by recognizing
that {70} is an element of every site-symmetry group in
a nonmagnetic crystal, but cannot be an element of any
site-symmetry group in a magnetic crystal (SA C2). For
example, in a solid-state material with magnetic atoms,
the orbitals of nonmagnetic atoms elsewhere in the unit
cell are necessarily subject to a background magnetic po-
tential (see SA C2a). While the energy scale of the mag-
netic potential is detail-dependent, the magnetic poten-
tial on the atoms considered to be nonmagnetic is only
exactly zero in a fine-tuned limit. This statement re-
mains valid whether individual atoms in the magnetic
crystal are taken to host localized magnetic dipole mo-
ments, or whether the magnetic crystal is taken to con-
sist of multi-atom clusters with higher magnetic multi-
pole moments®>7°, Consequently, independent of the
phenomenological microscopic treatment of the magnetic
order, each site-symmetry group in the magnetic crystal
is isomorphic to one of the 90 crystallographic magnetic
point groups (MPGs, see SA C1). In a solid-state ma-
terial in which the effects of magnetism can be approxi-
mated through mean-field theory, the atomic orbitals of
the original crystal [e.g. s and p; ,] split into magnetic
atomic orbitals [e.g. s and p, + ip,] that transform in

(co)reps of the MPGs [see SA Ela, E1b, and Elc].
For this work, we have implemented the Corepre-
sentationsPG tool (http://www.cryst.ehu.es/cryst/
corepresentationsPG, detailed in SA E1), through
which users can access the (co)reps of all 122 single and
double PGs and MPGs.

Next, the magnetic site-symmetry (co)reps in each
Wyckoff position in the crystal induce a band (co)rep
into M [Fig. 3(b)]. The set of all possible band (co)reps
in each MSG is spanned by the MEBRs of M. In this
work, we have for the first time computed the 22,611
MEBRs of all 1,191 single and double Type-III and Type-
IV MSGs, which — along with the 5,641 MEBRs of the
230 Type-I MSGs and the 4,757 EBRs of the 230 Type-
I SGs previously calculated for TQC??23:2460 [Fig. 1]
— can be accessed through the MBANDREP tool on
the BCS (http://www.cryst.ehu.es/cryst/mbandrep,
further detailed in SA E3). To enumerate the MEBRs
of each MSG M, we begin by inducing band (co)reps
from each irreducible (co)rep of one site-symmetry group
within each of the highest-symmetry [i.e. maximal, see
SA C2] Wyckoff positions in M. We next exclude the
exceptional cases in which the induced band (co)reps are
equivalent to direct sums of other band (co)reps [SA E3a
and G 1]. The remaining band (co)reps are defined as el-
ementary [i.e. MEBRs]; statistics and further details for
the MEBRs are provided in SA E3b and G 2.

Importantly, just as each MEBR is the Fourier-
transformed description of a crystal of site-symmetry
(co)reps, the Wannierizable bands that transform in
each MEBR are the Bloch eigenstates of the Fourier-
transformed electronic Hamiltonian of weakly coupled
magnetic atomic orbitals [Fig. 3(c) and SA E2]. Con-
sequently, in each momentum star of each MSG — which
are accessible through the MKVEC tool (http://www.
cryst.ehu.es/cryst/mkvec, see SA D 1) — each MEBR
contains a set of full (co)reps that is specified by the
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Wyckoff position from which the MEBR is induced. Each
full (co)rep can be reduced through subduction to a set
of irreducible small (co)reps at each k point that are
known as the symmetry data [Fig. 3(b)]. The complete
set of small and full (co)reps of each MSG and direct
dependencies between the site-symmetry (co)reps at q
and the induced symmetry data at k are respectively
accessible through the Corepresentations (http://www.
cryst.ehu.es/cryst/corepresentations, detailed in
SA D2) and MSITESYM (http://wuw.cryst.ehu.es/
cryst/msitesym, detailed in SA E 2) tools. Lastly, to de-
termine whether the bands that transform in the induced
symmetry data are required by symmetry to be degen-
erate or cross along high-symmetry paths in the BZ, we
have computed the magnetic small (co)rep compatibility
relations, which are accessible through the MCOMPREL
tool introduced in this work (https://www.cryst.ehu.
es/cryst/mcomprel, detailed in SA D 3).

Before discussing topological applications of the ME-
BRs and the small and full (co)reps of each MSG, we
will first briefly discuss the advances made in this work
in the context of previous studies of magnetic symmetry
and group theory. First, in the 1960’s, Miller and Love
in Ref. 52 performed the largest tabulation of magnetic
small (co)reps prior to this work. Specifically, in Ref. 52,
Miller and Love computed the single- and double-valued
irreducible small (co)reps of the little groups of each MSG
at high-symmetry points and along high-symmetry lines,
but not along high-symmetry planes or in the BZ interior,
which are required to complete the insulating compati-
bility relations for each MSG (SA D 3) and to compute
the MEBRs (SA E). Additionally, the magnetic small
(co)reps computed in Ref. 52 are displayed in difficult-to-
read tables outputted directly from computer code, and
are hence difficult to verify. For this work, we have imple-
mented the Corepresentations tool on the BCS [SA D 2],
which represents the first complete and publicly avail-
able online tabulation of the magnetic small (co)reps.
Through Corepresentations, users may obtain the matrix
representatives in each magnetic small (co)rep of the gen-
erating symmetries of the magnetic little group at each k
point in each MSG in an accessible format readily suited
towards analyzing the output of tight-binding and first-
principles calculations [see SA D2a and D2b for repre-
sentative examples of the output of Corepresentations].
We additionally note that prior to this work, Evarestov
Smirnov, and Egorov in Ref. 24 introduced a method for
obtaining the MEBRs of the MSGs and computed rep-
resentative examples, but did not perform a large-scale
tabulation of MEBRs or establish a connection to mag-
netic band topology. In this work, we have employed a
method equivalent to the procedure in Ref. 24 to perform
the first complete tabulation of the single- and double-
valued MEBRs of the 1,421 MSGs (see SA E3), which
we have additionally made publicly accessible through
the MBANDREP tool on the BCS.

Having computed the MEBRs of the single and double
MSGs and established the theory of MTQC, we will next

describe two applications of the MEBRs and MTQC to
the discovery and characterization of novel topological
phases of matter: elucidating the relationship between
topological SMs and TCIs through symmetry-enhanced
fermion doubling theorems, and extending the SIs of sta-
ble band topology” '3 1519 to the MSGs.

Symmetry-enhanced fermion doubling theorems — The
surface states of each d-dimensional [d-D] TT and TCI
are termed anomalous because the surface states cannot
be stabilized in a (d — 1)-D lattice model with the sym-
metries of the TT or TCI surface. In 3D TIs, AXIs, and
Chern (QAH) insulators, the boundary anomaly and bulk
response can be understood from the perspective of well-
known high-energy field theories??:7:5%. For example, the
bulk of a 3D TT is characterized by a quantized axionic
magnetoelectric response governed by a Lagrangian den-
sity Lga o< 0E - B in which the axion angle 6 is pinned
to the nontrivial value § mod 2r = 7 by {70} sym-
metry??%. As a consequence of the bulk axionic topol-
ogy, each surface of a 3D TI exhibits an odd number
of twofold-degenerate Dirac cones, representing an ex-
ception to the 2D parity anomaly — a fermion doubling
theorem that mandates the existence of an even number
of symmetry-stabilized twofold Dirac cones in any 2D
system with a lattice (-regularized) description!827-29:68,
However in other gapped topological phases, such as 3D
helical TCIs and HOTIs, the boundary anomalies and
bulk response theories have not yet been elucidated in the
language of high-energy field theory!:18-20:34:35 = Never-
theless, as shown in Refs. 15,18,35, the anomalous surface
states of d-D TIs and TCIs may be classified through a
comparison to the complete set of (d—1)-D lattice models
of symmetry-stabilized topological SMs.

It is possible to evade a fermion doubling theorem by
either stabilizing the anomalous nodal point[s] on the
(d — 1)-D boundary of a d-D topological [crystalline] in-
sulator [i.e. through spectral flow], or by modifying one
of the system symmetries so that the symmetry is rep-
resented differently at low and high energies. For ex-
ample, the matrix representatives of {710} and {7 |a/2}
are the same near k = 0, but differ at larger k (see
SA D2b). In effect, systems with {70} symmetry and
integer lattice translations are nonmagnetic (see SA B 2)
and constrained by fermion doubling theorems that de-
rive from {70} symmetry'®, whereas systems generated
by {T|a/2} and integer lattice translations are antiferro-
magnetic (see SA B4), and are not constrained by the
same doubling theorems®®. As discussed in Ref. 71, it
is desirable to identify lattice-regularizable systems that
circumvent fermion doubling theorems, because correla-
tion effects in these systems can be modeled without also
incorporating complicated and numerically intensive bulk
degrees of freedom. Many of the symmetry-enhanced
fermion doubling theorems exceptions discovered to date
rely on emergent unitary particle-hole symmetries that
act nonlocally”"7, and relate to the anomalous surface
states of particle-hole-symmetric TCIs in Class AIII in
the nomenclature of Ref. 73. However, emergent unitary
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particle-hole is typically only a valid symmetry in a hand-
ful of solid-state materials, and only then at low energies.
As we will discuss below, by considering nodal degenera-
cies stabilized by MSG symmetries — which are conversely
valid in solid-state magnetic materials at all energies
without fine tuning — it is possible to systematically enu-
merate symmetry-enhanced, single-particle fermion dou-
bling theorems, as well as materials-relevant models that
circumvent symmetry-enhanced fermion doubling.

The elucidation of a (symmetry-enhanced) fermion
doubling theorem and an example of its evasion has his-
torically required a significant theoretical effort. For ex-
ample, in Ref. 74, it was shown that unpaired fourfold-
degenerate Dirac fermions cannot be stabilized in lattice
models of 2D, T-symmetric SMs. Through an exhaus-
tive analysis of the symmetry-enforced spectral flow in
3D crystals, a 3D T-symmetric TCI with an unpaired
(anomalous), symmetry-stabilized, fourfold surface Dirac
fermion was identified in Ref. 18. Crucially, using the
fourfold Dirac fermion doubling theorem established in
Ref. 74, the authors of Ref. 18 were able to diagnose
the surface fourfold Dirac fermion as anomalous without
establishing a bulk or boundary field theory. Lastly, it
was subsequently shown in Ref. 63 that fourfold Dirac
fermion doubling can also be evaded in lattice models of
2D magnetic SMs with the symmetry {7 ]a/2} common
to Type-IV 2D symmetry (wallpaper or layer) groups (see
SA D2b). Hence, one may infer the existence of novel
quantized response effects and condensed-matter realiza-
tions of high-energy anomalies by exploiting the restric-
tions imposed by crystal symmetries on lattice models of
SMs, TIs, and TClIs.

Because a complete tabulation of the magnetic small
(co)reps was previously unavailable, then earlier theoret-
ical searches for magnetic exceptions to fermion doubling
theorems, such as Ref. 63, were performed ad hoc. How-
ever, the magnetic small (co)reps, the magnetic compat-
ibility relations, and the MEBRs computed in this work
allow, for the first time, the immediate enumeration of
the complete set of lattice models of symmetry-stabilized
magnetic SMs in three or fewer dimensions. Below, we
will outline the method for enumerating the complete set
of stable magnetic SMs using the data generated in this
work. We will then detail the simplest possible mag-
netic fermion doubling exception that can be obtained
by considering the set of lattice models of 1D magnetic
SMs inferred from the 1D MEBRs. Despite the simplic-
ity of the example below, we find that it has not been
addressed from the intuitive picture of mean-field mag-
netic band theory in previous literature. In SA F6a,
we also introduce a doubling theorem for twofold Dirac
fermions in magnetic 2D symmetry groups, which we find
to be evaded on the surfaces of the non-axionic magnetic
HOTIs discovered in this work (see SA F6D).

To begin, by occupying the bands that transform
in each connected branch of each MEBR, with integer-
valued numbers of electrons increasing from one to one
less than the dimension of the MEBR (see Refs. 5,6 and

a b c
E E E
I, X r T 4 X I T 4 X r
FIG. 4: Dirac fermion doubling from elementary band

(co)representations. (a) A pair of spinful bands that trans-
form in the double-valued EBR of a Type-II line group gener-
ated by {70} and lattice translation [isomorphic to Type-II
double SG 1.2 P11’ modulo lattice translations]. At half fill-
ing, there are two, twofold Dirac fermions in (a), representing
an example of twofold Dirac fermion doubling in 1D. (b) The
edge spectrum of a 2D TI features an unpaired twofold Dirac
fermion that circumvents the doubling theorem in (a)?%25-29,
(¢) A pair of spinful bands that transform in the double-
valued MEBR of a Type-IV magnetic line group generated by
{T11/2} [isomorphic to Type-IV double MSG 1.3 Ps1 mod-
ulo lattice translations]. At half filling, the spectrum in (c)
consists of an unpaired twofold Dirac fermion with the same
k - p Hamiltonian as the Dirac points at I" and X in (a) and
the 2D TT edge in (b), representing a magnetic exception to
twofold Dirac fermion doubling in 1D.

SA D3, E3b, and G2), we have obtained the exhaus-
tive list of connectivity-enforced 3D magnetic SMs. The
remaining stable 3D SMs can then be obtained through
band inversion in lattice models constructed from sums
of MEBRs (or branches of decomposable MEBRs, see
SA E3b) using the magnetic compatibility relations, as
well as previously established topological invariants for
nodal fermions at low-symmetry k points. Specifically,
in each MSG, the minimal multiplicity of stable nodal
points may be obtained by considering the small (co)reps
along all high-symmetry BZ lines and planes [which are
accessible through Corepresentations, see SA D 2], in ad-
dition to the nodal points stabilized by topological in-
variants evaluated along closed manifolds in the BZ (e.g.
Weyl points, see Refs. 20,35,64—66). Lastly, the com-
plete set of 2D and 1D lattice models of magnetic SMs
may be obtained by restricting the above procedure to
MSGs that are isomorphic modulo integer lattice trans-
lations to layer and rod groups, respectively (see SA B
and Refs. 18,55,63).

In Fig. 4, we show the simplest example of a fermion
doubling exception obtained using the MEBRs. First,
in Fig. 4(a), we show a pair of spinful bands in a non-
magnetic 1D crystal that transform in the double-valued
EBR of the Type-II 1D double symmetry (line) group
generated by {70} and lattice translation. At half fill-
ing, the band structure in Fig. 4(a) exhibits two, twofold
Dirac fermions per 1D BZ. Additionally, in the absence
of chiral symmetry — which is not generically a symmetry
of crystalline solids — unpaired nodal points away from
I' and X in Fig. 4(a) cannot be stabilized. Specifically,
even if a nodal point stabilized by reflection or rotation
symmetry is present at a point k,, {70} symmetry man-
dates the existence of a second stable nodal point at —k.
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FIG. 5: The five families of 3D symmetry-indicated, spinful, strong topological phases. In this work, we have computed the
complete set of symmetry-indicated spinful topological phases of 3D magnetic and nonmagnetic crystalline solids (see SA F). We
find that, for spinful bands in 3D crystals that satisfy the insulating the compatibility relations along all high-symmetry lines
and planes [see SA D 3], there are only five families of symmetry-indicated strong topological phases: (a) Smith-index Weyl SMs
(Weyl SISMs), (b) axion insulators (AXIs) and 3D TTs defined by the nontrivial axion angle®®?" 298 § = 1 [e.g. MnBisTes***],
(c) helical TCIs and higher-order TCIs (HOTIs) equivalent to two superposed AXIs with the same orbital hybridization and
twofold rotation or rotoinversion symmetry [e.g. bismuth®® and MoTez'?], (d) helical TCIs and HOTIs equivalent to four
superposed AXIs with the same orbital hybridization®® and fourfold rotation or screw symmetry [e.g. SnTe32’34], and (e)
helical TCIs and HOTIs equivalent to six superposed AXIs with the same orbital hybridization and sixfold rotation or screw
symmetry. Through the double SIs calculated for this work (Table II and SA F 4 and F 5), we have discovered the existence of
helical magnetic HOTIs with mirror-protected hinge states and bulk topology respectively enforced by the mirror and rotation
symmetries of (¢) double MPG 8.1.24 mmm [i.e. Day, see Ref. 11], (d) double MPG 15.1.53 4/mmm [Das], and (e) double
MPG 27.1.100 6/mmm [Dgy], where we have labeled MPGs using the notation of the CorepresentationsPG tool (see SA E1).
The magnetic HOTIs in (c-e) are respectively indicated by the minimal double SIs (¢) z4 = 2 in double MSG 47.249 Pmmm,
(d) zs = 4 in double MSG 123.339 P4/mmm, and (e) z12 = 6 in double MSG 191.233 P6/mmm [as well as trivial values for
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all other independent minimal double SlIs, see Table IT and SA F 6 for further details].

By further investigating the symmetry-allowed band con-
nectivities in all Type-II 1D (line and rod) supergroups
of the line group in Fig. 4(a) (which can be inferred from
the Corepresentations, MCOMPREL, and MBANDREP
tools in Table I), we conclude that an odd number of
twofold Dirac fermions cannot be stabilized in 1D non-
magnetic, spinful lattice models.

However, it is well established that twofold Dirac
fermion doubling in 1D is evaded on the edge of a 2D
TI through spectral flow?>26:29 [Fig. 4(b)]. Recently, in
Ref. 75, the author performed an intensive, high-energy
field-theory calculation demonstrating that a 1D lattice
model with an unpaired twofold Dirac fermion could be
formulated by invoking an exotic, non-on-site 7 -like sym-
metry. However, in this work, we recognize that a sim-
pler, alternative interpretation of a non-on-site 7 symme-
try is the antiferromagnetic (AFM) symmetry {7]1/2}
common to all Type-IV magnetic line groups (SA B4).
Correspondingly, in Fig. 4(c), we show a pair of spin-
ful bands that transform in the double-valued MEBR
of a Type-IV magnetic double line group generated by
{T|1/2}. When the bands in Fig. 4(c) are half filled,
the band structure features an unpaired twofold Dirac
fermion with the same k-p Hamiltonian as the anomalous
twofold Dirac fermion on the edge of a 2D TI [Fig. 4(b)].
Hence, the crystal in Fig. 4(c) represents a magnetic ex-
ception to twofold Dirac fermion doubling in 1D, analo-
gous to the magnetic exception to fourfold Dirac fermion
doubling in 2D demonstrated in Ref. 63.

Symmetry-based indicators of stable band topology in
the 1,651 double SSGs — If a set of bands in a crystal is
energetically isolated along all high-symmetry BZ lines

and planes, then a subset of the topological properties of
the bands may be inferred through the eigenvalues of uni-
tary crystal symmetries. Restricting focus to symmetry-
indicated stable topological bands, which do not trans-
form in integer-valued linear combinations of EBRs [see
SA F 1], the crystal symmetry eigenvalues that indicate
stable topology [encoded in the small (co)reps of the iso-
lated bands, see SA D 2] form the symmetry-based in-
dicators (SIs) of stable band topology [see SA F2 and
Refs. 7,13-15,19]. In each SSG, the SIs consist of an SI
group (e.g. Z4 x Z3) and an SI formula (e.g. the Fu-
Kane parity criterion for 3D TIs?®, see SA F2a for an
additional detailed example). The complete SIs of spin-
ful band topology in nonmagnetic 3D crystals — which
we term the double SIs of the 230 Type-II double SGs
— were previously computed in Refs. 7,14,15. Follow-
ing those works, the single and double SI groups in the
1,421 MSGs were computed in Ref. 16, but the authors of
that work did not compute the SI formulas or determine
the physical interpretation (i.e. the bulk topology and
anomalous boundary states) of the magnetic bands with
nontrivial SIs [see Fig. 1].

In this work, we have computed the complete set of
double SI groups and formulas for spinful band topol-
ogy in all 1,651 double SSGs. We have further deter-
mined symmetry-respecting bulk and anomalous surface
and hinge states for all nontrivial values of the double
SIs. The SI formulas introduced in this work (see SA F 4
and F 5) have been unified into a consistent basis in which
all previously identified nonmagnetic double SI formulas
correspond to established nonmagnetic SM, TI, and TCI
phases, and in which the SIs of symmetry-indicated TIs
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Minimal Double SIs of Spinful Band Topology the 1,651 Magnetic and Nonmagnetic Double SSGs

SI Minimal Double SSG(s) | Bulk Topology | | st ] Minimal Double SSG(s) \ Bulk Topology

N4l 2.4 P1 WSM/QAH/AXI zfm Tr 83.43 P4/m weak TI/weak TCI
2214 2.4 P1 QAH S 84.51 Pdy/m QAH /weak TI/weak TCI
Ny 2.4 P1 AXI 28 83.44 P4/m1’, 123.339 P4/mmm AXI/TCI/HOTI
2oR 3.1 P2, 41.215 Ab'a’2 QAH 23R 147.13 P3 QAH

Som 10.42 P2/m QAH/AXI/TCI 26R 168.109 P6 QAH
E 10.42 P2/m QAH/weak TI/weak TCI| | d3m 174.133 P6 QAH/AXI/TCI

21 | 2.5 PIl, 47.249 Pmmm, AXI/TCI/HOTI o 174.133 PG weak T1/weak TCI

83.45 P4’ /m
2, 135.487 P4, /mbc’ AXI/TCI S6m 175.137 P6/m QAH/AXI/TCI
Zow, | 2.5 P11/, 47.249 Pmmm, weak TI/weak TCI Z6m,m 175.137 P6/m weak TI/weak TCI
83.45 P4 /m
Z4R 75.1 P4 QAH zg'm_o 176.143 P63/m QAH/weak TI/weak TCI
2, | 27.81 Pc'c’2, 54.342 P da QAH 212 |175.138 P6/m1’, 191.233 P6/mmm|  AXI/TCI/HOTI
zhp |56.369 Pc'c'n, 60.424 Pb'cn/,
77.13 P4y, 110.249 I4,c'd’

z48 81.33 P4 QAH N 176.144 P63/ml’ AXI/TCI/HOTI

Sas 81.33 P4 WSM Zhp 103.199 P4c'c’ QAH

22 81.33 P4 AXI Zbp 184.195 P6c'c QAH

Sam 83.43 P4/m QAH/AXI

TABLE II: The minimal double SIs of spinful band topology in all 1,651 double SSGs. In order, this table contains the symbol
of each double SI, the minimal double SSG(s) [i.e. the lowest-symmetry SSG(s) in which the double SI predicts nontrivial
band topology, see SA F3 and G 3], and the bulk topological phase(s) associated to nontrivial values of the double SI. All
symmetry-indicated spinful SISM (specifically symmetry-indicated WSM), quantum anomalous Hall (QAH), TI, and TCI
phases in magnetic and nonmagnetic crystalline solids necessarily exhibit nontrivial values of at least one of the double SIs
listed in this table. We note that, in this table, the symbol AXI refers to both magnetic AXIs and 7-symmetric 3D TIs, because
AXTI and 3D TI phases are both defined by the nontrivial bulk axion angle § = 7 [Fig. 5(b) and Refs. 20,29,68]. Additionally,
the symbols TCI and HOTT respectively indicate helical (i.e. non-axionic) mirror Chern insulators®> and HOTIs'*1%:18:34:35
which include the magnetic HOTIs in Fig. 5(c-e) introduced in this work, as well as the nonmagnetic helical HOTI phases
previously identified in bismuth3® and MoTe;'°. Specific details of our SI calculations — including explicit SI formulas, TI and
TCI layer constructions, tight-binding models, and the minimal double SSG associated to each double SSG — are provided in

SA F and G 3.

and TCIs with the same bulk topology (e.g. 3D TTs and
AXIs with the common nontrivial axion angle § = ) are
related by intuitive SI subduction relations. To summa-
rize our calculation of the double SIs, we begin by con-
sidering a set of bands that is energetically isolated along
all high-symmetry lines and planes, such that the Bloch
states across all k points transform in small (co)reps that
satisfy the insulating compatibility relations [see SA D 3].
If the bands exhibit nontrivial SIs, then the bands can-
not be inverse-Fourier-transformed into exponentially lo-
calized, symmetric Wannier orbitals. This can be seen
by recognizing that the set of bands does not transform
in an integer-valued linear combination of EBRs. Con-
sequently, the set of bands either forms a topological
semimetal with nodal points in the BZ interior — which
we term a Smith-index SM (SISM), or corresponds to a

stable TT or TCI phase with anomalous 2D surface or 1D
hinge states?-13-15,17-19,25-28,31-36,55,

Because there are 1,651 double SSGs, then individ-
ually calculating the bulk and anomalous surface and
hinge states and physical basis for each nontrivial SI in
each double SSG is a practically intractable task. How-

ever, in this work, we have reduced the size of the cal-
culation by recognizing that the double SlIs in each dou-
ble SSG G continue to exhibit unique, nontrivial values
— termed the minimal double SIs — when the SI topo-
logical bands in G are subduced onto a double SSG M
from the considerably smaller subset of 34 minimal dou-
ble SSGs. In SA F 3, we rigorously detail the procedure
for obtaining the minimal double SIs, and in SA G 3,
we list the minimal double SSG associated to each dou-
ble SSG. Across all of the minimal double SIs, we have
implemented a consistent physical basis for the SI for-
mulas, determined symmetry-respecting topological bulk
and boundary states, and formulated layer constructions
of the stable TI and TCI phases — the minimal double
SIs are summarized in Table II and the details of our SI
calculations are provided in SA F.

Using the subduction relations and layer construc-
tions contained in SA F 4, we have determined by direct
computation that, for spinful bands in 3D crystals, all
symmetry-indicated topological phases are either strong
topological Weyl SISMs, AXIs, 3D TIs, helical TCIs
or HOTIs, or can be deformed into weak stacks of 2D




TIs, mirror TCIs, or Chern insulators with nonzero net
Chern numbers in each unit cell [termed QAH states].
Curiously, we find that there are no Type-IV minimal
double SSGs (SA G3). This implies that symmetry-
indicated spinful SISM, TI, and TCI phases in Type-IV
MSGs are actually protected by the symmetries of Type-
I or Type-III double MSGs, as opposed to the symmetry
{T|a/2} common to Type-IV MSGs [though, as shown in
Fig. 4(c) and in Ref. 63, there exist topological SM phases
unique to Type-IV MSGs]. For example, in Ref. 76,
the authors introduced Z-symmetric AFM TCIs in which
6 = 7 was enforced by the symmetry {7 |a/2} common
to all Type-IV MSGs. However, we have shown that
the spinful, symmetry-indicated TCI phases in Type-IV
MSGs can be subduced onto Type-I or Type-III MSGs
without closing a gap or changing the bulk topology.
Hence, the symmetry-indicated AFM TClIs introduced in
Ref. 76 can more simply be understood as Z-symmetry-
enforced AXIs that remain topological when subduced
onto the minimal Type-I double MSG 2.4 P1. Through
the layer constructions and double SI dependencies in
SA F4 and G 3, we have also demonstrated that all of
the 3D symmetry-indicated spinful magnetic TCIs with
odd numbers of chiral modes on crystal hinges (edges) in
the 1,421 double MSGs exhibit the nontrivial axion an-
gle § = 7, and are therefore AXIs20:29:68 Specifically, we
find that all of the symmetry-indicated, spinful magnetic
TCIs with chiral hinge states are AXIs in which § = 7
is either quantized by Z, or by one of the rotoinversion
symmetries Cy, X Z or Cg, x I (see Table II). This result
is not necessarily intuitive — for example, when cut into
a rod with the same point group symmetry as the bulk
MSG, an Z-symmetric AXI in Type-I double MSG 2.4
P1 exhibits two chiral hinge states, whereas a Cy, x T-
symmetric AXT in Type-III double MSG 83.45 P4’ /m ex-
hibits four chiral hinge states; nevertheless, as shown in
SA F 4, both AXT phases exhibit § = 7. We additionally
note that there do not exist symmetry-indicated, spinful
magnetic TCIs with even numbers of intrinsic copropa-
gating chiral hinge states (though magnetic TCIs with
mirror symmetry may in principle exhibit copropagating
chiral hinge modes, depending on the bulk mirror Chern
numbers and boundary termination details).

Overall, across the 1,651 double SSGs, we find that
there are only five families of 3D symmetry-indicated,
spinful, strong topological phases [Fig. 5]: Weyl SISMs,
AXIs and 3D TIs, and helical TCIs and HOTIs with
twofold, fourfold, and sixfold symmetries. We note that
helical TCIs and HOTTIs in particular exhibit trivial ax-
ion angles # mod 2w = 0, and are therefore non-axionic.
In this work, we have discovered three novel variants
of non-axionic magnetic HOTIs, which are shown in
Fig. 5(c-e). Further details for the non-axionic HOTIs in
Fig. 5(c-e), including symmetry-enhanced fermion dou-
bling theorems'®3> and tight-binding models, are pro-
vided in SA F 6. When cut into the finite nanorod ge-
ometries shown in Fig. 5(c-e), the non-axionic magnetic
HOTIs exhibit helical, mirror-protected hinge states.

We note that, if the mirror-symmetric HOTI hinges
in Fig. 5(c-¢) were sanded to expose mirror-symmetric
2D surfaces, each surface would exhibit two anomalous,
mirror-protected, twofold Dirac cones, analogous to the
mirror-protected helical hinge states of SnTe discussed
in Ref. 34. Lastly, we emphasize that the magnetic HO-
TIs in Fig. 5(c,e) exhibit the same nontrivial double SI
z4 = 2 as T-symmetric helical HOTI phases in super-
groups of Type-II double SG 2.5 P11’ (see Table 1T and
Refs. 6,8,9,19,36). Unlike for AXIs and 3D TIs?7-2%:68,
the bulk response theories of helical HOTTs have not yet
been elucidated. In light of recent experiments demon-
strating incipient signatures of helical higher-order topol-
ogy in bismuth crystals®® and MoTey”", the absence of
a response theory for helical HOTIs analogous to axion
electrodynamics??%® has become an urgent issue. The
discovery in this work of helical magnetic HOTI phases
whose bulk topology is solely enforced by the combina-
tion of unitary (spinful) mirror and rotation symmetries
should provide crucial insight towards the elucidation of
quantized response effects in helical HOTIs.

Discussion

The theory of MTQC can also be applied to a wide
variety of problems beyond the topological applica-
tions highlighted in this work. Most notably, while we
have enumerated the spinful stable topological phases
with nontrivial double SIs, the analogous enumeration
of spinless magnetic SISMs and TCIs with nontrivial
single SIs remains an open problem. In particular,
whereas bosonic, symmetry-indicated AXI phases pro-
tected by Z and SU(2) spin-rotation symmetry have
been demonstrated in previous works!®!?, it remains an
open question whether there exist symmetry-indicated,
non-axionic spinless (bosonic) TCIs. Additionally, while
we have restricted consideration to single-particle topo-
logical phases, the magnetic (co)reps computed in this
work can also be used to characterize correlated sys-
tems, including spin (-orbital) liquids”® and multipole
tensor gauge theories™. For example, if a correlated
magnetic insulator admits a mean-field slave-rotor de-
scription®?, then the effective Hamiltonian of each quasi-
particle species, such as spinon and chargeon degrees of
freedom®', can separately be analyzed with MTQC.

Data Availability

The data supporting the findings of this study are
available within the paper and through the BCS applica-
tions listed in Table I. Additional information regarding
the data generated for this study is available from the
corresponding authors upon reasonable request.
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Appendix A: Introduction to Supplementary Appendices

In this supplement, we provide proofs and tables that extend Topological Quantum Chemistry (TQC)357:58,60,85,86

to the magnetic space groups (MSGs), to develop a complete theory of Magnetic Topological Quantum Chemistry
(MTQC). MTQC provides, for the first time, a predictive, position-space formulation of the characteristics of band
structures — including stable and fragile topology — in all translationally invariant crystalline solids that are charac-
terized by mean-field theory with a static background magnetic field. Most relevant to the physical systems studied
in this work, MTQC provides tools for characterizing the symmetry and topology of electronic states in solid-state
materials with lattice-commensurate magnetism. We begin in Appendix B by precisely defining the MSGs, drawing
connection where possible to the more familiar nonmagnetic space groups (SGs). We then discuss in Appendix C 1
the Wyckoff positions of the MSGs, whose sites are left invariant under the symmetries of site-symmetry groups that
are necessarily isomorphic to crystallographic magnetic point groups (MPGs)!2:24:61.62.87-95 ' Next, in Appendix D, we
introduce crystal momentum k in the MSGs, and discuss how spatial and magnetic symmetries are represented in mo-
mentum space. To enumerate the set of symmetry-independent k points in each MSG and SG, we have implemented
the MKVEC tool (further detailed in Appendix D 1), which is now available on the Bilbao Crystallographic Server
(BCS)%%62, Tn Appendix D 2, we then describe how, in this work, we have for the first time derived the complete set
of irreducible [small] little group and full [space group] (co)representations [(co)reps| of the MSGs, which can now be
accessed on the BCS%1:62 through the Corepresentations tool [further detailed in Appendices D 2a and D 2b]. Lastly,


http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations
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by combining the results of Appendices D1 and D2, we then in Appendix D 3 derive the compatibility relations
between small (co)reps in the MSGs, which we have made accessible through the MCOMPREL tool on the BCS.

Having established position- and momentum-space characterizations of the MSGs, we then in Appendix E
complete the theory of MTQC by enumerating the magnetic elementary band (co)representations [ME-
BRs]?+23,24,57,58,60,85,86,90,96,97 "\which represent all possible [magnetic] trivial atomic limits. To obtain the MEBRs, we
first in Appendix E 1 introduce the minimal magnetic atomic orbitals [e.g. p, + ip,] that correspond to the (co)reps
of the magnetic site-symmetry groups, which are isomorphic to MPGs. In Appendix E 1, we additionally detail
the CorepresentationsPG tool on the BCS, which we have implemented for this work to provide access to the (co)reps
of the magnetic site-symmetry groups of the MSGs. Next, in Appendix E 2, we establish the central machinery of
MTQC through which band (co)representations [band (co)reps] in momentum space are induced from site-symmetry
(co)reps in position space. We also introduce and detail in Appendix E 1 the MSITESYM tool, through which users
may access the small (co)reps subduced from each band (co)rep of each SSG. Finally, in Appendix E 3, we complete
the derivation of MTQC by enumerating the MEBRs. In Appendix E 3 b, we additionally detail the MBANDREP tool
on the BCS, which we have developed for this work to compute and display both the elementary and non-elementary
[i.e. composite] band (co)reps of the MSGs.

The theory of MTQC uniquely enables us to, for the first time, enumerate all of the symmetry-based indicators of
band topology (SIs)7>13715:19.97710L [ ¢ = generalized Fu-Kane-like symmetry-eigenvalue topological indices?8] for the
double-valued (co)reps of the 1,651 spinful [double] magnetic and nonmagnetic space groups [SSGs|. Specifically, a
(co)rep is respectively defined as single- or double-valued if the matrix representatives of time-reversal and rotation
symmetries in the (co)rep square to plus or minus the identity!'’. Double groups have both single- and double-valued
(co)reps, whereas single groups only have single-valued (co)reps. Electronic [fermionic] states in solid-state materials
are generically characterized by double-valued (co)reps of double symmetry groups, though in the absence of spin-
dependent interactions [e.g. spin-orbit coupling (SOC)], spin-degenerate electronic states may be labeled with single-
valued (co)reps. In Appendix F, we compute the SI groups and formulas for all symmetry-indicated, spinful, mean-field
topological phases in the 1,651 double SSGs. We specifically demonstrate in Appendix F 3 how the SI calculation can be
reduced by recognizing that the SIs in all 1,651 double SSGs are dependent on the SIs in a considerably smaller subset
of minimal double SSGs. Through the minimal ST calculation, which is provided in explicit detail in Appendix F 4, we
discover several novel, helical, magnetic higher-order topological crystalline insulators (HOTIs)"14,15,1820,34736,98,102
whose bulk response theories do not correspond to axion electrodynamics!®20:29:68,103-121 " The non-azionic magnetic
HOTTISs discovered in this work are further detailed in Appendix F 6. Lastly, in Appendix G, we provide supplementary
tables of additional data generated for this work.

Appendix B: Magnetic Space Groups

In this section, we list the basic group theoretic properties of the magnetic space groups (MSGs). To begin, it was
established in Refs. 122,123 (and translated into English in Ref. 10) that the Hamiltonians of 3D, periodic systems
(i.e. crystalline solids) without particle-hole symmetry are invariant under the symmetries contained in at least one
of the 1,651 Shubnikov space groups (SSGs). All of the SSGs contain the group of fundamental lattice translations:

Gr=T,T, @1, (B1)
where T is the group comprised of the set of lattice translations ¢}, where n € Z and:
t; = {E|t;}, (B2)

where F is the identity operation. Throughout this work, we will employ a notation [Eq. (B2)] in which ¢; is the
symmetry operation of a translation by the vector t;. In Eq. (B1), the generating translations ¢, . must be linearly
independent, but are not necessarily orthogonal (though ¢, . are indeed both linearly independent and orthogonal
in many SSGs).

The 1,651 SSGs subdivide into four types, which are distinguished by their antiunitary symmetries
Of the four types of SSGs, the 1,421 Types-I, III, and IV SSGs characterize magnetic crystals (i.e. crystals with
lattice-commensurate magnetic order); hence, in this work, we interchangeably denote Type-I, III, and IV SSGs as
MSGs or SSGs. Conversely, the 230 Type-II SSGs exclusively characterize nonmagnetic crystals; hence, in this work,
we interchangeably refer to Type-I1 SSGs as SGs or SSGs. Unlike in other recent works on magnetic symmetry and
topology'%12° we will not refer to the 230 Type-II groups as MSGs, to avoid employing terminology in which the
Type-II SSGs are “nonmagnetic magnetic SGs.” All SSGs (MSGs and SGs) are given in the notation established in
Ref. 126 and reproduced on the Bilbao Crystallographic Server (BCS)%1:52. Because the set of possible G in Eq. (B1)
coincides with the 14 3D nonmagnetic (gray) Bravais lattices, then all 1,651 SSGs can be characterized by the 14

10,11,122-124


https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/msitesym
http://www.cryst.ehu.es/cryst/mbandrep
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Bravais lattices. However, as we will detail in Appendix B4, the Type-IV groups — which contain elements of the
form T (t;/2) where T is the operation of time-reversal — are also frequently characterized using the 22 “black and
white” Bravais lattices that account for the relative positions of localized spins (or classical magnetic moments) [c.f.
Chapter 7 in Ref. 11]. In this work, we will refer to all 1,651 SGs by their nonmagnetic (gray) Bravais lattice (i.e.,
the Bravais lattice of their primitive, or “magnetic” unit cell). This choice of Bravais lattice is naturally incorporated
into the numbering and notation of Belov, Nerenova, and Smirnova'?® (labeled as the “BNS setting” on the BCS),
which we will employ throughout this work. For generality and connection with other works, we also note that on the
BCS, information about the SSGs can alternatively be obtained in the convention of Opechowski and Guccione!2?”
(labeled as the “OG setting” on the BCS); we will not employ, or further discuss, the OG setting in this work.

It is important to highlight the distinction between MSGs and phenomenological descriptions of magnetic order.
Specifically, while all magnetic crystals with Type-IV MSGs are antiferromagnets (see Appendix B 4), there are both
ferromagnets and antiferromagnets with Type-I or Type-II1 MSGs!! (Appendices B 1 and B 3, respectively). For each
of the three types of MSGs, we will below provide representative examples of quasi-1D chains with symmetry-allowed
magnetic ordering, including phenomenologically distinct magnetic order in crystals with the same Type-I or Type-
III MSG (see Appendices B 1 and B 3, respectively). Each of the quasi-1D chains shown below is invariant under a
crystallographic magnetic rod group (MRG)!1:12:55:128,129 yrp o i e, a subperiodic group with 3D symmetry operations
and 1D translations. Each MRG is isomorphic to an SSG M under the addition of in-plane lattice translations, where
the group-subgroup relations between Mgz and M depend on the details of the additional translations. For example,
when translations in the xzy-plane are added to Type-I MRG (pdacm) g, the resulting MSG is either Type-1 MSG
101.179 P4scm or Type-1 MSG 105.211 P4ome, depending on whether the shortest lattice translations are respectively
added in the x and y or x & y directions'?®!2%, In this work, we will refer to quasi-1D chains and rods using the
terminology established in Refs. 19,20,55 in which a chain or rod with the translation symmetry ¢. = {E|c} is termed
c-directed. The symbols for the MRGs referenced in this work are given in the convention employed by Litvin in
Ref. 12.

1. Type-I SSGs: Ordinary (Fedorov) Groups (230 MSGs)

y$6 $6 $6 $6
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FIG. 6: A ferromagnetic chain with MRG (pl)rca, which is generated by {E|1} (t) where E is the identity operation, and is
isomorphic after the addition of perpendicular lattice translations (e.g. ¢y and t.) to Type-I MSG 1.1 P1. There are two atoms
within each unit cell, where the right-most atom in each cell (hashed circle) exhibits a weaker y-directed magnetic moment than
the left-most atom (solid circle), lies away from = = a, /2, and is displaced from the zy-plane (z # 0 for the hashed atoms). If
there was just one atom in each unit cell, if the solid and hashed atoms were moved to be coplanar, or if the magnetic moments
were tuned to be the same magnitude, then the chain would respect additional symmetries, such as {m. x 70}.

Each Type-I SSG M is exclusively characterized by a set of unitary symmetry operations. The simplest Type-I
SSG — MSG 1.1 P1 - is isomorphic to Gr [Eq. (B1)], and is a common subgroup of all 1,651 SSGs. The Type-I
MSGs have historically been termed the ordinary groups'!, because Type-I magnetic symmetry groups do not contain
antiunitary symmetries that relate classical magnetic moments at different positions in a crystal. Type-I MSGs can
characterize a variety of magnetic configurations'!. For example, Type-I MSG 1.1 P1 can characterize crystals with
either ferromagnetism (Fig. 6) or antiferromagnetism (Fig. 7).

2. Type-II SSGs: Gray (Nonmagnetic) Groups (230 SSGs)

Each Type-IT SSG Mj; takes the form:

M =GU {T|OOO}G =GUTG, (B?))
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FIG. 7: An antiferromagnetic chain with MRG (pl)rq, which is generated by {E|1}, and is isomorphic after the addition of
perpendicular lattice translations to Type-I MSG 1.1 P1. The solid and hashed circles represent magnetic atoms with distinct
chemical environments [e.g. atoms of the same species with different oxidation states or on-site (chemical) potentials] and
equal and opposite magnetic moments. The right-most atom in each cell (i.e. the hashed atom with a red magnetic moment)
lies away from & = a-/2 and z = 0, such that the solid and hashed atoms are neither equally spaced nor coplanar. If the
chemical environments of the solid and hashed atoms were tuned to be equivalent, if the solid and hashed atoms were moved
to be coplanar, or if the atoms were shifted to be separated by a distance a5 /2 in the z-direction, then the chain would have
additional symmetries. For example, if the local chemical environment (i.e. hoppings and on-site potentials) of the solid and
hashed atoms were made equivalent, then the chain would respect {m. x 7|0} symmetry (as well as additional symmetries),
and if the atoms tuned to lie in equivalent chemical environments and shifted to be equally spaced and coplanar, then the chain
would respect both {C>.|0} and {m, x T|1/2} symmetry (as well as additional symmetries).

where G is isomorphic to a Type-I SSG. Because each Type-II SSG contains the element {7000}, then no position in
the unit cell of a crystal with a Type-II SSG can host a local magnetic moment. Therefore, crystals invariant under
Type-II SSGs are necessarily 7-symmetric. The Type-II MSGs have historically been termed the gray groups'!,
because Type-1II groups do not admit the presence of localized magnetic moments, due to {7000} symmetry at each
point in each unit cell. Unlike the symbols of the Type-I SSGs, the symbols of Type-II, ITI, and IV SSGs contain
primes, which denote antiunitary group elements. Because we are discussing both MSGs and (nonmagnetic) SGs in
this work, we will employ the notation of Ref. 12 in which the symbols of T-symmetric groups M are followed by 1’
to emphasize that {7000} € My;. For example, in this work, the symbol P4/mmm refers to Type-1 MSG 123.339,
whereas the symbol P4/mmm]1’ refers to Type-1I SSG 123.340 (which is frequently denoted in other works®:>7:58:60,85,86
using only the simplified expression “space group 123 P4/mmm”).

Given a group G and a subgroup H of G, we will find it useful to define the index of H in G. Here and throughout
this work, we will use cosets to precisely define the group-subgroup index. Specifically, given a group G and a subgroup
H, we can define the coset of H represented by an element g € G as:

gH = {ghlh € H}. (B4)

By construction, Eq. (B4) implies that every element g € G is in one (and only one) coset gH. By definition, G may
be decomposed into cosets with respect to H by the set difference G \ H:

such that:

G\H={glgeG,g¢ H} =g1HUgoHU ..., (B6)
where g; H are (unique) cosets of H defined by ¢;H # g;H for g; ; € G, ¢, ; ¢ H. If G and H are groups, E € G and
E € H where F is the identity element, implying that G\ H is not a group, because E ¢ G\ H. Similarly, there does
not exist a case in which g; = F in Eq. (B6), as this would imply that G\ H = H. We emphasize that the choice of

each g; in Eq. (B6) is not unique; there are generically multiple, equivalent ways of expressing the decomposition of
G\ H into cosets of H. Eq. (B6) implies that:

G=HU(G\H)=HUgHUgHU.., (B7)
from which we define the quotient:
G/H = {H, ng,ggH, } (BS)

We briefly pause to note that, if H is additionally a normal subgroup of G, such that gH = Hg, then we can define
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a group operation on cosets:
g1 HgoH = g192H. (B9)
Finally, using Eq. (B8), we establish the definition of the index [G : H] of the subgroup H of G as:
G+ H] = |G/H| = G|/ |H], (B10)

where |G|, |H|, and |G/H]| are respectively the number of elements in G, H, and G/H [equal to one plus the number
of coset representatives g; in Eq. (B6)]. It is important to note that |G| (JH|) in Eq. (B10) is necessarily infinite if G
(|H|) is an infinite group. However, if G and H are both infinite, then the index [G : H] = |G|/|H| may still be finite.

It is worth noting that all 1,421 MSGs are index-2 subgroups of 230 Type-II SSGs. For the previous Type-I groups
in Appendix B 1, this follows directly from Eq. (B3), and for the Type-III and Type-IV groups, this will respectively
be proved in Appendices B3 and B4.

3. Type-IIT SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs)

g-}x\ J
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FIG. 8: A ferromagnetic chain with MRG (pm/mm’) rg, which is generated by {E|1}, {Cas X T|0}, {C24|0}, and {Z|0}, and is
isomorphic after the addition of perpendicular lattice translations to Type-III MSG 47.252 Pm/m’m. The primes in the symbol
(pm/mm/) g indicate that the MRG contains the symmetries {m, x 7|0} and {m. x T]0}. In the decomposition in Eq. (B11),
M = (pm'mm’)re, G = (pmmm)gre [isomorphic to Type-I MSG 47.249 Pmmm after the addition of perpendicular
lattice translations], and H = (p12/ml)r¢ [isomorphic to Type-I MSG 10.42 P2/m after the addition of perpendicular lattice

;??é?? $¢ ¢

FIG. 9: An antiferromagnetic chain with MRG (pmmm’)re, which is generated by {E|1}, {Cas x T|0}, {C2y x T|0}, and
{Z x T|0}, and is isomorphic after the addition of perpendicular lattice translations to Type-IIT MSG 47.251 Pm’mm. The
prime in the symbol (pmmm’) re indicates that the MRG contains {m, x 7|0} symmetry. The red and blue magnetic moments
are equal in magnitude and opposite in direction, and are related by the operation of {C5.|0} about the midpoints between
adjacent atoms. In the decomposition in Eq. (B11), Mrrr = (pmmm’)re, G = (pmmm) re [isomorphic to Type-1 MSG 47.249
Pmmm after the addition of perpendicular lattice translations], and H = (pmm2)re [isomorphic to Type-I MSG 25.57 Pmm2
after the addition of perpendicular lattice translations].

Each Type-III SSG Mj;; takes the form:
M r=HUT(G\ H), (B11)

where G and H are isomorphic to Type-1 SSGs, H C G, and G \ H is a set that contains no elements of the form
{E|t}, where E is the identity operation and t is a translation. Hence, G \ H in Eq. (B11) does not include the
identity element {F|0}, though G\ H is free to contain elements of the form {f|0} where f is a unitary rotation or
rotoinversion. Because G \ H does not contain pure translations, then it follows that H is a subgroup of G with the
same Bravias lattice. Following arguments recently presented in Ref. 130, we will demonstrate that H is an index-2
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subgroup of G. To establish that [G : H] = 2, we will first show that H is an index-2 subgroup of M;;;. We begin by
noting that, given an antiunitary symmetry g4 € 7(G \ H):

ga=T x g, (B12)

where g is a unitary symmetry g € G, g ¢ H. Hence, g% is a unitary symmetry operation g% € My, implying that:

ga€H, gi ¢ T(G\H). (B13)
Egs. (B11), (B12), and (B13) imply that:
Mirr = gaMirr = gaH U gaT(G\ H), (B14)
such that:
T(G\ H)=gaH, (B15)

implying that H is an index-2 subgroup of Mj;;. Eq. (B14) also implies through Egs. (B11) and (B12) that:
|H| = |T(G\ H)| = |G\ H|, (B16)
establishing that H is also an index-2 subgroup of G:
G =HUgH, (B17)

such that gH = G \ H, consistent with Egs. (B12) and (B15). Finally, to see that M;; is an index-2 subgroup of a
Type-I1 SSG (specifically M;; = GUTG), we consider the effects of restoring 7 symmetry to Eq. (B11):

Mirr UTMirg HUT(G\H)UTHU(G\ H)
GUTG

= M. (B18)

Like the previous Type-I MSGs in Appendix B 1, Type-III MSGs can characterize both ferromagnetic (Fig. 8) and
antiferromagnetic (Fig. 9) crystals. The symbols for Type-III MSGs contain primes that denote which symmetry
operations are formed from the combination of 7 and a unitary element of G \ H [Eq. (B11)]. The Type-III MSGs
have historically been termed the black and white groups without black and white Bravais lattices, because Type-III
groups contain antiunitary symmetries that relate classical magnetic moments at different positions in a crystal, but
do not contain the antiferromagnetic translation symmetry to7 common to Type-IV MSGs that generates the black
and white Bravais lattices (see Appendix B4 and Chapter 7 in Ref. 11.) Representative examples demonstrating the
usage of primes in Type-III magnetic group symbols are presented in Figs. 8 and 9.

4. Type-IV SSGs: Black and White Groups with Black and White Bravais Lattices (517 MSGs)

Each Type-IV SSG Mjy takes the form:
My =HUTtyH, (B19)

in which H is isomorphic to a Type-I SSG and % is a translation whose length is half that of either ¢4 p c, to +ts, to +tc,
ty + tc, or to +tp + t, Where 143 . are the primitive lattice translations in H 11 The fractional lattice translations
ty where n mod 2 = 1 relate positions of alternating color (classical spin orientation) in the black and white Bravais
lattice of My (see Chapter 7 in Ref. 11), whereas the full lattice translations ¢, . relate positions with the same
color in the nonmagnetic (gray) Bravais lattice of My. Hence, historically'!, the Type-IV MSGs have been termed
the black and white groups with black and white Bravais lattices. As previously with the Type-III groups [see the text
surrounding Eq. (B12)], we can show that H is an index-2 subgroup of M. To demonstrate that [Mry : H| = 2,
we first rearrange Eq. (B19) into the same form as Eq. (B11):

Mpy = HUT(G\ H), (B20)
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FIG. 10: An antiferromagnetic chain with MRG (pal)ra, which is generated by {771/2} (t,a 57, and is isomorphic after the
addition of perpendicular lattice translations to Type-IV MSG 1.3 Ps1. The red and blue magnetic moments on the atoms
labeled with solid circles are equal in magnitude and opposite in direction. The two nonmagnetic atoms (hashed circles) in
each magnetic unit cell are displaced out of the xy-plane, breaking additional symmetries such as {m. x T|0}. In terms of
the black and white Bravais lattices historically employed to characterize (antiferro)magnetic structures'?, the atoms with blue
magnetic moments can be taken to occupy white sites, whereas the atoms with red (time-reversed) magnetic moments can be
taken to occupy black sites. Throughout this work, we will only use the more familiar gray (nonmagnetic) Bravais lattices to
characterize magnetic symmetry groups, because the black and white Bravais lattices add an additional level of complexity
that does not factor into any of the group-theoretic calculations that comprise MTQC. Further discussion and a complete
enumeration of the black and white Bravais lattices is provided in Chapter 7 in Ref. 11. In the antiferromagnetic chain in this
figure, the blue and red magnetic moments are related by oM s2T. The primitive (magnetic) unit cell of the spin chain has
a length a2, whereas the nonmagnetic unit cell, which is realized by restoring 7 symmetry [Eq. (B22)], has a shorter length
al = a} /2. In the decomposition in Eq. (B19), Mrv = (pal)re, H = (pl)rc with the lattice constant a = a [isomorphic
to Type-I MSG 1.1 P1 after the addition of perpendicular lattice translations], and to = tqM /5. From this, we establish the
decomposition in Egs. (B20) and (B21), in which M7y = (pa1)ra, G = (pl)rc with the lattice constant a = a$ = a2’ /2, and
H = (pl)re with the lattice constant a = aM.

for which, by construction:
G =HUtyH, (B21)

such that G is isomorphic to a Type-1 SSG with the gray Bravais lattice given by ignoring the colors of the black and
white Bravais lattice of My (see Fig. 10). To show that Mjy is an index-2 subgroup of a Type-II group, we again
restore 7 symmetry [see Eq. (B18)]:

MryUTMpy = HUTtgHUTHUtgH
= GUTG
= My, (B22)

where G is given in Eq. (B21). As shown in the text following Eq. (B10), Eq. (B21) also implies that H is an index-2
subgroup of the Type-I1 MSG G.

Physically, Eq. (B22) implies that the process of “turning off” the magnetism in a crystal with a Type-IV SSG
(MSG) Mjy generates a nonmagnetic crystal that is invariant under a Type-II group M ; with a smaller unit cell than
the magnetic unit cell of My (Fig. 10), and with the same gray Bravais lattice as G in Eq. (B21) (as opposed to the
gray Bravais lattice of H). Unlike the previous Type-I and Type-III MSGs in Appendices B 1 and B 3, respectively,
Type-IV MSGs necessarily characterize crystals with net-zero magnetic moments, because the operation of o7 € My
[Eq. (B19)] relates the spin configuration of one half of the primitive (magnetic) unit cell to its time-reverse in the
other half. The symbols for Type-IV MSGs contain subscripts that denote the direction of ¢y, and therefore specify
the gray (nonmagnetic) Bravais lattice of G in Egs. (B21) and (B22).

Appendix C: Site-Symmetry Groups and Wyckoff Positions of the Magnetic Space Groups

Next, we will discuss the position-space action of the symmetries of the MSGs. In Appendix C 1, we will introduce
the site-symmetry (stabilizer) groups of the MSGs, and in Appendix C 2, we will discuss how the Wyckoff positions
of the MSGs are related to those of the T-symmetric SGs.

Throughout the text below, we will provide representative 2D atomic and spin configurations highlighting properties
of the site-symmetry groups and Wyckoff positions of the MSGs. The 2D magnetic structures shown in this section each
respect the symmetries of a magnetic layer group (MLG) Mg — a subperiodic group with 3D symmetry operations
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and 2D translations!®18:63,128,129,131 " Fach MLG is isomorphic to (at least one) MSG M modulo out-of-plane lattice
translations. Specifically, taking the in-plane translations to be elements of T ,, (T5, ), and taking ¢t. € T, (T}) to be
a lattice translation in the z (out-of-plane) direction:

M=MpcUt:-M;c. (Cl)

In this work, the symbols of MLGs are given in the convention employed by Litvin in Ref. 12.

1. Site-Symmetry Groups of the Magnetic Space Groups

In this section, we will define the site-symmetry group Mg at a point q in crystal that is invariant under an SSG
M. To begin, M is composed of unitary symmetry operations:

gu.i = {hilt:}, (C2)
and antiunitary symmetry operations:
ga; = {h; x TIt;}, (C3)

where each h; ; is a unitary symmetry operation that is either the identity, a rotation, or a rotoinversion. Given a
point q in an infinite crystal, the action of gy; and g4 ; on q is given by:

gu,id = hiq+t;, ga;q=h;q+t;, (C4)

in which only h;; and t; ; act on q, because 7, by definition, leaves spatial coordinates invariant'!. As defined in
Ref. 5, a site-symmetry group My is spanned by the set of unitary and antiunitary symmetry operations g € M that
return a site q in an infinite crystal (i.e. a point in position space) to itself in the same unit cell:

94 = q, (C5)
for all g € My. Hence, the site-symmetry group Mq of q is finite a subgroup of the SSG M:
Mgy C M, (C6)

in which My does not contain elements of the form {E|t} or {T|t}, where E is the identity operation and t is a
translation. Later, in Appendix C2, we will reintroduce the Wyckoff positions of M containing q, as defined in
Ref. 85.

In Eq. (C6), Mg is necessarily isomorphic to one of the 122 crystallographic Shubnikov point groups
(SPGs)12:24,61,6287°94 © which are listed in the MPOINT (http://www.cryst.ehu.es/cryst/mpoint.html)%1 -9
and CorepresentationsPG tools on the BCS, in which the SPGs are numbered according to the convention estab-
lished by Litvin in Ref. 12. The SPGs divide into 32 Type-I magnetic point groups (MPGs), 32 Type-II (non-
magnetic) SPGs, and 58 Type-III MPGs, where the type of an SPG is defined the same way as the type of an
SSG [Appendix B1 and Egs. (B3) and (B11), and (B11)]. We emphasize that, unlike in the MSGs, which sub-
divide into Types-I, III, and IV, there are only Type-I and Type-III MPGs. Specifically, there are no Type-IV
MPGs, because point groups, unlike space groups, cannot contain operations of the form {7t} [Eq. (B19)], as
{T|t} does not fix any point in position space [Eq. (C4)]. Following the discussions in Appendices B1 and B3,
all Type-I and Type-III MPGs are subgroups of Type-II SPGs. For all 122 SPGs, the group-subgroup relations
are provided by Ascher and Janner in Ref. 133, and can be inferred by using the KSUBGROUPSMAG tool on the
BCS (http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmagl_k.pl)’t™9 on pairs of SSGs that are iso-
morphic to SPGs modulo integer lattice translations. For example, to see that Type-III MPG 9.3.31 4’ and Type-I
MPG 9.1.29 4 are both index-2 subgroups of Type-II SPG 9.2.30 41’, one can choose the “List of subgroups” option
in KSUBGROUPSMAG for Type-II SG 75.2 P41’ while specifying the magnetic wavevector k = 0. Documentation
and further examples of the output of KSUBGROUPSMAG are provided in Refs 94,134. For this work, we define
Type-I MPG 1.1.1 1 as both the trivial MPG and the trivial SPG, as its only generator is the identity operation E,
and because Type-I MPG 1.1.1 1 is the common subgroup of all MPGs and SPGs.

It is important to highlight that all site-symmetry groups in MSGs (i.e. Type-I, ITI, and IV SSGs) are isomorphic to
MPGs (i.e. Type-I and ITI SPGs), and correspondingly, that all site-symmetry groups in Type-II (nonmagnetic) SSGs
are isomorphic to Type-II SPGs. To show this, we first consider the Type-II SSGs. Because all Type-II SSGs contain
the element {70}, which fixes all points in space, then all site-symmetry groups in Type-II SSGs also necessarily
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FIG. 11: (a) A magnetic crystal with Type-I magnetic layer group (MLG)!218:63:128:129.181 »,4 " which is generated by {E|10}
and {C4:|00}, and is isomorphic after the addition of ¢, to Type-I MSG 75.1 P4. The atoms on the la sites in (a) exhibit an
additional magnetic moment in the +2 direction (blue dot), which we have chosen in order to break {m. x 7|00} symmetry®® to
simplify the symmetry analysis performed in this section. (b) A magnetic crystal with Type-III MLG p4’, which is generated by
{E|10} and {C4. x T|00}, and is isomorphic after the addition of ¢. to Type-III MSG 75.3 P4’. The red magnetic moments in
(b) have the same magnitudes as the blue magnetic moments; they are only colored in red to emphasize that the red moments
in (b) are related to the blue moments by the antiunitary symmetry operation ({Cs. X T|00}). The atoms on the la sites
in (b) do not exhibit a magnetic moment, and instead are displaced out of the zy-plane in the +Z direction, which we have
indicated with black dots. We have chosen to displace the atoms at the la position in each unit cell in (b) out of the zy-plane
in order to break {m.|00} symmetry, such that the MLGs in (a) and (b) share the same “unprimed” Type-I MLG G = p4 [see
the text surrounding Eq. (C12)]. The la and 1b site-symmetry groups in (a) are isomorphic to Type-I MPG 9.1.29 4, which
is generated by Cl,, whereas the la and 1b site-symmetry groups in (b) are isomorphic to Type-IIT MPG 9.3.31 4’, which is
generated by Ca. x T. Nevertheless, in both (a) and (b), the 2¢ site-symmetry groups are isomorphic to Type-I MPG 3.1.6 2,
which is generated by Ca,. In both (a) and (b), magnetic moments additionally occupy the 4d (general) position, where the
site-symmetry groups at 4d in both (a) and (b) are isomorphic to Type-I MPG 1.1.1 1, the trivial MPG. The MLGs in (a) and
(b) [p4 and p4’, respectively] are also isomorphic to magnetic wallpaper groups'®03:131:132,

contain {770}, and are therefore isomorphic to Type-II SPGs. Conversely, because MSGs (i.e. Type-1, 111, and IV
SSGs) do not contain {70}, then none of their site-symmetry groups contain {70} (though they are free to contain
antiunitary operations such as {C4, x T|0}; hence, the site-symmetry groups in MSGs are isomorphic to either Type-I
or Type-III MPGs. In Type-I MSGs, all of the site-symmetry groups are isomorphic to Type-I MPGs, as Type-I MSGs
do not contain antiunitary symmetry elements (Appendix B 1). However, in each of the Type-III and Type-IV MSGs,
site-symmetry groups can be isomorphic to either Type-I or Type-IIT MPGs. For example, in Fig. 11(a,b), we depict
atomic and spin configurations that respect the symmetries of Type-I MLG p4 and Type-IIT MLG p4’, respectively
[see the text surrounding Eq. (C1) for the definition of an MLG]. In p4, the la and 1b site-symmetry groups are
isomorphic to Type-I MPG 9.1.29 4, whereas in p4’, the 1la and 1b site-symmetry groups are isomorphic to Type-III
MPG 9.3.31 4'. Nevertheless, in both p4 and p4’, the 2¢ site-symmetry groups are isomorphic to Type-I MPG 3.1.6 2.

2. Wyckoff Positions of the Magnetic Space Groups

In this section, we will next reintroduce the Wyckoff positions of the MSGs. First, we will below precisely define a
Wyckoff position. Then, in Appendix C 2 a, we will apply the definitions and relations established below to illustrative
2D examples of MLGs derived from the Type-II layer group (LG) p41’.

To begin, as discussed in Ref. 5, the Wyckoff positions of an SSG M are defined using the orbits of symmetry sites.
We first select a site q, in a crystal that is invariant under an SSG M. As defined in the text surrounding Eq. (C5),
the site-symmetry group M, contains all of the symmetries g € M that return q, to itself. However, there also
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generically exist symmetries:
gi € M, gi ¢ Mg, (C7)

that act to send q, to other points q,/ in the crystal, where q, may or may not lie in the same unit cell as q,. We
next define the set of symmetries:

{9t = M\ Mg, (C8)

Acting with all of the §; € {g} on q, generates an infinite number of sites {§;qs}, because M includes lattice
translations and Mg, does not. Additionally, it is possible for two elements g; ; € {g} to map g, to the same point.
For example, if qo = (2,¥,0), §; = {C2.|000}, and g; = {Z|000}, then §;qn = §jda = (—z,—y,0). Continuing to
employ the previous definition from TQC?°7:°8:60,85.80 e define the orbit of q. to be the infinite subset of unique
points {GiQa } Uds. We then define the Wyckoff orbit indexed by q, as the finite set of points in the orbit — including
d., itself — that lie in the same unit cell as q,. In this work, we will summarize the Wyckoff orbit containing q, using
the notation {q }, for simplicity. In the Wyckoff orbit of qq, the index a runs from 1 to n, where n — which is termed
the multiplicity of the Wyckoff orbit — is the number of unique sites q, in the orbit of q, that lie in the same unit cell
as g plus one for q, itself. Given a site-symmetry group M, all of the other site-symmetry groups in the Wyckoff
orbit of q, are given by:

ng = gaBM ag(;@la (Cg)
where §qop is a symmetry in M \ Mg, [Eq. (C7)] for which:

gaﬁqa =4q3, (ClO)

where qg is in same Wyckoff orbit as q,. Hence, all of the site-symmetry groups Mg, in the same Wyckoff orbit as
My, are isomorphic and conjugate to M, , and to each other. Lastly, we define the Wyckoff position containing q,
as the set of Wyckoff orbits with the same multiplicity in which the coordinates of the sites in the orbit {q,} can be
smoothly deformed into each other without changing the Wyckoff orbit multiplicity. For example, in Type-I MSG 2.4
P1, which is generated by {Z|0} and 3D lattice translation, the sites [(0,0,0.1), (0,0, —0.1)] and [(0,0,0.2), (0,0, —0.2)]
define distinct Wyckoff orbits. Nevertheless, in MSG 2.4 P1, the two Wyckoff orbits [(0,0,0.1), (0,0, —0.1)] and
[(0,0,0.2), (0,0, —0.2)] represent different parameter choices for the same Wyckoff position [(,y, z), (—z, —y, —2)]
(labeled the 2i position on the BCS). The coordinates, multiplicities, and site-symmetry groups of the Wyckoff
positions of all 1,651 SSGs have previously been made accessible through the MWYCKPOS tool on the BCS (http:
//www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl)?1 9.

Next, to further determine the maximal Wyckoff positions — which we will later find to be important in calculating
the magnetic elementary band (co)representations (Appendix E) — we follow the definition established in Ref. 85.
First, we recognize that, for each Wyckoff position in the SSGs, there is a set of coordinates that defines the locations
of atoms (magnetic atomic orbitals, see Appendix E 1) occupying the Wyckoff position. In high-symmetry Wyckoff
positions, some or all of the coordinates have fixed values (e.g. 0 or 1/2), whereas in other, lower-symmetry positions,
the coordinates have free values (e.g. z) that represent distinct Wyckoff orbits in the same Wyckoff position [see the
text following Eq. (C10)]. For example, in the output of MWYCKPOS on the BCS?1%* for Type-IIT MSG 10.45
P2/m/, the la position lies at (0,0,0) and has a site-symmetry group isomorphic to Type-IIT MPG 5.4.15 2/m/,
whereas the 2i position has sites at (0,y,0) and (0, —y,0), each of which has a site-symmetry group isomorphic to
Type-I MPG 3.1.6 2. As an intermediate step towards defining a maximal Wyckoff position, we first establish a
definition for connected Wyckoff positions. We define two Wyckoff positions to be connected if the coordinates of one
of the sites in the lower-symmetry Wyckoff position [e.g. (0,y,0) in the 2i position in the previous example in MSG
10.45 P2/m’] can be adjusted to coincide with the coordinates of the higher-symmetry Wyckoff position [e.g. the la
position at (0,0,0) in the previous example in MSG 10.45 P2/m/]. From this, we define a mazimal Wyckoff position
to be a Wyckoff position that is not connected to a Wyckoff position with a higher-symmetry site-symmetry group
(i.e. the site-symmetry group of a maximal Wyckoff position must be a larger supergroup of the site-symmetry group
of any Wyckoff position to which it is connected). This definition of a maximal Wyckoff position is identical to the
previous definition established in Refs. 5,85 for the Type-I MSGs and Type-II SSGs; in this work, we have applied
the earlier definition to the Type-III and Type-IV MSGs by incorporating the action of the antiunitary symmetries
ga,; in Type-IIT and Type-IV MSGs [see Appendices B3 and B4 and the text surrounding Eq. (C4)]. Specifically, in
both this work and in TQC, the set of site-symmetry groups in the maximal Wyckoff positions in an SSG M coincide
with the set of maximal site-symmetry subgroups of M. In this work, the only distinction from the earlier discussion
of Wyckoff positions in Refs. 5,85 is the incorporation of the action of antiunitary symmetries through Eq. (C4).
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We will now discuss the relationship between the Wyckoff positions in the MSGs and the Wyckoff positions in
the more familiar Type-II (nonmagnetic) SSGs. First, the Wyckoff positions of the Type-I and Type-III MSGs can
straightforwardly be obtained from the Wyckoff positions of the Type-II SSGs. For the Type-I MSGs, this follows
directly from the definition of a Type-II SSG (Appendix B 2). Specifically, in a Type-II SSG M;; = GUTG [Eq. (B3)],
all of the site-symmetry groups My  take the form:

M1 q = GqUTGy. (C11)

In each Wyckoff position indexed by a site q in a crystal invariant under My, the multiplicity of the Wyckoff position
of q is only determined by the unitary symmetries g of the Type-I subgroup G of Mj;, because 7 symmetry acts as
the identity on q [see Eq. (C4) and the surrounding text]. Therefore, in a Type-I MSG G, all of the Wyckoff positions
have the same multiplicities and coordinates as the Wyckoff positions in M;; = GU TG [Eq. (B3)], and all of the
site-symmetry groups Gq are isomorphic to the unitary subgroups of My q [Eq. (C11)].

Conversely, in a Type-III MSG M;;; = HUT(G \ H) [Eq. (B11)], the site-symmetry groups Mjrrq can be
isomorphic to either Type-I and Type-III1 MPGs, as previously discussed in Appendix C 1. Nevertheless, we will show
below that the multiplicities of the Wyckoff positions in Mj; are still inherited from the “unprimed” Type-I group
G in the definition of M [Eq. (B11)]. Specifically, in this work, we define G to be the “unprimed” group of My,
because G and Mj; share the same symbols if primes are neglected (i.e., under transforming group elements of the
form ¢’ = {h x T|t} — {h|t}). To show this, we first note that, because 7 symmetry acts as the identity on spatial
coordinates, then:

Tqa=aq, (C12)

for all q in the 1,651 SSGs. Consequently, in a Type-III MSG My, only the unitary parts {h|t} of the unitary and
antiunitary symmetries in My can act to send q to other positions [see Eq. (C4) and the surrounding text]. As shown
in Appendix B 3, the unitary parts of the unitary and antiunitary symmetries in M;;; comprise the unprimed Type-I
MSG G of My;;. Additionally, as shown in Eq. (B18), the unprimed group G of Mjy; is also the maximal unitary
subgroup of the Type-11 SSG My UT Myy; (i.e. My UT M = GUTG). Lastly, as shown in the text surrounding
Eq. (C11), the Wyckoff positions of G are identical to the Wyckoff positions of G U TG [though the site-symmetry
groups G4 are the unitary subgroups of the site-symmetry groups Mjrq in G U TG]. From this, we conclude that
the Type-I (unprimed) MSG G, the Type-II SSG M;;; U T Mj;r, and the Type-IIT MSG Mj;; all share the same
Wyckoff-position multiplicities and coordinates. It therefore follows that each site-symmetry group Myrr,q C Myyy is
an index-2 subgroup of My q = GqU T G4 where:

Mg C (Mrrr UT Miypr). (C13)
Specifically, Myys q is either a Type-I site-symmetry group:
Mirr,q = Gq, (C14)
or a Type-III site-symmetry group:
Mirrg = HqUT(Gq \ Hy), (C15)

where Hq is a site-symmetry group in the Type-I (maximal unitary) subgroup H of Mj; [see Eq. (B11) and the
surrounding text]. We will shortly provide in Appendix C2a an example demonstrating the relationship between Ggq,
Mir.q, and M7 g in a Type-III magnetic symmetry group.

Unlike in Type-I and Type-III MSGs, the Wyckoff positions in Type-IV MSGs have more complicated dependencies
on the Wyckoff positions in the Type-II SSGs. This complication arises because the operation of t,7 in Eq. (B19)
enlarges the magnetic unit cell of a crystal with a Type-IV MSG (i.e. a2! in Fig. 10) relative to the nonmagnetic unit
cell of its Type-II supergroup (i.e. a$ in Fig. 10). Hence, the primitive cell of a Type-IV MSG is always larger than
the primitive cell of its Type-II supergroup). Therefore, there is no corresponding notion of an “unprimed” group
for the Type-IV MSGs. Instead the multiplicities, coordinates, and site-symmetry groups in Type-IV MSGs must be
determined by composing the elements of the site-symmetry groups of the unitary subgroup H in Eq. (B19) with the
antiunitary (antiferromagnetic) translation symmetry ¢o7. An example demonstrating the composition of the unitary
site-symmetry group symmetries in H with ¢37 in a Type-IV MSG will later be provided in Appendix E 3 a.
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a. Wuyckoff Positions in Magnetic Subgroups of Type-II LG p41’

To demonstrate how the site-symmetry groups in Type-I and Type-III MSGs derive from those in Type-II SSGs, we
will in this section analyze the examples of Type-II LG M;; = p41’ and its Type-I and Type-III magnetic subgroups
Type-I MLG G = p4 and Type-III MLG Mj;; = p4’, respectively [Fig. 11(a,b), respectively]. M is generated by
{C4.]00}, {7100}, and the lattice translation {F|10}. Using MWYCKPOS on the BCS?1%4 for Type-II SG 75.2
P41’, which is isomorphic to p41’ modulo T, [i.e. after the addition of out-of-plane lattice translations, see the text
surrounding Eq. (C1)], we obtain the coordinates of the highest-symmetry (fourfold-symmetric) maximal Wyckoff
positions of p41’ (1a and 1b) and the SPGs isomorphic to the fourfold-symmetric maximal site-symmetry groups:

Qia = (0’ 0)7 MILla - 41/ =4U (T)4a
qw = (1/2,1/2), Myrap =41 =4U(T)4, (C16)

where the symbols 41’ and 4 respectively refer to Type-II SPG 9.2.30 41’ and Type-I MPG 9.1.29 4. There is also
a lower-symmetry maximal Wyckoff position in Type-II MLG p41 in which the site-symmetry groups do not contain
fourfold rotation symmetry (2¢). The coordinates and site-symmetry-group-isomorphic SPGs of the 2¢ position in
Type-II MLG p41’ are given by:

qae = {(1/2,0), (0,1/2)}, M1z, =21"=2U(T)2, (C17)

where the symbols 21’ and 2 respectively refer to Type-II SPG 3.2.7 21’ and Type-I1 MPG 3.1.6 2.
As defined in Eq. (B3), the layer group M;; = p41’ admits a decomposition:

p4l’ = p4 U (T)p4, (C18)

where p4, which is generated only by {C4.|00} and {E|10}, is the maximal unitary subgroup of Mj;. An atomic
and spin configuration with MLG p4 is shown in Fig. 11(a). Using MWYCKPOS on the BCS?* 94 for MSG 75.1 P4,
which is isomorphic to p4 modulo T, we obtain the coordinates and site-symmetry-group-isomorphic MPGs of the
maximal Wyckoff positions of p4:

qia = (07 0)7 Gla = 47

an = (1/2,1/2), G, =4,

q2c = {(1/25 0)7 (Ov 1/2)}7 Gac = 2. (019)
where the symbols 4 and 2 respectively refer to Type-I MPG 9.1.29 4 and Type-I MPG 3.1.6 2. As discussed in the

text following Eq. (C11), we observe that each site-symmetry group Gq in p4 [Eq. (C19)] is equivalent to the unitary
subgroup of the site-symmetry group My q of p41’ [Eq. (C16)].

Next, we perform the analogous analysis of the Wyckoff positions and site-symmetry groups in Type-III MLG
M = p4’, which is generated by {Cy, x T]00} and {E|10}. As discussed in the text surrounding Eq. (B11),
My = p4’ admits a decomposition:

pd =p2UT[(pd)\ (p2)], (C20)

in which p2 is the Type-I MLG generated by {E|10}, {E|01}, and {C5,]00} = ({C4. x T|00})8, where the exponent
of 6 is necessary to account for the possibility that p4’ is a double group (see Appendix A and Ref. 11). Because
p4 is the unitary subgroup of p41’, the SSG that results from restoring 7 symmetry to p4’ [Egs. (B18) and (C20)],
then we refer to p4 as the “unprimed” group of p4’ [see Eq. (C12) and the surrounding text]. An atomic and spin
configuration with MLG p4’ is shown in Fig. 11(b). Using MWYCKPOS on the BCS?'* for MSG 75.3 P4/, which is
isomorphic to p4’ modulo T, we obtain the coordinates and site-symmetry-group-isomorphic MPGs of the maximal
Wyckoff positions of p4’:

die = (0,0), Mirria=4"=20T([4)\(2)],

quw = (1/2,1/2), Mirae=4"=20T[(4)\ (2)],

Q2c = {(1/2a O), (07 1/2)}; MIII,QC = G2c = 27 (C21)
where the symbols 4/, 2, and 4 respectively refer to Type-III MPG 9.3.31 4/, Type-I MPG 3.1.6 2, and Type-1 MPG

9.1.29 4. It is important to emphasize that MLGs p2 and p4’ do not share the same Bravais lattices: the Bravis lattice
of p2 is oblique, whereas the Bravis lattice of p4’ is square. In p2, the sites qﬁ’i =(0,1/2) and qui = (1/2,0) each lie
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in distinct, multiplicity-1, maximal Wyckoff positions. Conversely, in p4’, the symmetry element {Cy, x 7|00} relates
qlfg = (0,1/2) and q’fi = (1/2,0), causing the two sites to merge into a single, multiplicity-2, maximal Wyckoff position
in p4’ [q2. in Eq. (C21)]. All of the site-symmetry groups of p4’ are index-2 subgroups of the site-symmetry groups
of p41’ [Egs. (C16) and (C17)]. However, unlike previously in p4 [Eq. (C19)], some of the site-symmetry groups in
Eq. (C21) are isomorphic to Type-III MPGs (Myrr.1, and Myyr,1p), whereas others are isomorphic to Type-I MPGs
(Gac). Crucially, for the site-symmetry groups Mirr,q in Eq. (C21) that are isomorphic to Type-III MPGs, the
“unprimed” site-symmetry groups Gq [i.e. the site-symmetry groups that result from disregarding 7 symmetry, see
Eq. (C12) and the surrounding text] are still isomorphic to the unitary subgroups of the nonmagnetic site-symmetry
groups My q of p4l’ [Egs. (C16) and (C17)]. Specifically, at the 1a and 1b positions of p4’, the site-symmetry groups
Mirr1q and My 1 arve both isomorphic to Type-III MPG 9.3.31 4/, whose unprimed group is Type-I MPG 9.1.29
4. Correspondingly, Type-I MPG 9.1.29 4 is also the unitary subgroup of Type-II SPG 41’, to which the 1la and 1b
site-symmetry groups of MLG p41’ are isomorphic [Eq. (C16)].

Appendix D: Small Coreps of the Little Groups and Full Coreps of the MSGs

In this section, we will establish the analogous momentum-space description®11:52:57:58,60.85.86 of the MSGs, after
having previously established a position-space description of the MSGs in Appendices B and C. To begin, for an
infinite crystal that is invariant under an SSG G, the translation group Gr [Eq. (B1)] is a subgroup of G, where Gr
is generated by a set of three linearly-independent primitive translation operations:

ta = {Elta}, &y = {Elts}, tc = {Eltc}. (D1)

The shape of the unit (primitive) cell, and the (gray) Bravais lattice of G, are determined by the relative lengths and
directions of'! t,p .. Because the crystal is periodic and infinite, then it admits a reciprocal, Fourier-transformed
description that is also periodic and infinite. In reciprocal space, coordinates are indexed by crystal momentum Kk,
and the shapes of the reciprocal cells [i.e. Brillouin zones (BZs)] are determined by the primitive reciprocal lattice
vectors Kg p o, which are defined for a d-dimensional crystal as a set of d vectors {K;} that satisfy:

As previously with the Bravais lattice vectors, the primitive reciprocal lattice vectors K, ;. of a 3D crystal must
be linearly independent, but are not necessarily orthogonal (though K, . are indeed both linearly independent
and orthogonal in many SSGs). We note that, in some tools on the BCS, both t; and K, are expressed in reduced,
dimensionless units in which factors of the Bravais lattice constants a, b, ¢ and BZ length [27 in Eq. (D2)] are suppressed
(4.e., units in which |t ;.| = |Kap,c| = 1). However, throughout this work, unless we are discussing the specific output
of tools on the BCS, we will maintain the factor of 27 in Eq. (D2), though, like on the BCS, we will employ reduced
units in which a,b,¢ =1 (i.e., units in which [ty | =1 and |K,p | = 27).

Similar to the Wyckoff positions in real space, there are also sets of k points in momentum space that are related
by the symmetries of the SSG G. These k points subdivide into distinct sets, known as momentum stars, which
we will rigorously define in Appendix D 1. For this work, we have specifically implemented the MKVEC tool on
the BCS, through which users can access the momentum stars of the SSGs; examples of the output of MKVEC are
provided in Appendix D 1. As we will discuss in Appendix D 1, MKVEC subsumes the earlier KVEC tool (https:
//www.cryst.ehu.es/cryst/get_kvec.html)%1:6213% which was only capable of generating the momentum stars of
the 230 Type-I (unitary) MSGs. Additionally at each point k in the first BZ, energy states (Bloch wavefunctions)
can be labeled by the irreducible “small” (co)reps of the little group!'’?1:?? Gy, which are defined in Appendix D 2.
One of the largest obstacles in constructing MTQC was the previous absence of a complete tabulation of the single-
valued (spinless) and double-valued (spinful) small coreps of the little groups of all 1,651 SSGs. Specifically, we cannot
calculate the MEBRs (further detailed in Appendix E), without a complete tabulation of the full (space group) coreps,
which are induced from the small coreps at each of the k points in a momentum star2:8%136  Previously, Miller and
Love in Ref. 52 computed the single- and double-valued irreducible small (co)reps of the little groups of each MSG
at high-symmetry points and along high-symmetry lines, but not along high-symmetry planes or in the BZ interior,
which are required to complete the insulating compatibility relations for each MSG (Appendix D 3) and to compute the
MEBRs (Appendix E). Additionally, the magnetic small (co)reps computed in Ref. 52 are not publicly available, are
displayed in difficult-to-read tables outputted directly from computer code, and are hence difficult to verify. For this
work, building on a prescription outlined by Bradley and Cracknell in Ref. 11, we have performed the first ever complete
tabulation of the over 100,000 single- and double-valued small coreps at all k points and full coreps in all momentum
stars of all 1,651 SSGs, which we have made freely accessible through the newly available Corepresentations tool on
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the BCS. Representative examples of the output of Corepresentations are provided in Appendices D2a and D 2b.
Combined with the small and full coreps previously calculated for the Type-I and II SSGs for TQC?»7:58:60,85,86
which can still be obtained through the REPRESENTATIONS DSG tool on the BCS (http://www.cryst.ehu.es/
cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg), the tools documented in this section represent
the completion of over 70 years!'®:11:52:122,123 of group-theoretic efforts to exhaustively enumerate the coreps of the
1,651 SSGs.

Additionally, using the small coreps of the little groups of the SSGs, we can further derive the compatibility rela-
tiong60:86,137-140 that constrain the coreps at adjacent k points throughout the BZ. For this work, we have implemented
a new tool - MCOMPREL — through which the compatibility relations between pairs of k points in any of the 1,651
SSGs can be obtained, including, for the first time, the Type-III and Type-IV MSGs. In Appendix D 3, we detail
the methodology employed to implement MCOMPREL, as well as outline some of the subtleties that arise when
calculating compatibility relations in the MSGs.

1. Little (Co)Groups, Momentum Stars, and the MKVEC Tool

In this section, we will introduce the concepts of little groups, little co-groups, and momentum stars. We will
then demonstrate how the little (co)groups and momentum stars of all 1,651 SSGs can be obtained using the newly
available MKVEC tool on the BCS. To begin, we define two points k and k’ to be equivalent if:

k-k =K,, (D3)

where K, is an integer-valued linear combination of the reciprocal lattice vectors K, p . defined in Eq. (D2). In this
work, we will employ a condensed notation in which two equivalent points k and k' satisfy:

k=K. (D4)

Through Egs. (D3) and (D4), we establish a definition of inequivalent k points in which two points k and k' are
inequivalent if:

k—k #K,, (D5)

for all possible linear combinations of reciprocal lattice vectors K,. We summarize Eq. (D5) with a condensed notation
in which two inequivalent points k and k' satisfy:

k£K. (D6)
Consider a symmetry:
g={BIv}, (D7)

where ¢ is an element of an SSG G. In this work, R denotes an operator, whereas Py denotes the 3 x 3 matrix

representation of the action of the unitary part of R on coordinates in the basis of reciprocal lattice vectors. Hence,
R is basis-independent, where as Py is basis-dependent. We note that in earlier works' 102 symmetry actions have

been formulated in terms of Py, rather than R, requiring the introduction of distinct symmetry actions for unitary

and antiunitary symmetries g. As an example of R and P, consider h = {m, x T|0}, for which R=m. x T and
Py = diag(1,1,—1) in the coordinate basis (x,y,2). At each of the k points in the first BZ of G, the symmetry
operations g act on k as:

gk = Rk, (D8)

where the tilde on R is used to indicate that R can be either a unitary symmetry of the form R = R or an antiunitary
symmetry of the form R = R x 7. In this work, we define two points k and k’ to be dependent if:

k' = gk, (D9)

for any symmetry g € G. Given a point k, we then define the subgroup Gx C G, as the group of symmetries g € G
that act to return k to itself modulo reciprocal lattice vectors:

gk = k. (D10)
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Specifically, if R is unitary (R = R), then Eq. (D10) is satisfied if:

Rk = Rk =k, (D11)
and if R is antiunitary (R = R x T, then Eq. (D10) is satisfied if:

Rk = —Rk = k. (D12)

Gy is defined as the little group''! of k. Because Bravais lattice translations {E|tep,c} leave k points invariant
[Egs. (D8)], then Gk necessarily contains the group of lattice translations G [Eq. (B1)] at any point k; hence, Gy is
isomorphic to an SSG. We may also define a little co-group Gy, which is given by the (Shubnikov) point group of Gy.
Because translation operations v leave k points invariant [Eq. (D8)], then symmetries with and without translations
[e.g. twofold screw symmetry {C3.|003} and twofold rotation symmetry {C2.|000}, respectively] have the same
action on k points. However, as we will shortly discuss in Appendix D 2, the momentum-space [small] (co)reps of Gy,
conversely, can differ depending on whether Gy contains symmetries with or without fractional lattice translations v
[e.g. in nonsymmorphic and symmorphic symmetry groups, respectively]!.

In general, given an SSG G and little group Gy C G, if G # G, then there exists a set of symmetry elements in
the subset:

g € G\ Gy, (D13)
for which:
gk Z k. (D14)

Egs. (D13) and (D14) define a set of m k points {k,} in the first BZ consisting of k and all k’ that are dependent
on each other and on k [defined in Eq. (D9)], where the index ~ of ky runs from 1 to m. The set of points {k,} is
known as the momentum star of k in G, for which m indicates the number of inequivalent k points in the star. m can
alternatively be defined as the number of k points in the orbit of k, in analogy to the discussion of Wyckoff positions
and symmetry sites in Appendix C2. In this work, to distinguish orbits in position space from symmetry-related k

points in momentum space, we will refer to m as the number of arms in the star of k, following the convention of
Refs. 11,135. From Egs. (D13) and (D14), it follows that, for a point k' = gk,

Gy = §Gxg ™, (D15)

such that Gy is isomorphic (and in fact conjugate) to Gx. Continuing to follow the definitions for position-space
quantities established in Appendix C 2, we define two momentum stars respectively indexed by arms at k and k’ to
be connected if the coordinates of any of the arms in the star of k [e.g. the coordinate v in the LD star with two
arms at (0,v,0) and (0, —v,0) in SSG 3.2 P21’| can be adjusted to coincide with the coordinates of any of the arms
in the star of k’ [e.g. the T point (0,0,0) in SSG 3.2 P21’, which is the only arm in its star], or vice versa. From
this, we then further define a mazimal momentum star as a momentum star indexed by an arm at k (also known as
a k vector of maximal symmetry®:57:60:85.86,141) for which all connected momentum stars indexed by arms at k’ have
little groups Gy that are proper subgroups of Gy:

Gy C Gk, (D16)

for all k’ connected to k. We emphasize that a maximal momentum star may still have arms that lie along high-
symmetry lines or planes, rather than high-symmetry k points; for example, there are maximal momentum stars
with arms lying along lines and planes in SSGs that are respectively isomorphic to magnetic rod!!12:5%:128,129 a4
wallpaper!®03:131 oroups modulo translations [see the text following Eq. (B2) and the text surrounding Eq. (C1)].
Because Egs. (D13), (D14), (D15), and (D16) are closely related to the definitions for real-space Wyckoff positions
(Appendix C2), then the momentum stars are sometimes also known as the “momentum-space Wyckoff positions” of
G (see Refs. 135,142 and the KVEC tool on the BCS for more information).

Prior to the completion of this work, the momentum stars and little (co)groups of the Type-I MSGs were made
available on the BCS through the KVEC tool'?®. However, the earlier tool - KVEC — only incorporated the action of
unitary crystal symmetries. In this work, we introduce a new tool — MKVEC — which additionally incorporates the
action of the antiunitary symmetries present in Type-II, III, and IV SSGs (Appendix B). As an example, consider
the lowest-symmetry momentum stars (general momentum-space Wyckoff positions'®®) in Type-I MSG 3.1 P2 and
Type-II SSG 3.2 P21’ [Fig. 12]. MSG 3.1 P2 is generated by {C5,|0} and 3D lattice translations, whereas SSG 3.2
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P21’ is generated by {C5,|0}, {70}, and 3D lattice translations. In MSG 3.1 P2, the lowest-symmetry star sits at
generic momenta in the BZ interior, and has two arms that lie at k and Cayk [Eq. (D8)]. Conversely, in SSG 3.2
P21’, the lowest-symmetry star (GP in Fig. 12) has four arms, which lie at k, Cy,k, Tk, and Cs, Tk.

In Fig. 13, we also show the output of MKVEC for the more complicated example of Type-III MSG 75.3 P4’. To
explain the output of MKVEC in Fig. 13, we must first define additional terminology. First, in many cases, there
exist multiple symmetry groups that are isomorphic to the same SSG. For example, the MSG generated by:

{Cyyl0}, {E|100}, {£]010}, {£]001}, (D17)
is isomorphic to the symmetry group generated by:
{Cs.|0}, {E|100}, {FE|010}, {E|001}. (D18)

Furthermore, the symmetry groups generated by the elements in Eqgs. (D17) and (D18) are both isomorphic to Type-I
MSG 3.1 P2. In BCS applications, unless otherwise specified, all of the properties associated to a symmetry group are

List of k-vector types of the Magnetic Space Group P21' (No. 3.2)

Unitary subroup: P2 (No. 3) in its standard setting.

k-vector|coordinates of the|magnetic little k-vector type el A unitary little
type [vectors of the star| co-group [of the unitary subgroup|. vectors B U S co-group
in the unitary subgroup
GM |(0,0,0) 21 GM (0,0,0) 2
A [1/2,0,1/2) 21 A (1/2,0,1/2) 2
B [(0,0,1/2) 21 B (0,0,1/2) 2
C |[(1/2,1/2,0) 21 C (1/2,1/2,0) 2
D {(0,1/2,1/2) 21 D (0,1/2,1/2) 2
E [(1/2,1/2,1/2) 21 E (1/2,1/2,1/2) 2
Y [(1/2,0,0) 21 Y (1/2,0,0) 2
Z |(0,1/2,0) 21' z (0,1/2,0) 2
(0,v,0) LD (0,v,0)
LD (0,-v,0) 2 LE (0,-v,0) 2
U (1/2,v,1/2) 2 U (1/2,v,1/2) 2
(-1/2,-v,-1/2) UA (-1/2,-v,-1/2)
v [0v172) 5 Vv (0,v,1/2) 5
(0,-v,-1/2) VA (0,-v,-1/2)
(1/2,v,0) w (1/2,v,0)
w (-1/2,-v,0) 2 WA (-1/2,-v,0) 2
F (u,0,w),(-u,0,-w) 2' F (u,0,w),(-u,0,-w) 1
G (u,1/2,w),(-u,1/2,-w) 2' G (u,1/2,w),(-u,1/2,-w) 1
GP (u,v,w),(-u,v,-w) 1 GP (u,v,w),(-u,v,-w) 1
(-u,-v,-w),(u,-v,w) GQ (-u,-v,-w),(u,-v,w)

FIG. 12: The output of the MKVEC tool on the BCS for Type-II SSG 3.2 P21’. MKVEC, which we introduce in this work,
outputs the momentum stars of all 1,651 SSGs, representing an extension of the earlier KVEC tool, which was only capable of
generating the momentum stars of the 230 Type-I (unitary) MSGs. From left to right, the columns in the output of MKVEC
list the name (“k-vector type”) of each momentum star indexed by a point k in the first BZ of the specified SSG G, the
coordinates of the arms of the star containing k in the standard setting (conventional cell), the little co-group G, the name
of the vectors in the star of k in the unitary subgroup H of G (Appendix B), the coordinates of the arms of the star(s) in H
that combine to form the star of k in G, and the Type-I (unitary) magnetic little co-group Hyx of k in H. For the labels and
coordinates of the arms of each star, we have employed the convention of Stokes, Campbell, and Cordes'3® to be consistent
with the ISOTROPY Software Suite, which was developed by Stokes, Hatch, and Campbell. In the example of SSG 3.2 P21’
shown in this figure, the unitary subgroup H of G is isomorphic to Type-I MSG 3.1 P2. In H = P2, there are more momentum
stars (right-most three columns) than in G = P21’ (left-most three columns), due to the absence of {70} symmetry in H. For
example, in H — which is generated by {C2,|0} and lattice translation symmetry, LD (0,v,0) and LE (0, —v,0) are distinct,
multiplicity-1 momentum stars; however, in G, LD and LE merge into a single multiplicity-2 momentum star (also named LD)
[(07 v, 0)7 (Oa -, 0)]
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generated in a standard setting in which the choice of rotation axes and mirror planes is fixed throughout the BCS.
For each symmetry group on the BCS, the standard setting is chosen to be the setting of the symmetry group in the
International Tables for Crystallography (Refs. 128,129). For example, unless otherwise specified, the properties of
Type-1 MSG 3.1 P2 are provided on the BCS in the (standard) setting in which MSG 3.1 P2 is generated by {C5,|0}
and 3D lattice translations [Eq. (D17)]. In the nomenclature of this work and the BCS, the symmetry group generated
by {C5.]0} and lattice translation [Eq. (D18)] is termed a non-standard setting of MSG 3.1 P2. Next, given an SSG
G, we define the Bravais class of G to be the highest-symmetry, symmorphic!!, Type-II SSG with the same gray
(nonmagnetic) Bravais lattice as G (see Appendix B). As discussed in Fig. 13, MKVEC compares the momentum
stars of G to the momentum stars of the Bravais class of G, and, when there is a discrepancy, outputs an additional
table [the lower table in Fig. 13] indicating the specific parameters for which the momentum stars in G coincide with
the momentum stars in the Bravais class of G.

Having established definitions for standard and non-standard SSG settings and Bravais classes [Eq. (D18) and the
surrounding text], we will now analyze the output of MKVEC for Type-III MSG 75.3 P4’ in Fig. 13. G = P4’ is
generated by:

{Cy4. x T|0}, {E|100}, {E|001}, (D19)

such that the unitary subgroup H of G is generated by {C5.|0} and 3D lattice translations, and is therefore isomorphic
to Type-I MSG 3.1 in a non-standard (z-oriented) setting [Eq. (D18)]. Unlike in the previous example in Fig. 12,
there are two complications that we must consider in generating the momentum stars of the Type-IIT MSG G = P4’
from the momentum stars of a unitary (Type-I) MSG, whose momentum stars were previously computed for the
earlier BCS tool KVECS162135  First, in the standard setting, MSG 3.1 P2 is generated by {Cs,|0} and 3D lattice
translations [Eq. (D17)], as opposed to the unitary subgroup H of G = P4’, which is isomorphic to MSG 3.1 P2 in
a non-standard setting [see the text following Eq. (D19)]. To begin to generate the momentum stars in G, we first
employ a transformation matrix P to convert the k points in the standard (y-oriented) setting of MSG 3.1 P2 into
the non-standard (z-oriented) basis of H:

Ky = Pkps, (D20)

where P is the 3 x 3 matrix in the left three columns of the gray box at the top of Fig. 13. Next, we account for
the difference in Bravais lattice between G and H. Specifically, G = P4’ has a primitive tetragonal Bravais lattice,
whereas H has a primitive monoclinic Bravais lattice. Because of this, high-symmetry k points (lines) that were
independent in H [e.g. (0,1/2,w) and (1/2,0, —w) in the upper table in Fig. 13] become merged by the symmetry
{C4, x T|0} € G into the same star in G [e.g. W in the left-most column of the upper table in Fig. 13].

The need for a transformation matrix P [Eq. (D20) and Fig. 13] and the difference in Bravais lattice lead to
a potential ambiguity in the momentum-star labeling, namely whether we should employ the labels of an MSG
(here 75.3 P4’) or those of the unitary subgroup [here 3.1 P2 in the non-standard (z-oriented) setting, see the text
surrounding Eq. (D17)]. We note that this ambiguity does not arise in all MSGs, or at all k points — a point k in
an MSG G only carries a labeling ambiguity if the k point has a different label in the Bravais lattice of G than in
the Bravais lattice of the unitary subgroup H of G. In the new tools on the BCS created for this work, we resolve a
k-point labeling ambiguity by continuing to label the k point using the momentum stars of G, while labeling the little
group (small) coreps at k (which we will shortly introduce in Appendix D 2) with both the momentum star labels in
G and with the momentum star labels of the unitary (and possibly rotated) subgroup H (see Fig. 14 for an example
of magnetic small corep labeling on the BCS).
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List of k-vector types of the Magnetic Space Group P4' (No. 75.3)

Unitary subroup: P2 (No. 3). Transformation matrix to the standard setting:

—
oo
H oo
ol o)
jooNo)
e

k-vector|coordinates of thejmagnetic little| k-vgctor type s:g::::agfe tshgfst;?_ unitary little
type |vectors of the star| co-group [of the unitary subgroup in the unitary subgroup| co-group
A |@212,12) 4 E (1/2,-1/2,1/2) 2
GM [(0,0,0) 4 GM (0,0,0) 2
LD [©0,0w) 2 LD (0,-w,0) 2
M [(1/2,1/2,0) 4 A (1/2,0,1/2) 2
vV |@2,12,w) 2 U (1/2,-w,1/2) 2
Z |0,012) 4 z (0,-1/2,0) 2
cp (u,v,w),(-u,-v,w) 1 GP (u,-w,v),(-u,-w,-v) 1
(-v,u,w),(V,-u,w) GQ (-v,-w,u),(v,-w,-u)
w |©12w) v (0,-w,1/2) )
(1/2,0,-w) w (1/2,w,0)
(1/2,0,-w) w (1/2,w,0)
R (0,1/2,w) v (0,-w,1/2) 2

Other labels used in this Bravais class but that are particular
cases of vectors of the previous list in this specific magnetic group

coordinates of coordinates of coordinates of the specific values

more generalI

k-vector| 5 specific values k-vector type "
a representative the more general - . vectors of the star of the coordinates
type vector of the star| (B BTE k-vector type Siiieicooidinates oftieuniayisuboroup in the unitary subgroup|in the unitary subgroup
R [(0,1/2,-1/2) w (0,1/2,w) w--1/2 D (0,1/2,1/2)
X {(0,1/2,0) w (0,1/2,w) w-0 B (0,0,1/2)
RA  [(1/2,0,1/2) WA (1/2,0,-w) w--1/2 C (1/2,-1/2,0)
XA  [(1/2,0,0) WA (1/2,0,-w) w-0 Y (1/2,0,0)
DT |(O,v,0) GP (u,v,w) u-0,w-0 F (u,0,w) u-0,w-v
DU [(v,0,0) GP (u,v,w) u-vv-0w-0 F (u,0,w) u-vw-0
S  |(uu,-1/2) GP (u,v,w) v-ouw--1/2 G (u,1/2,w) w-u
SA  |(u,-u,1/2) GP (u,v,w) v--uw-1/2 G (u,-1/2,w) w—-U
SM  |(u,u,0) GP (u,v,w) v-uw-0 F (u,0,w) w-u
SN |(u,-u,0) GP (u,v,w) v--uw-0 F (u,0,w) W—-U
T  |(u1/2,-1/2) GP (u,v,w) v-1/2,w—-1/2 G (u,1/2,w) w-1/2
TA |(1/2,-u,1/2) GP (u,v,w) u—1/2,v—-uw-1/2| G (u,-1/2,w) u-1/2,w--u
U |0,,-1/2) GP (u,v,w) u-0,w--1/2 G (u,1/2,w) u-0,w-v
UA |(v,0,1/2) GP (u,v,w) u-vy-0w-1/2 G (u,-1/2,w) u-vw-0
Y |(u,1/2,0) GP (u,v,w) v-1/2,w-0 F (u,0,w) w-1/2
YA |(1/2,-u,0) GP (u,v,w) u-1/2,v—--uw-0 F (u,0,w) u-1/2,w--u
B (0,v,w) GP (u,v,w) u-0 GP (u,v,w) u-0,v—-ww-v
BA |(v,0,-w) GP (u,v,w) u-vy-0,w--w GP (u,v,w) u-vyv-ww-0
C  |(uuw) GP (u,v,w) v-u GP (u,v,w) V—-W,W—U
CA |(u,-u,-w) GP (u,v,w) V= -U,W—-W GP (u,v,w) V—W,W—-U
D |(uv,0) GP (u,v,w) w-0 F (u,0,w) W—V
E |(uv1/2) GP (u,v,w) w-1/2 G (u,-1/2,w) W—V
5 (u,1/2,w) GP (u,v,w) v-1/2 GP (u,v,w) V- -w,w—1/2
FA [(1/2,-u,-w) GP (u,v,w) u-1/2,v--uw--w GP (u,v,w) u-1/2,v-ww--u

FIG. 13: The output of the MKVEC tool on the BCS for Type-III MSG 75.3 P4’. Unlike the previous example of SSG 3.2 P21’
in Fig. 12, G = P4’ and the unitary subgroup H of G have different Bravais lattices. Additionally, the unitary subgroup H is
generated by {C2.|0} and 3D lattice translation [Eq. (D18)], and is therefore isomorphic to Type-I 3.1 P2 in a non-standard (z-
oriented) setting that differs from the standard (y-oriented) setting used throughout the BCS [see Eq. (D17) for the definitions
of standard and non-standard settings]. In MKVEC, we account for the difference in the orientation of the twofold rotation
axis between H and the standard setting of MSG 3.1 P2 by using the 3 x 3 P matrix given by the left three columns of the gray
box [Eq. (D20)]. After using the P matrix to reorient the twofold rotation symmetry in MSG 3.1 P2 to align with the twofold
axis in H, we then determine which of the momentum stars (e.g. GP and GQ) in MSG 3.1 P2 (the three right-most columns
in the top table) merge into the same momentum star (e.g. GP) in MSG 75.3 P4’ (the three left-most columns in the top
table). MKVEC also refers to the Bravais classes, which are defined in the text following Eq. (D18). For SSGs G with fewer
momentum stars than in the Bravais class of G, MKVEC also outputs the bottom table, which lists additional k points that
represent specific parameters for the same momentum stars in the top table chosen to coincide with distinct momentum stars
in the Bravias class of G. For example, in some SSGs G — such as Type-III MSG 75.3 P4’ in this figure — two k points represent
different parameter choices for the same star [e.g. the X point at (0,1/2,0) and the R point at (0,1/2,—1/2) in the lower table
represent different parameter choices for the W star in the upper table], even though the two k points lie in distinct momentum
stars in the Bravais class of G [which, for the example of Type-III MSG 75.3 P4’, is the primitive tetragonal Type-II SSG
123.340 P4/mmm]1’]. To summarize, in Type-IIT MSG 75.3 P4’, the R and X points and W lines are all mutually connected
[defined in the text following Eq. (D15)], and therefore appear as a single entry (W) in the top table, but the R and X points
are not connected in the Bravais class of G (Type-II SSG 123.340 P4/mmm]l’), and therefore appear as distinct entries (R
and X) in the bottom table. Further details for obtaining the Bravais class of each SSG are provided in the documentation
for MKVEC on the BCS.
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2. Small and Full Coreps and the Corepresentations Tool

Having established the definitions of little (co)groups and momentum stars (Appendix D 1), we will now in this
section detail our tabulation of the small and full (co)reps of the MSGs. At each k point in a crystal, the representa-
tions of the little group Gy can be used to characterize electronic (Bloch) wavefunctions!!:?1:22:143 " syperconducting-
and magnetic-transition order parameters?6-5951:144 ‘magnons'4®, and Raman scattering tensors'#6. For the specific
purposes of MTQC, we cannot derive the magnetic elementary band (co)representations without knowledge of the
set of irreducible full [i.e. space group] (co)reps in each momentum star induced from the irreducible small (co)reps
in one arm of the star (see Appendix E). Therefore, before we can continue towards characterizing energy bands and
enumerating band (co)representations across the SSGs, we must tabulate all of the small (co)reps [defined below] of
each little group Gy of each k point in each of the 1,651 SSGs, which we must then use to generate the irreducible full
(co)reps in each momentum star of each SSG. Though a partial tabulation consisting of the magnetic small (co)reps
at high-symmetry BZ points and along high-symmetry BZ lines was performed by Miller and Love in Ref. 52, we have
in this work performed the first complete tabulation of the small (co)reps of Gy at all k points for all 1,651 single and
double SSGs.

To begin, because Gy is isomorphic to an SSG [text following Eq. (D10)], then Gy is an infinite group, and does
not have a finite set of irreducible (co)reps. Historically, several methods have been employed to extract a physically
meaningful finite set of (co)reps from Gyx. One option is to form a finite group from Gy. If k is an isolated high-
symmetry point, then we can form the group:

Gy = G/ T, (D21)

where Ty is the group of translations {E|t,} € Ty for which exp(—ik - t,) = 1, and where we recall that / is the set
quotient [Eq. (B8)], as opposed to the set difference \ [Eq. (B6)]. # Gy is known as “Herring’s little group” 1147, At
high-symmetry k points in Type-I MSGs or Type-II SSGs, it is shown in Ref. 11 that 7 Gy is either isomorphic to
an abstract finite point group, or to the direct product of an abstract finite point group and a 3D group of lattice
translations that is a subgroup of the lattice translations of Gx. Hence, a finite number of coreps can be generated
from # Gy by either encountering the case in which # Gy is already a finite group, or by taking ¥ Gy modulo the
remaining integer lattice translations. The (co)reps of the abstract point subgroups of Gy for all of the k points in
the single and double Type-I MSGs and Type-II SGs were exhaustively tabulated in Ref. 11. However, the abstract
point subgroups of Gy for all of the k points in the single and double Type-IIT and Type-IV MSGs have not been
calculated to date. Additionally, when generalizing to high-symmetry BZ lines and planes, we can no longer rely on
Eq. (D21), because G /T cannot simply be reduced to a finite group by modding out lattice translations for values
of k away from high-symmetry points; a more complicated procedure involving the central extension of the little
co-group Gy may instead be employed, as detailed in Chapter 5 of Ref. 11.

In this work, to avoid the complications involved with reducing Gk to a finite group, we will instead employ an
alternative approach in which a finite set of (co)reps can be generated for each Gy in each SSG, regardless of whether
k is a high-symmetry BZ point. To begin, because Gy is a space group, then Gy can be expressed as a left coset
decomposition with respect to the group of Bravais lattice translations G [Eq. (B1)]:

Gw=J9iGr =GrU |J ¢:Gr = Gr U{RiIvi}Gr U{Ra|v2}Gr + .., (D22)
i 9i¢Gr

where the index i in Eq. (D22) runs over a set of coset representatives g; = {]:21|v1} of Gy for which ¢;Gr # g;Gr for
9i,; € G, such that each coset g;Gr is unique. In Eq. (D22), we use the tilde symbol to emphasize that the symmetry
operation R; can be either unitary (R; = R;) or antiunitary (R; = R; x T). In the coset decomposition in Eq. (D22),
g; # {E|0} in the second equality, because {E|0} € Gr. To motivate the coset decomposition in Eq. (D22), we can
compare Gy to GxGr, where Gy is the little co-group [i.e. Gy is the SPG obtained by setting all of the v; — 0 in
Eq. (D22), see text following Eq. (D12)]. First, we define a symmorphic SSG!! to be an SSG G in which there exists
a choice of origin for which each symmetry g € G takes the form g = {R|t}, where {E|t} € G (using the same origin
for each symmetry g)'112%. This implies that Gk = GxGr at all k points. Hence, in symmorphic symmetry groups,
we could in principle obtain a finite set of (co)reps of Gy by restricting consideration to the (co)reps of G). However,
in an SSG that is not symmorphic (i.e. a nonsymmorphic SSG), there exist k points at which Gy # G Gr, providing
an obstacle towards generically using G to obtain finite sets of (co)reps of Gy. For example, at k = (0,7,0) in
nonsymmorphic Type-I MSG 4.7 P2, — which is generated by screw symmetry {ng\O%O} and the lattice translations
{E[100} and {E|001} — Gy # GxGr. We further note that, because all Type-IV SSGs necessarily contain elements
of the form t¢7 = {T|to} for which {E|to} ¢ G (i.e. to is a fractional lattice translation, see Appendix B4), then
all Type-IV SSGs are nonsymmorphic.
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Instead, we will show below that, unlike Gy, Eq. (D22) will allow us to construct a prescription for obtaining a
finite set of (co)reps at all k points in both symmorphic and nonsymmorphic SSGs. First, we recognize that, even
though Gy in Eq. (D22) is an infinite group, the number of unique cosets ¢;Gr of Gy is finite. This can be seen by
recognizing that F and the finite set {RZ} in Eq. (D22) comprise the finite little co-group Gy. Next, we recall that Gy
is isomorphic to an SSG, implying that, in principle, there exist infinitely many (co)reps of G. We therefore impose
an additional restriction to (co)reps o of G (not necessarily irreducible) for which lattice translations t, = {E|t,}
have the matrix representatives:

Ay (ty) =e %1 imoyp, (D23)

where 1, _(¢g|o}) is the X ({£]0})-dimensional identity matrix. Eq. (D23) implies that, given two symmetries g; € Gy
and t,g; € Gk in the same coset g;Gr, where t, = {E|t,} and t, € Gr, the matrix representatives A,(g;) and
A, (tng:) in o in Eq. (D23) — which is termed a small*!"0185136 (co)rep of Gy — are related by an overall (Bloch)
phase!!. Specifically:

A (tug) = e AL (gs), (D24)

such that A, (t,9;) and Ay (g;) are unitarily equivalent. Using Egs. (D22), (D23), and (D24), we can then extract a
finite set of irreducible small (co)reps from Gy by restricting focus to the indecomposable small (co)reps whose matrix
representatives are not related by an overall phase, or any other unitary transformation. Specifically, we first define
two (co)reps o and o’ of a little group G to be equivalent if there exists a unitary matrix N that relates the matrix
representatives A, (g) and A,/ (g):

Ay(g) = NAg(g9)NT, (D25)

for all g € Gk (in which the same matrix NN is used for all g € Gx). Then, using Eq. (D25), we define the irreducible
small (co)reps of Gk as the finite set of inequivalent (co)reps of Gy that cannot be expressed as direct sums of
each other and for which the matrix representatives of integer lattice translations take the form of Eq. (D23). We
further note that, at high-symmetry k points, the small (co)reps of Gy are equivalent to the (co)reps of # Gy [modulo
lattice translations, see the text following Eq. (D21)], and, along high-symmetry BZ lines, the small (co)reps of
G are equivalent to the (co)reps of the central extension of the little co-group Gy (see Chapter 5 in Ref. 11 for
a detailed discussion of the role of the central extension in the group theory of crystalline solids). For Type-I
and Type-II SSGs, the little group small (co)reps were previously tabulated by Bradley and Cracknell'!, and were
reconstructed in the REPRESENTATIONS DSG tool on the BCS for TQC?:°7:58:60,85,86 - Conversely, there have been
relatively few previous attempts to exhaustively tabulate the small coreps of the Type-III and Type-IV MSGs in an
accessible form, though a partial tabulation consisting of the magnetic small (co)reps at high-symmetry BZ points
and along high-symmetry BZ lines was performed by Miller and Love in Ref. 52 using little group decompositions
of the form of Eq. (D22). In this work, we have, for the first time, performed a complete tabulation of the small
(co)reps of the little group Gx at each k point in each of the 1,651 SSGs, which we have made accessible through
the Corepresentations tool on the BCS. Across all of the momentum stars of the 1,651 single and double SSGs, the
completion of Corepresentations required the computation of over 100,000 single- and double-valued small (co)reps.
In the text below, we will detail our methodology for tabulating the small (co)reps; in Appendices D2a and D 2b,
we will additionally provide representative examples of the output of Corepresentations.

To complete our derivation of the little group small (co)reps, we return to the coset decomposition in Eq. (D22).
First, we recognize that, if G is isomorphic to a Type-I MSG, then its small (co)reps can already be obtained from
either the tables in Ref. 11 or through the earlier REPRESENTATIONS DSG tool on the BCS?°7:58:60:85.86 and no
further calculations are required. Next, we consider the more complicated case in which Gy is isomorphic to a Type-II,
IIT, or IV SSG. In this case, Gk necessarily contains antiunitary elements, and therefore admits a decomposition of
the form:

Gx = Hy U gaHy, (D26)

where Hy is the maximal unitary (index-2, see Appendices B 2, B 3, and B 4) subgroup of Gy, and g4 is an antiunitary
symmetry operation of the form:

ga={RxT|v}, (D27)

where g4 is known as the “representative” antiunitary symmetry operation, R is a unitary point-group symmetry
element (proper or improper rotation or the identity E), and either v.= 0 or v is a fractional lattice translation.
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As discussed earlier in Appendices B2, B3, and B4 and summarized in Table III, Type-II, III, and IV SSGs are
distinguished by the form of R and v in Eq. (D27).

SSG Definitions in Terms of Egs. (D26) and (D27)
SSG Type ‘Condition on R‘ Condition on v

Type-II SSG R=F v=t,
Type-111 MSG R#FE No constraint
Type-IV MSG R=F v£t, vi=t,

TABLE III: Definitions of the SSGs with antiunitary symmetry operations (Types-II, III, and IV, respectively defined in
Appendices B2, B3, and B4). F is the identity operation, and t,, is a Bravais lattice vector, such that {E|t,} € Gr [Eq. (B1)].

Next, for each of the cosets on the right-hand side of Eq. (D22) [including G itself], we choose one element to place
into a set Gi. In this work, we specifically choose the identity element {E|0} from Gr, and then, from each coset ¢;Gr,
we choose one element g; = {Rl|vl} for which each component of the translation v; is chosen to satisty |v; -tq .| <1
(in reduced units where the lattice constants a,b, ¢ = 1), such that either v = 0 or v; is a specific fractional lattice
translation for which ¢g; = {Rz|vl} is an element of the little group Gx. We note that, if Gy is isomorphic to a
symmorphic SSG [defined in the text following Eq. (D22)], then Gy becomes a finite group [specifically, Gy = G if
Gy is symmorphic, where Gy is the little co-group, see the text following Eq. (D12)]. We note that, in this section, we
will always consider the more general case in which Gy is a set, and not necessarily a group. Using Hy — the maximal
unitary subset of G — we can re-express Eq. (D22) for a Type-II, III, or IV little group Gy as:

Gy = éka = UhiGT U UgAviGT = (I:[k @] gAfIk> Gr, (DQS)

where g4 is the representative antiunitary symmetry operation in Eq. (D27), and where the index 7 in Eq. (D28) runs
over all unique unitary (h;Gr) and antiunitary (ga;Gr) cosets of Gk. Bradley and Cracknell outline a convention'!
for choosing g4 (for example, in Type-II little groups, the most natural choice is g4 = {7]0}); however, below, we
will employ a more general procedure that is independent of the form of G4. Because all ga; € § 4 Hy in Eq. (D28) are
antiunitary, and therefore do not have well-defined characters in any small corep of Gy (where the character x,(h)
of a unitary symmetry h in the corep o is defined!! as Tr[A,(h)]), then it is straightforward to see that the set of
small coreps of G can only be formed from the small irreps of its unitary subgroup Hy, which may become paired
by the action of the elements g4 ; € gaHx. We note that it is not possible for the irreducible small coreps of G to be
composed of more than two irreps of Hy, because Hy is either isomorphic to Gx (i.e. Gy is isomorphic to a Type-I
MSG, see Appendix B 1), or Hy is an index-2 subgroup of Gy (i.e. Gy is isomorphic to a Type-II, III, or IV SSG, see
Appendices B2, B3, and B4, respectively).

Given a small irrep o of Hy with a matrix representative A, (h) for each symmetry h € Hy, we next define a matrix:

Ao(h) = [As(G5 hga)]" - (D29)

As shown by Bradley and Cracknell'!, the small coreps & of Gy can only take one of three forms, which we designate
as “types” (a), (b), and (c):

e Type (a): Ay(h) is equivalent to A, (h), such that A, (h) = NA,(h)NT for all h € Hy [Eq. (D25)]. Additionally,
for coreps of type (a), the antiunitary matrix representative A, (ga) = NK, where K is complex conjugation,
carries the property that A, (33) = [As(§4)]> = NN* = N? [which is well defined, because §% € HiGr in
Eq. (D28)]. For coreps of type (a), this implies that:

o

o, (D30)

such that the small corep & of Gy is equivalent to a small irrep o of Hyx. However, because Gy and Hy are
different symmetry groups, then the equivalence between ¢ and o is defined differently than the equivalence
that we previously defined between (co)reps of the same symmetry group [see the text surrounding Eq. (D25)].
Specifically, in this work, we define an irrep o of a Type-I (unitary) symmetry group Hy and a corep & of
an index-2 Type-II, III, or IV (antiunitary) supergroup Gx of Hy to be equivalent if there exists a unitary
matrix N that relates the matrix representatives A, (h) and Az (h) by Ay (h) = NAs(h)NT for all of the unitary
symmetries h € Hy, h € Gy (where the same matrix N is used for all h € Hy, h € Gg). In nonmagnetic
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(Type-IT) SSGs, type (a) coreps are most familiarly encountered at k points with real symmetry eigenvalues in
the absence of SOC. For example, at k = 0 in Type-II SSG 2.5 P11’ in the absence of SOC, which is generated
by {Z|0}, {T]0}, and 3D lattice translations, Gy has two, one-dimensional, single-valued small coreps that
each correspond to a singly degenerate, T-invariant Bloch state (per spin)!!. Type (a) coreps also exist in
nonmagnetic SSGs G in the presence of SOC at T-invariant k points with complex-conjugate pairs of spinful
symmetry eigenvalues that are already paired by unitary crystal symmetries in the unitary subgroup Hy of Gx.
For example, at k = 0 in Type-II SSG 25.57 Pmm?2 in the presence of SOC, which is generated by {m.|0},
{my|0}, {70}, and 3D lattice translations, G\ has one, two-dimensional small corep that is equivalent to a two-
dimensional small irrep o of Hy with complex-conjugate pairs of m, , eigenvalues due to the anticommutation
relation {Ag(my), Ay (my)} =0.

e Type (b): Ay (h) is equivalent to A, (h) for all h € Hy, where equivalence continues to be defined by Eq. (D25).
However, for coreps of type (b), A,(3%4) = NN* = —N?, implying through Kramers’ theorem that:

G=0®0=o0, (D31)

such that the small corep ¢ of Gk is formed from pairing two copies of the same small irrep o of Hx. We
further note that, because ga exchanges the two irreps o that comprise & in Eq. (D31), then the matrix
representative A, (ga) is itself undefined for a single irrep o. Instead for coreps & of type (b), the antiunitary
matrix representative Az(ga) is only well-defined in the larger space of the two irreps ¢ in &, in which the
unitary part of Az(ga) is block-off-diagonal. In nonmagnetic (Type-II) SSGs, type (b) coreps are most familiarly
encountered at k points with real symmetry eigenvalues in the presence of SOC. For example, at k = 0 in Type-
IT SSG 2.5 P11’ in the presence of SOC, which is generated by {Z|0}, {70}, and 3D lattice translations, Gy
has two, two-dimensional, double-valued small coreps that each correspond to a doubly-degenerate (Kramers)

pair of Bloch states with two parity (Z) eigenvalues of the same sign'!.

e Type (c): Ay(h) is not equivalent to A, (h) [i.e., there does not exist a matrix N that satisfies Eq. (D25) for

all of the symmetries h € Hy]. Instead, A, (h) is equivalent to A,/ (h), where o’ is a different small irrep of Hy
than o. This implies that:

Gg=0®0c =00, (D32)

such that the small corep & of Gk is formed from pairing two different small irreps o and ¢’ of Hy. Unlike in
coreps of type (a) or type (b), there is no constraint on the form of the matrix representative A, (g%) in coreps
of type (c). However, like previously in Eq. (D31), the unitary part of Az(ga) for a type (c¢) corep & [Eq. (D32)]
is off-diagonal in the block basis of ¢ and ¢/, and A,(ga) cannot by itself be defined for a single irrep o or
o’. In nonmagnetic (Type-II) SSGs, type (c) coreps are most familiarly encountered at k points with complex
symmetry characters in Hy, whether or not SOC is taken into consideration. For example, at k = 0 in Type-II
SSG 6.19 Pm1’ in the presence of SOC, which is generated by {m,|0}, {70}, and 3D lattice translations, G
has one, two-dimensional, double-valued small corep that corresponds to a doubly-degenerate (Kramers) pair of
Bloch states with a complex-conjugate (+i) pair of m, eigenvalues'’.

The above definitions seem to imply that the type of small corep ¢ induced in Gy can only be determined through
a careful selection of g4 in Eq. (D28), followed by an exhaustive search for equivalence matrices N that satisfy
Eq. (D25). However, as shown by Bradley and Cracknell'!, we can also diagnose the type of the induced corep simply
by calculating the modified Frobenius-Schur indicator!4¥1°0 [c.f. Eq. (7.3.48) in Ref. 11]:

Jo = ZXU(Q%J)? (D33)

where x,(h) is the character of the unitary symmetry operation h; = gi,m h; € Hy in the small irrep o of Hy [which
is equal to the trace of the matrix representative A, (h;)], and where the summation in Eq. (D33) runs over all of the
antiunitary coset representatives in Eq. (D28) (i.e., all of the distinct elements ga,; € GaHy). Because o in Eq. (D33)
is an irrep, J, can only assume one of three values!'!148:149:

\f[k|, o induces a small corep & of type (a) in Gk
Jy = —|1fIk|, o induces a small corep & of type (b) in Gy , (D34)
0, o induces a small corep & of type (c) in Gk
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where |H| is the number of elements [see the text following Eq. (B8)] in the set Hy [Eq. (D28)]. In a Type-II little
group, gaHx = {T|0}Hy, such that:

Jil = sgn [XJ(T2)] Z Xa(hzz)a (D35)

where the summation in Eq. (D35) runs over all of the unitary coset representatives in Eq. (D28) (i.e., all of the
elements h; € ﬁk) We note that Eq. (D35) is the well-established Herring test'!4” (i.e. the standard Frobenius-
Schur indicator!148:119) for determining the “reality” of o in a nonmagnetic (Type-II) symmetry group. However, for
little groups that are isomorphic to Type-III and Type-IV MSGs, there is no analogous simple relationship between the
reality of o and the type of &, and the more general formulas in Egs. (D33) and (D34) must be employed to determine
the type of ¢. To confirm our complete calculation of all of the small coreps & of the SSGs, we have performed both
of the independent analyses detailed in this section. Specifically, for all of the unitary subgroup small irreps ¢ and
induced small coreps ¢ of the little groups Gy at all k points in all 1,651 single and double SSGs, we have checked
for all possible equivalences between A, (h) and A, (h) [Eq. (D29) and the surrounding text], and we have confirmed
that the results agree with the values of J, [Egs. (D33) and (D34)]. We will shortly provide in Appendix D2b an
example of the explicit computation of J, [Eq. (D34)] in a magnetic little group.

In addition to calculating the small (co)reps of the little groups of the MSGs, we have also calculated, for the first
time, the full (co)reps of each momentum star of each MSG. Whereas each small (co)rep is a representation of the
little group Gy at a point k, each full (co)rep is a representation of the entire SSG G in the momentum star indexed
by k (Appendix D 1). To calculate the full (co)reps, we adapt the procedure employed in Refs. 62,85,136 to the most
general case of a magnetic or nonmagnetic SSG G. First, we recognize that, given a little group Gy C G, there may
exist a set of symmetries:

g € G\ Gk, (D36)
for which:
dgk =k £k, (D37)

such that k and k' lie in different arms of the same momentum star in G. Because the little group Gy is conjugate
to Gk [Eq. (D15)], then the (co)reps at k and k’ are not independent. Specifically, if there exists a Bloch eigenstate
at k labeled by a (co)rep oy of Gy, then there must also exist a Bloch eigenstate at k' labeled by a (co)rep Gy of
Gy . For &y and &y, the matrix representatives of each unitary symmetry h € Hy and ghg~!' e §P~Ik§’1 are related
by the symmetries § € G \ Gx. If § is unitary, then:

Asy (G5 ™") = Agy (B), (D38)
and if ¢ is antiunitary, then:

Do (3hG7") = (Ao ()" (D39)

Finally, we will use Eqgs. (D38) and (D39) for each of the symmetries § € G\ Gk, to compute the matrix represen-
tatives of the full (co)rep Xk of G in the star indexed by k. First, we define the full (co)rep of G in the star of k to
be:

m
Sk = P o (D40)
=1

in which k; is the i®® arm of the multiplicity-rn momentum star of k. In Eq. (D40), ¥y is an m x s, ({E|0})-
dimensional full (co)rep of G. The matrix representatives Ag (h) of the unitary SSG symmetries h € G are not
necessarily block-diagonal, because 6y and &y in Egs. (D38) and (D39) may not be equivalent [defined in Eq. (D25)
and the surrounding text]. Instead we may choose a basis in which Aik (h) is block-diagonal if the unitary symmetry
h € Hy, for all of the points k; in the momentum star indexed by k, and is otherwise not block-diagonal.

Rather than list the over 100,000 small and full (co)reps computed for this work in paper-format tables, we have
implemented the Corepresentations tool on the BCS, through which the irreducible small and full (co)reps at any k
point and in any momentum star in any SSG can respectively be accessed. Representative examples demonstrating
the output of Corepresentations are provided below in Appendices D2a and D 2b.
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a. Small and Full Coreps at the X and X A Points in Type-1II1 MSG 75.3 P4

In this section, we will determine the small coreps of the little group G x of the X point in Type-III MSG 75.3 P4/,
as well as the full coreps induced in the momentum star of X consisting of X (which in some works is alternatively
labeled as X’ or V) and X A (which in some works is alternatively labeled X). MSG 75.3 P4’ is generated by:

{C4. x T1000}, {E|100}, {E|001}, (DA1)
and the maximal unitary subgroup H of G = P4’ [see Eq. (B11) and the surrounding text] is generated by:
{C5.]000}, {E]100}, {E]010}, {E]001}. (D42)

Hence, H is isomorphic to Type-I MSG 3.1 P2 in a non-standard (z-oriented) setting [see the text surrounding
Eq. (D18) for the definitions of standard and non-standard symmetry-group settings|. Eqgs. (D41) and (D42) imply
the decomposition:

G = P4 = HU{Cy. x T|000}H, (D43)

in which H is isomorphic to the z-oriented (non-standard) setting of Type-I MSG 3.1 P2.
The X point in G = P4’ is one arm of a multiplicity-2 momentum star. In the convention of the BCS, the X point
lies at:

kx =27(0,1/2,0), (D44)
where the other arm of the momentum star indexed by kx lies at:
kXA = (042 X T)kX = 27T<1/2a 070) (D45)
For all of the unitary elements h € H:
th = kx. (D46)
However, for all of the antiunitary elements § € {Cy, x T|000}H in Eq. (D43):
gkx #kx. (D47)

Egs. (D46) and (D47) imply that the little group G'x is isomorphic to its maximal unitary subgroup Hx. In turn,
Hx at the point kx = (0,7,0) in H is isomorphic to Hg at the point kg = (0,0,7) in Type-I MSG 3.1 P2 in its
standard (y-oriented setting, see Fig. 13). Therefore, the small coreps of Gx are simply equivalent to the small irreps
of Hx, which are equivalent to the small irreps of Hg in MSG 3.1 P2, where representation equivalence is defined in
the text surrounding Eq. (D25).

In Figs. 14 and 15, we show the output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4/,
which has been split into two figures in order to preserve the legibility of the output text. First, in Fig. 14, we show
the matrix representatives Az, (h) of the symmetries h € Hx [Eq. (D22)] in each of the small coreps 6x of Hy.
Then, in Fig. 15, we show the matrix representatives Ag (g) of the symmetries g € G in each of the full coreps X x

of G in the star indexed by kx [{kx,kxa}]. Specifically, as shown in Eq. (D45), kx and kx4 are related by the
antiunitary symmetry {Cy, x 7|000}, for which:

{C4z x T)000}{C5.]000}{(Cy> x T)~1|000} = {C2.|000}. (D48)
Egs. (D39) and (D48) imply that:
Asxa(h) = [Asy (h)]" (D49)
for each unitary symmetry h € Hy [see the text surrounding Eq. (D28)], which is given by:

Hyx = {{E|000}, {C5.|000}, {£]000}, {ECQZ|000}}. (D50)

In Eq. (D50), E = C}, is the symmetry operation of 360° rotation about an arbitrary axis n, which distinguishes
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single-valued (spinless) and double-valued (spinful) (co)reps. Throughout the BCS, E is also sometimes denoted with
the Seitz symbol 91, as it is in Figs. 14 and 15. ~

Egs. (D49) and (D50) imply that the full coreps X x consist of pairs of single-valued coreps at kx and kx 4 with the
same real (spinless) Cy, eigenvalues [labeled *(X)B;Y; and *(X)B.Y> in Fig. 15], and pairs of double-valued coreps
with opposite imaginary (spinful) Cy, eigenvalues [labeled *(X)B3Y; and *(X)B,Y3 in Fig. 15]. Additionally, because
the momentum star {kx,kx 4} is left invariant under all of the symmetries g € P4’, then the matrix representatives
Ag, (g) are well-defined for all of the symmetries g € P4’. This implies that Ag (g) is well defined for both the
unitary symmetries h € Gx, as well as the antiunitary symmetries g € P4’ \ H, where H is the maximal unitary
subgroup of G = P4’ [Eq. (D43)], and where H is isomorphic to Type-I MSG 3.1 P2 in a non-standard (z-oriented)
setting [see the text surrounding Eq. (D18)].

For each full corep Sk of an SSG G in a momentum star indexed by an arm k, Corepresentations outputs the
matrix representative Ag ( ) for each of the unitary and antiunitary symmetries g € G. For example, unlike the
table in Fig. 14 for the small coreps of G'x, the table in Fig. 15 for the full coreps of G in the star of kx contains the
antiunitary matrix representatives Ag ({C4. x 71000}). For each full corep ¥x and antiunitary symmetry g4 € G,
the full (co)rep table in Corepresentations displays the unitary part of the matrix representative Ag (ga), which is
colored in red to indicate that Ay (ga) is antiunitary. In general, Ag (g) for each of the unitary and antiunitary
symmetries ¢ € G is block-diagonal if g € Gy, for all of the points k; in the momentum star indexed by k, and is
otherwise non-diagonal. For example, in Fig. 15, each Ag (g) is a 2 x 2 matrix, because each small corep dx in
Fig. 14 is one-dimensional. Additionally, in Fig. 15, each Ag (g) is diagonal for each symmetry g € G, g € Gx and
g € Gxa [e.g. {C2,|000}], but is non-diagonal for each symmetry g € G, g € Gx or g € Gxa [e.g. {Cy, x T|000}].
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Irreducible co-representations of the (Double) Magnetic Space Group P4' (No. 75.3)

and wave-vector X:(0,1/2,0)

Unitary (Double) Space Group: P2 (No. 3).
Transformation matrix to its standard setting:

=
ool
'

r OO
[l o]
[cNoNo)
R

Coordinates of the wave-vector in the standard setting of the unitary subgroup: B:(0,0,1/2)
Magnetic little co-group of the wave-vector: 2

Little co-group of the wave-vector in the unitary subgroup: 2

Irreducible co-representations of the magnetic little group.

The matrices of the representations (the whole representation and the representation of the little group) with dimension smaller than 5 are given explicitly.
When the dimension of the representation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Matrix presentation Seitz Symbol @ = =
‘ (In red color thepantiunitar i y' i i (X)Ba ‘ (X)B2 | (X)Bs ‘ (X)B4
'y operations) (In red color the antiunitary operations)

1 [¢] 0 t1 1 0
0 1 0 t2 ( ) {l|tl,t2,t3} eimz eintz eintz eimz
e 0 1 t3 6 1

-1 [¢] 0 [¢] ioe
0 -1 [c] 0 ( i ) {2001/0,0,0} 1 -1 -i i
e o 1 0 o 1
1 [¢] o] [¢] 10
e 1 0 0 ( ) {91/0,0,0 1 1 -1 -1
e 0 1 0 6 -1

-1 [¢] 0 [¢] i 0 ) .
e -1 @ 0 . {92001/0,0,0} 1 -1 i -i
e o 1 0 0 -i

FIG. 14: The output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4’, part 1. Even though MSG 75.3
P4’ contains antiunitary symmetries, the little group Gx at kx = (0,7,0) does not contain antiunitary symmetries, and is
therefore isomorphic to Hx, its maximal unitary subgroup [see the text following Eq. (D47)]. At the top of this figure, the 3 x 3
matrix in the left-most three columns of the gray box is the transformation matrix P that converts k points into the standard
setting of the unitary subgroup. Specifically, in G = P4’ [Eq. (D41)], the unitary subgroup H [Eq. (D42)] is isomorphic to
Type-I1 MSG 3.1 P2 in a non-standard (z-oriented) setting [see the text surrounding Eq. (D18)]; as discussed in Fig. 13 and in
the text surrounding Eq. (D20), the P matrix in the gray box allows quantities — such as momentum stars and small irreps —
previously computed on the BCS for Type-I MSGs (here MSG 3.1 P2) to be transformed and adapted to the computation of
the analogous quantities in SSGs with antiunitary symmetries (Type-11, III, and IV SSGs, see Appendices B2, B3, and B4,
respectively). The table in this figure shows the matrix representatives of the small coreps & of the little group Gx, for
which the coreps with (without) overbars are double- (single-) valued. Because Gx in P4’ is isomorphic to G in Type-I
MSG 3.1 P2, then the coreps in this figure are labeled (X)B;, and the table in this figure contains the same entries as the
table returned by Corepresentations for the B point in P2 [up to the orientation of the twofold axis, see the text following
Eq. (D47) and Fig. 13]. We note that throughout this work, a translation t is represented at a crystal momentum k by
exp(—tk - t) [i.e., in reduced units in which the lattice constants a, b, ¢ = 1], whereas on the BCS, t is represented at k by the
phase exp(2nik - t) [i.e. with the opposite sign as employed in this work, and in different reduced units in which t and k are
respectively expressed as multiples of the lattice and reciprocal lattice constants a, b, ¢ and 27 /(a, b, c)]. We additionally note
that the output of Corepresentations for the X point in Type-III MSG 75.3 P4’ contains an additional table, which is shown
in Fig. 15.
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The full corepresentation is induced from representations of the following two stars, related by the anti-unitary operations of the
magnetic group

X:(0,1/2,0)
XA:(1/2,0,0)

Coordinates of the vectors of the stars in the standard setting of the unitary subgroup:
B:(0,0,1/2)
Y:(1/2,0,0)

Irreducible full co-representations of the magnetic group.

Seitz

. . Symbol @
Matrix presentation * * EPV—kv3 PPV
(In red color thepan(\unitary operations) (In red color the (B1Y1 (X)B2Y2 (X)B3Y4 (X)B4Y3
antiunitary

operations)

1 0 eint2 0 eint2 0 eint2 0 eint2 0]
( 0 1 ) 213} ( 0 elntl ) ( 0 eintl ) ( 0 eintl ) ( 0 eintl )

[oNoNTY
or e
)
I
N

(20)  feeso) (53) C32) | CR2) | (Col)

ok
°or o
R oo

@er
or o
R oo

)
)
D1 ey Jeea | (30) (i) (r )
)

(i) e (ex) | Co2)  Cad) (o)
0 -i {%2001/0,0,0} 0 1 0 -1 0 -i o i

R
or e
r oo

((1-1)&/2 e) . (91) (0-1) (ei) (0-1)
0 (1+i)V2/2 {47001/0.0.0} 10 10 10 10

®oe
® e

( (1+1)V2/2 0) . ( 01) ( 0 1) ( 0-1) ( 0-1)
0 (1-i)v2/2 {47001/0.00} 10 10 ie i o0

=}
®

(7(171)&/2 O)u» (01) (0-1) (e-i) (ei)
0 -(1+i)V2/2 (%4 7001/0.0.0} 10 1 0 10 10

[y

oor
=}
=}

=}
[y
=}
=}

' - ' '
[y
S}
S}

(-(1+i)\/7/2 o)d,_ (01) (01) (91) (01)
0 -(1-i)Vv2/2 {%4700110,0.0} 10 10 i ie

FIG. 15: The output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4’ [Eq. (D44)], part 2. The table
shown in this figure contains the full (SSG) coreps of G = P4’ in the star containing kx [(0,,0), (7,0,0)], see Eqs. (D44)
and (D45)]. For one coset representative in each of the little group cosets in Eq. (D22), as well as the SSG symmetries G \ Gx
[Eq. (D36) and the surrounding text], Corepresentations outputs the matrix representatives in each of the irreducible full
(co)reps of G in the star indexed by a point k. In the table shown in this figure, the matrix representatives of antiunitary
symmetries g4 are labeled in red text, and the matrices listed for each full (co)rep Sk indicate the unitary part U of the
antiunitary matrix representative Ag(ga) = UK, where K is complex conjugation. Each of the full coreps for G = P4’ in
the star of kx is labeled with both (X) as well as B;Y}, to indicate that the small coreps in each arm kx and kx4 in G are
respectively equivalent to the small irreps at kg and ky in Type-I MSG 3.1 P2 [see Figs. 13 and 14 and the text surrounding
Egs. (D20) and (D18)]. For each g € G, each Ay (g) shown in this figure is a 2 x 2 matrix, because each small corep Gx in
Fig. 14 is one-dimensional. Additionally, each Ay (g) is diagonal for each symmetry g € Gx, g € Gxa [e.g. {C2:/000}], but
is non-diagonal for each symmetry g ¢ Gx or g ¢ Gxa [e.g. {C4s- x T|000}].
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b.  Small and Full Coreps at the S Point in Type-IV MSG 25.63 Pcmm2

In this section, we will determine the small coreps of the little group Gg of the S point in Type-IV MSG 25.63
Pemm2. We will also show that the small coreps of Gg coincide with the full coreps induced in G = Pomm?2 in the
momentum star of S, because the S point in Type-IV MSG 25.63 Pocmm2 is the only arm of a multiplicity-1 star
(see Appendix D1 and the MKVEC tool for more information). To begin, MSG 25.63 Pomm?2 is generated by:

ooo}, M, = {my

The S point in MSG 25.63 Pcmm?2 lies at:

M, = {mz

ooo}, 6— {T‘;;o} t, = {E]100}, t. = {E]001}. (D51)

kg = 27(1/2,1/2,0). (D52)

Unlike in the previous example in Appendix D 2a, all of the symmetries in MSG 25.63 Pcmm?2 return kg to itself
modulo reciprocal lattice vectors (gkg = kg for all ¢ € Pomm?2). Therefore, the little group Gg is isomorphic to
MSG 25.63 Pomm?2 itself, and the set Gg [defined in the text surrounding Eq. (D28)] is given by

Gs = ésGT = (HS U Qﬁs) Gr. (D53)

with g4 = 6. In Eq. (D53), the maximal unitary subset of Gy is given by Hg [in the specific case of the S point in
Type-IV MSG 25.63 Pomm2, Hg is in fact a finite group, see the text preceding Eq. (D28) for more information]:

Hs — {{Em {m.|0}, {m, |0}, {Co.]0}, {E|0}, {Em,|0}, {Em,0}, {Eczzm}, (D34)

where E is defined in the text following Eq. (D50). The symmetry operations in Hg in Eq. (D54) satisfy:

-1 _ -1 _ & oo—1 _ Pl _
Mgy My 2 My = Emy oy my yCoomy = ECoz, myyEm, = Cy, EC, = E,
2 2 2 3
mgmy = Cay, B2 =E, m; ,=C;5, =E. (D55)

Because all of the symmetries h € Hg are of the form {R|0}, then Eqs. (D54) and (D55) imply that the small
irreps of Hg are equivalent to the irreps of an abstract finite group [see Ref. 11 and the text following Eq. (D21)]
that is isomorphic!?:24:61:6287-94 t5 Type-I MPG 7.1.20 mm2, which has five irreps o. In Table IV, we reproduce
the matrix representatives A, (h) of the small irreps of Hg from the output of the Corepresentations tool for the S
point in Type-I MSG 25.57 Pmm2, which is the unitary subgroup of Type-IV MSG 25.63 Pomm?2 (adjusting for the
differences in convention between how translations are represented in this work and on the BCS, see Fig. 14). The
five irreps in Table IV subdivide into four single-valued, one-dimensional irreps (S1_4) that are distinguished by their
spinless m, , eigenvalues and one double-valued irrep (S5) that is two-dimensional because of the anticommutator

{AS's ({mz|0})7 A§5 ({my|0})} =0.

To determine the type of the small corep ¢ induced in Gg, we calculate the indicator J, = . x» (912‘\,1') [Egs. (D33)
and (D34)] for each irrep o in Table IV. Using Eq. (D53), we determine that there are eight g4 ; to consider:

gai € 0Hs, (D56)

where 0 is defined in Eq. (D51), and where Hg is defined in Eq. (D54) and in Table IV. First, we use Eqs. (D54)
and (D55) to determine that § = t,t,E0~1, E? = E, and that [E, h;] = 0 for all h; € Hg, where t, = {E|100} and
ty = {E|010}. We then determine that, in the case of Gg in Type-IV MSG 25.63 Pcmm2, x4(g7% ;) can be simplified
as:

Xo(gi},i) = Xa(ahiehi) = sgn [XU(E_‘)} Xo ([ahie_ltity]hi) ) (D57)
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where h; € Hg in Eq. (D54). Next, we use Eq. (D51) to obtain the relations:

0Co,0" 1,1,

0{C5-1000}60"{E[110} = {C. 110} E[110} = (totyCa:)taty = (Cazty 't, oty = Cas,

OM,0" 't t, = 0{m,|000}0"{E|110} = {m.|100}{E|110} = (t, M, )t.t, = (Myt,  )t.t, = t,M,,
OM, 0 "tot, = 0{my[000}6~ ' {E[110} = {m,|010}{ E[110} = (t, M, )tst, = (Myt, ")tst, = to M,
OEO~' = 6{F|000}0~ = {E]000} = E. (D58)

Egs. (D57) and (D58) imply that J, [Eq. (D33)] can be further simplified before specifying a value of o:

Z Xo(9%.5) = sen [xo(B)] Z Xo ([0hi0 " taty]hi)

3

Jo

= 2sgn [XU(E)] (XU(E) - XU(E))
2 [Xo(E) = xo(E)] - (D59)

Matrix Representatives A, (h) of the Small Irreps of Hg
at the S point [kg = (7, m,0)] in Type-I MSG 25.57 Pmm2,
the Unitary Subgroup of Type-IV MSG 25.63 Pcmm2

h s s | sy ] s ] Ss
) . ) ) —im(t1+t2) 0
{E|t1 +t2+t3} 6717r(t1+t2) 67171'(':1%*1:2) 67271'(1:1+t2) @*17r(1:1+t2) (6 0 em—(t1+t2)>

0 -1

Cs.|000 1 1 -1 ~1

{C2:000} <1 0 )

{m, 000} | 1 -1 1 ( 0 _Z>
-1 0

{m.|000} 1 1 1 -1 (Z 0)
0 ¢
10

{E]000} 1 1 1 1 (‘0 _1>

{EC,.000} 1 1 1 1 < 0 é)

~1

{Em, 000} 1 1 -1 1 (0 ’)
i 0

{Em,|000} 1 -1 1 ~1 (é 0,)
—1

TABLE IV: The matrix representatives A, (h) of the small irreps o of the little group Hg of the S point ks = (m,7,0)] in
Type-I MSG 25.57 Pmm?2, the unitary subgroup of Type-IV MSG 25.63 Pcmm2. Because MSG 25.57 Pmm2 is a Type-
I MSG (Appendix B 1), then Hg is isomorphic to its maximal unitary subset. The values of As(h) in this table have been
reproduced from the output of the Corepresentations tool, and adapted to the notation employed throughout this work in which
a translation t is represented at a crystal momentum k by exp(—ik - t) [i.e., in reduced units in which the lattice constants
a,b,c =1, see Fig. 14 for further details]. We note that in Corepresentations and in this table, the matrix representatives A, (h)
are shown for each symmetry h € Hi except for the element {E|000} with exp(—iks - t,) = 1 [see Egs. (D23) and (D24)];
instead the first element h in this table, and in the output of Corepresentations, is chosen to be {E|t1 + t2 + t3}, where
t1,2,3 are respectively integer-valued multiples of the lattice vectors ts,y,» (see Figs. 14 and 16). We make this substitution of
{E|t1+t2+t3} for {E]000} to provide users with information regarding the representations (phases) of translations at k (here
specifically at ks [Eq. (D52)]), which contribute towards determining the matrix representatives of all of the symmetries in Hy
(as opposed to just the symmetries in f[k), and towards determining the pairing of unitary subgroup small irreps into little
group small coreps [see the text surrounding Egs. (D58) and (D59), for example]. The overbar on o = S is used to indicate
that S5 is double-valued, whereas the irreps without overbars (S1—_4) are single-valued.
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Remarkably, we find that Eq. (D59) only depends on whether o is single- or double-valued:

JU:{ ~0, fora—.§’1,47 (D60)
7|Hs|, fOrO':S5

where |Hs| = 8 [Eq. (D54)]. Using Eq. (D34), we determine that the single-valued, one-dimensional irreps S;_4
induce paired, two-dimensional coreps of type (c) [Eq. (D32)], whereas the double-valued, two-dimensional irrep S
induces a paired, four-dimensional corep of type (b) [Eq. (D31)].

To complete the calculation of the small coreps of Gg in Type-IV MSG 25.63 Pcmm?2, we must determine which
of the single-valued irreps S1_4 become paired into coreps of type (c¢). This can be accomplished by computing the
matrix representative A, (h) = [Aa(gglth)]* [Eq. (D29)]. Choosing g4 = 6 and using Eq. (D58), we find that, for
the single-valued irreps 0 = S1_4:

AU(CQZ) = AU(CQZ) = AU’(C2Z)7 AU(Mw,y) = _Aa(Mw,y) = Ao’ (ML,y) (DGl)

Along with Eq. (D60), which implies that S5 induces a paired corep of type (b), Eq. (D61) implies that G's in Type-IV
MSG 25.63 Pcmm?2 has three small coreps:

G =515, S354, S555, (D62)

where S5, and S35, are single-valued, two-dimensional coreps and S5S5 is a double-valued, four-dimensional corep.
Below, we will shortly formulate a k - p Hamiltonian demonstrating that S5S5 corresponds to a 3D fourfold Dirac
fermion®*'5! that is enforced by spinful mirrors that anticommute with each other {Ag g (M,),Ag, 5. (M)} = 0,
and with the matrix representative of 0 {Ag_s. (M), Ag.5.(0)} = 0.

In Fig. 16, we show the output of the Corepresentations tool for the .S point in Type-IV MSG 25.63 Pcmm?2, which
agrees with the calculation performed in this section to obtain Eq. (D62). As previously discussed in Fig. 14 and in the
text surrounding Eq. (D45), the table in Fig. 16 contains the matrix representatives of the small coreps & [Eq. (D62)]
of the little group Gg in Type-IV MSG 25.63 Pcmm2. We note that, like in Fig. 15, the Corepresentations tool also
outputs a second table containing the matrix representatives of the full coreps in the momentum star indexed by kg
[see Appendix D1 and the text surrounding Egs. (D40) and (D52)]. However, because, kg in MSG 25.63 Pomm2
is the only arm of a multiplicty-1 momentum star (Appendix D1 and MKVEC), then the second table outputted
by Corepresentations is identical to the table shown in Fig. 16. Therefore, for concision, we have omitted the second
table outputted by Corepresentations.

We can gain some physical intuition for the small coreps & in Eq. (D62) by forming a & -p Hamiltonian characterized
by one of the &. Focusing on the double-valued, four-dimensional corep & = S5S5, which characterizes spinful electronic
states, we can re-express the symmetry representation of the generating elements of Gg in Table IV and Eq. (D62)
as acting on a four-band Hamiltonian H(q) = H(k — kg):

MzH(Qx7vaQz)Mgc_l = TZUIH(_QmvaQZ)TZUwa
MyH(Qxaqlp(Iz)qul = Tzo'yrH(Qm_anqz)Tzaya
9H(QmanQz)9_1 = Txa'y,H*<_Qwa _Qy7 _QZ)TxO'y> (D63)

where 7% and ¢7 are 2 x 2 Pauli matrices, and where we have employed a shorthand in which 70?7 = 7% ® o7,
' ® 0/ =07, and 7° ® 0¥ = 7'. We note that we have not included the generating translations of Gg in Eq. (D63),
because translations are represented as phases in momentum space, and therefore do not by themselves impose
constraints on #H(¢g, gy, ¢-). The symmetry representation in Eq. (D63) admits a Hamiltonian:

H(d) = [v120Y + v2,7°0%] gy + [V140° + v2y T 0Y]qy + [V1,T7 + V2,707, (D64)

that characterizes a linearly dispersing, fourfold condensed matter Dirac fermion with non-degenerate bands away
from q = 0. Specifically, in the ¢, = 0 plane, Eq. (D64) coincides with the Hamiltonian of the 2D filling-enforced!3%:152
fourfold magnetic Dirac fermion introduced in Ref. 63. Most recently, the methods employed in this section — which
we have adapted from Refs. 63,151,153—-158 — were used by the authors of Ref. 130 to construct a complete list of
high-symmetry-point multifold fermions in the MSGs. Where there is overlap, the results of Ref. 130 agree with the
output of the Corepresentations tool introduced in this work.
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Irreducible co-representations of the (Double) Magnetic Space Group Pcmm2 (No. 25.63)

and wave-vector S:(1/2,1/2,0)
Unitary (Double) Space Group: Pmm2 (No. 25) in its standard setting.
Coordinates of the wave-vector in the standard setting of the unitary subgroup: S:(1/2,1/2,0)
Magnetic little co-group of the wave-vector: mm21'

Little co-group of the wave-vector in the unitary subgroup: mm2

Irreducible co-representations of the magnetic little group.

The matrices of the repi (the whole rep ion and the repi of the little group) with dimension smaller than 5 are given explicitly.
When the dimension of the representation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Seitz Symbol
. . (2]
Matrix presentation ==
(in red color the antiunitary operations) (in red color the 15 SsS4 SsSs
antiunitary
ein(t1+t2) 0 0 0
1 [¢] ¢} t1 eim(t1+t2) ) ein(t1+t2) [} 0 ein(t1+t2) ) )
[c] 1 ¢} t2 {1]t1,t2,t3} ( ) ( : i
e 8 1 t3 ) e-im(t1+t2) ) e-im(t1+t2) ) 0 e-im(t1+t2) 0
[¢] ] 0 e-im(t1+t2)
o -1 0 o
16 @ o 10 10 10 0 o0
0 -1 o 0 {200110,0,04
o 8 1 ° 0 1 o -1 6 o 0 -1
e 0 1 o
e -i o o
1 8 @ o 10 10 ie 0 e
o -1 © [¢] {mo1010,0,0} .
o 8 1 ° 0 -1 0 1 e o 0 -i
o 0 -i o
| e 0 -1 o
s 1 o 55 111/2,1/2,0] o1 ) ( o1 ) e 0 e
o 8 1 o (Hv/2.172.04 10 10 10 0 0
e 1 0 o
| e o 0 1
T4 e ig 2 11/2.1/2.0 0 1) ( 0 -1) o 0 -1 ©
o o 1 5 {2001/11/2,1/2,0} 10 1 e 0 -1 0 o
1 06 0 o
| o 0 0 -i
o 2 o 1 12.4/2.0 e '1) ( o 1) 6 0 -i o0
o o 1 o (mo10l1/2,:1/2,0) 10 10 o i 0 o
i e o o

FIG. 16: The output of the Corepresentations tool for the S point in Type-IV MSG 25.63 Pcmm2. The table in this figure
shows the matrix representatives of the small coreps & of the little group Gs [ks = (m,7,0)], for which the coreps with
(without) overbars are double- (single-) valued. As discussed in Fig. 14, throughout this work, a translation t is represented at
a crystal momentum k by exp(—ik-t) [i.e., in reduced units in which the lattice constants a, b, ¢ = 1], whereas on the BCS, t is
represented at k by the phase exp(27ik - t) [i.e. with the opposite sign as employed in this work, and in different reduced units
in which t and k are respectively expressed as multiples of the lattice and reciprocal lattice constants a, b, ¢ and 27 /(a, b, c)].
In the table shown in this figure, the matrix representatives of antiunitary symmetries g4 are labeled in red text, and the
matrices listed for each small corep &5 indicate the unitary part U of the antiunitary matrix representative As¢(ga) = UK,
where K is complex conjugation. We note that the output of Corepresentations for the S point in Type-IV MSG 25.63 Pcmm?2
also includes an additional table containing the matrix representatives of the full coreps in the momentum star containing kg
(see Fig. 15). However, because, kg in MSG 25.63 Pcmm2 is the only arm of a multiplicty-1 momentum star (Appendix D 1
and MKVEC), then the second table outputted by Corepresentations is identical to the table shown in this figure; for concision
have therefore omitted the second table outputted by Corepresentations.
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3. Compatibility Relations in the MSGs and the MCOMPREL Tool

In this section, building upon the definition of the small coreps of the magnetic little groups established in Ap-
pendix D2, we will now discuss the concept of compatibility relations (defined in detail in the text below), which
relate the coreps at different k points throughout the BZ. To begin, at a given point k in the first BZ of an SSG,
the set of occupied Bloch eigenstates can be labeled by the small coreps of the little group Gi. As shown in previous
works?»23,24,57,58,60,85,86,90,96,97,137-140 " oiven knowledge of all of the coreps at k, the possible coreps present at a point
k’ that is connected to k [defined in the text following Eq. (D15)] can be inferred from the group-subgroup relations
between Gy and Gy/. In this section, we will review how the compatibility relations between the coreps at connected
k points throughout the BZ can be reformulated using the language of graph theory. Finally, we will conclude this
section by discussing how the graph-theory interpretation of the compatibility relations can be exploited to determine
if a given set of coreps at a small number of high-symmetry k vectors [specifically, the arms of the maximal momentum
stars, see the text surrounding Eq. (D16)] are incompatible with the presence of an energy (band) gap at all k points
in the BZ.

To begin, consider two connected points k and k’ for which the little group Gy is of higher symmetry than the little
group Gy, such that Gy C Gk. Next, consider a set of occupied Bloch eigenstates to be present at k. The Bloch
states at k can be labeled with a small, generically-reducible corep ¢k of Gk:

Sk = @a?&i,ky (D65)

where &; i is the i small (irreducible) corep of Gy (Appendix D 2). In Eq. (D65), a¥ is a non-negative integer!®®,
known as the multiplicity of &;x, that indicates the number of times that &; x appears in the decomposition of .
The multiplicities {aX} are known as the symmetry data for each k point, and the set {ic} over all of the arms k of
the maximal momentum stars in an SSG [defined in the text surrounding Eq. (D16)] is known as the symmetry data
vectorS. In Eq. (D65), each small corep &; x can be further subduced onto the lower-symmetry little group Gy of a

point k’ that is connected to k:
- kk’ ~
0ik \I, Gk/ = @mw 035k’ (DGG)
J

where 6\ is the jth small (irreducible) corep of Gy and ml»"»k/ is the multiplicity of ;x in 6; k | Gx. The values of

i,j
kK’ s . 37— ~ ~ . .
m; ;- are known as the compatibility relations®:86:137110 hetween &, 3 and 0k, and are required to be non-negative

integers, because they originate from group-subgroup subduction [Eq. (D66) and Ref. 159]. For future calculations,
it will be useful to re-express Egs. (D65) and (D66) as:

mek G = o, (D67)

in which & (Sk/) is an w x 1- (2 x 1-) dimensional column vector where w (z) is the number of small coreps of Gy
(Gy'). In the notation of Eq. (D67), &k and i/ contain symmetry data [i.e. the multiplicities a¥ in Eq. (D65) and the
corresponding multiplicities a¥’ at k'] indicating the number of Bloch wavefunctions that transform in the ith (50
small corep &; k (6 ) of Gk (Gx) in an energetically isolated group of Bloch states at k (k’). Hence, in Eq. (D67),
m*¥ is a z x w-dimensional matrix whose entries are the compatibility relations mi‘]k in Eq. (D66).

If Gk and Gy are Type-I little groups in a Type-I MSG (Appendix B 1), then the compatibility relations mi‘,’jk’ for
any irrep pair &; x and &, at any pair of connected points k and k’ can be obtained through the existing DCOM-
PREL program on the BCS (https://www.cryst.ehu.es/cgi-bin/cryst/programs/dcomprel.pl)%57:58,60,85,86,

However, if Gk or Gy is isomorphic to an SSG with antiunitary symmetries (Type-II, III, or IV, Appendices B2, B 3,

and B4, respectively), then we must perform several additional steps to determine mi‘]k Specifically, if Gy is
isomorphic to a Type-II, I1I, or IV SSG, then, for each small corep 7; kx of Gk, we first calculate the subduction:

Tix + He = @bggaz,k, (D68)
I

where Hy is the maximal unitary subgroup of Gy, ok is the I*" small irrep of Hy, and where each coefficient bifl =0,

1, or 2, depending on whether &, i is a type (a), (b), or (c) small corep [respectively defined in the text surrounding
Egs. (D30), (D31), and (D32)]. Specifically, if &; x is a type (a) [(b)] corep, then, for each value of 4, bkl =1 [bﬁl =2]
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for one value of [, and bif , = 0 for all of the other values of [ at fixed 4; conversely, if &; x is a type (c) corep, then b%‘,l =1
for two values of [, and bifl = 0 for all of the other values of [ at fixed ¢ (see Appendix D 2). This occurs because, if Gy
is isomorphic to a Type-IL, III, or IV SSG, then Hy is necessarily an index-2 subgroup of Gy (see Appendices B2, B 3,
and B4), and because Gx = Hyx U g4 Hy where g4 is an antiunitary symmetry g4 € Gx, ga ¢ Hx. Hence, as shown
in Appendix D 2, each of the small coreps &; x of G is either equivalent to a small irrep oy of Hyx such that b%‘,l =1
for only one value of | for each ¢ [type (a) corep, see Eq. (D30)], &; x is equivalent to the direct sum oy x & oy x such
that bi‘,l = 2 for only one value of [ for each ¢ [type (b) corep, see Eq. (D31)], or &, k is equivalent to the direct sum
011,k D 012k such that b, = 1 for only two values [ = (1,12 for each i [type (c) corep, see Eq. (D32)]. The values of bi‘,l
in Eq. (D68) can be obtained from the Corepresentations tool introduced in this work, which we previously detailed
in Appendix D 2. In the notation of Eq. (D67), Eq. (D68) can be re-expressed as:

V& = g, (D69)

in which ¢y is an  x 1-dimensional column vector whose I*" entry is the multiplicity of 01k in Sk | Hy, where z is the
number of small irreps of Hy, and where b¥ is a 2 x w-dimensional matrix whose entries are bkl in Eq. (D68). Next,
for each small irrep oy x of Hy, we further subduce onto Hy/, the maximal unitary subgroup of Gy/:
kK’
Ol k \L Hk/ = TLLS Os k', (D70)

S

where o 3 is the s* small irrep of Hy and n}f’skl is the multiplicity of o5 ks in oy x | Hw. As with mif’jk/ in Eq. (D66),
the values of ni"sk/ in Eq. (D70) are required to be non-negative integers, because they originate from group-subgroup
subduction'®®. Crucially, because Hy and Hy are both isomorphic to Type-I MSGs, then the compatibility relations

n?‘,;k/ for all possible connected points k and k’ in all 1,651 SSGs can be determined using the earlier DCOMPREL
tool, which is documented in Ref. 86. Following Eq. (D67), Eq. (D70) can be re-expressed as:

nk’kICk = Sk/, (D71)

in which g/ is a y x 1-dimensional column vector whose s' entry is the multiplicity of o1/ in G | Hyr, where y

k.k’

is the number of small irreps of Hys, and where n is an y x x-dimensional matrix whose entries are the unitary

subgroup compatibility relations nk;k/ in Eq. (D70). As a last step towards calculating the compatibility relations
k,k’

m;; in Eq. (D66), we calculate the subduction onto Hys for each small corep 6,k of Gi:

&j7k/ \l’ Hk/ = @ C;(,,sa's,k’a (D72)
where oy is the s small irrep of Hys, and where, as detailed in the text following Eq. (D68), each coefficient
c}‘,/s =0, 1, or 2, depending on whether &, is a type (a), (b), or (c) small corep [defined in the text surrounding

Egs. (D30), (D31), and (D32), respectively]. As previously with bifl in Eq. (D68), the values of cfs in Eq. (D72) can
also be obtained from the Corepresentations tool introduced in this work (Appendix D 2). Like Eq. (D68), Eq. (D72)
can be re-expressed in the form of Eq. (D69):

& =, (D73)

where & is a y X z-dimensional matrix whose entries are ckls in Eq. (D72). Finally, by combining

7,
Egs. (D67), (D69), (D71), and (D73), we determine that:

K mlok = plkpk, (D74)

To solve for m*¥’ in Eq. (D74), we need to obtain a left inverse for ¢¥' [i.e. a matrix (¢¥)~! for which (¢¥')~1cK =
1.], where (¢X)~! is guaranteed to exist (though not necessarily be unique), because of Frobenius reciprocity®3:159.
Conversely, because & in Eq. (D73) is generically non-square and left-invertible, then a right inverse for &' does
not generically also exist. Frobenius reciprocity specifically implies that we can obtain a left inverse for & through
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induction:

Os. k! T Gk/ = @ d?,/jé—j,k’v (D75)
J

where each coefficient dsj = 0 or 1, independent of whether &,  is a type (a), (b), or (c) small corep [defined in the
text surrounding Egs. (D30), (D31), and (D32), respectively]. Specifically, because Gy = Hyr U ga Hyr where g4 is
an antiunitary symmetry, then regardless of the type of the corep &; x/, dls‘:j =1 for one value of j, and dls‘:j =0 for all
other values of j at fixed s (see Appendix D 2). We next re-express Eq. (D75) in the form of an inverse of Eq. (D73):

() e = . (D76)

in which (¢%')~1 is the left inverse of ¢& and, crucially:

[(Ckl)l] - [ijHk] (D77)

57

where [Gy : Hy] is the index of the subgroup HX of G¥' [Eq. (B10)], which is present in Eq. (D77) because induction
(1), unlike subduction (}), does not preserve dimensionality (i.e., the character of the identity element E)35:159,
Therefore, independent of the SSG (little group) type of Gy, (ck/)_1 in Eq. (D76) is necessarily well-defined, and its
entries [Eq. (D77)] are non-negative, though they are not necessarily integers. Specifically, if G) is isomorphic to a
Type-II, III, or IV SSG (Appendices B 2, B 3, and B4, respectively), then Gy is necessarily an index-2 supergroup of
Hy, such that [Gy : Hy] = 2, implying that the elements [(cX')~'],; in Eq. (D77) are non-negative multiples of 1/2.
Nevertheless, we have verified that, for all connected little group pairs Gy C Gk in all 1,651 single and double SSGs,
the elements of m**  in the expression:

’ ’ -1 ’
mek = (ck> nkk pk (D78)

formed from Eqs. (D74), (D75), (D76), and (D77) are non-negative integers, as required by subduction [see the text
following Eq. (D66)]. Eq. (D78) implies that the multiplicities b%‘,l and cz‘; obtained from Corepresentations and

the unitary subgroup compatibility relations nﬁk/ obtained from DCOMPREL determine the compatibility relations
kk
i,j /
To simplify this procedure, we have implemented a new tool - MCOMPREL — through which the values of mi(]k can
be directly obtained without using additional programs on the BCS. Further specific details of the implementation
of MCOMPREL are available in the documentation provided on the BCS.

m¥ between any two small coreps 7; x and 7; at any two connected points k and k' in any of the 1,651 SSGs.

We will now briefly present an example demonstrating the derivation of the multiplicities and compatibility relations
at two connected k points for the double-valued small coreps of Type-III double MSG 83.45 P4’ /m, which is generated
by:

{Cy. x T|000}, {Z]000}, {E]100}, {E]001}. (D79)

In this example, we will specifically obtain the small corep compatibility relations [Eq. (D66)] for G = P4’ /m at the
connected points:

kr = (0,0,0)7 kLD = (070,’LU). (DSO)

First, using Corepresentations, we determine that the little group Gr is isomorphic to Type-1IT MSG 83.45 P4’/m,
and has two, two-dimensional, double-valued small coreps &1 and &2, which are distinguished by their {Z|0}
eigenvalues:

X&1,F({I|O}) = 27 X&z,r ({I|0}) =-2 (Dgl)

Next, continuing to employ Corepresentations, we focus on the maximal unitary subgroup Hr of Gr. Hr is isomor-
phic to Type-I MSG 10.42 P2/m, and has four, one-dimensional, double-valued small irreps o1_4, which are also
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distinguished by their {Z|0} and {C5.|0} = ({C4. x T]0})° eigenvalues:

Xffl,r({I|0}) = ]-7 XUQ,I‘ ({I|0}) = 17 XU3,F({I|O}) = _1’ XU4,F({I|O}) = _17
Xo1,r ({C2Z|0}) = —i, Xoa,r ({CQZ|O}) =1, Xﬂg‘r({OQZlo}) = —1, XU4‘1"({022|0}) =1

(D82)
We next subduce the small coreps &; 1 of Gr onto Hr [Eq. (D68)]:
cirdHr=01r® o2, 62r 4 Hr =03r ®oar, (D83)
which may be summarized by introducing the multiplicity matrix [Eq. (D69)]:
10
| 1Y (D84)
01
01
We then focus on the little group G p, which is isomorphic to Type-IITI MSG 75.3 P4/, and is generated by:
{Cy, x T]000}, {E|100}, {E]001}. (D85)

G rp has only one, two-dimensional double-valued small corep 1,7, p. The maximal unitary subgroup Hpr of Gpr is
isomorphic to Type-I MSG 3.1 P2, and has two, one-dimensional, double-valued small irreps o1 1,p and o2 1,p, which
are distinguished by their {C5,|0} eigenvalues:

XU1,LD({CQZ|0}) = _iu XUQ,LD({CQZlo}) =1 (DSG)
Hence, through subduction [Eq. (D72)], we obtain:
G1,.p = 01,0 D 021D, (D87)

which may be summarized through the multiplicity matrix [Eq. (D73)]:

kP = ( 1 > : (D88)

Next, we obtain a left inverse for ¢“? by establishing that [G1p : Hp] = 2 [see Eq. (B15) and the surrounding text],
and that:

o1,.p TGrp =02, .p 1 GLp = G1,LD- (D89)
Through Eq. (D77), this implies that:
- 1
(cFP) 125(1 1>. (D90)
I,LD

As a final step towards computing the corep compatibility relations m
subgroup compatibility relations [Eq. (D70)]:

, we use subduction to obtain the unitary

oirdHrp = o3rl Hrp = 01,LD,
oor{ Hrp = osr | Hpp = 021D (D91)

consistent with the output of the earlier DCOMPREL tool. Eq. (D91) may be summarized by the multiplicity matrix

[Eq. (D71)]:
TLF’LD: 1 0 1 O
0101/
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3 LDs 7 LDs o b LDs 7 LDs
LDs ::‘f: - LDs LDs :)i: LDs
g o et gt e e (X) g
- LD, LD, - — LDg LDg
LD, B - LD, LD, - LD,
LDS -—_—LDS Z6LD~5-~- LD5 ~ ES -_—LDS Z6LD~5-~- LD5 ~
g —® :;(: iiiiiii Ie g ® _ 9., [g
LD, LD, | ID, LD, ID, ID, | ID, LD,

FIG. 17: Compatibility relations and graphs for magnetic rod group (MRG) (p422) g, which is generated by {E|1}, {C4.|0},
and {C2,|0}, and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 89.87 P422 [see Refs. 11,
12,55,128,129 and the text following Eq. (B2)]. Using the MKVEC tool on the BCS for the k, = k, = 0 line in MSG 89.87
P422, we deduce that there are only three momentum stars (Appendix D 1) in MRG (p422)grg: T (k. = 0), Z (k. = w),
and LD (k. = +w). Next, using MCOMPREL, we obtain the compatibility relations for MRG (p422)rg [i.e., the values of

?’]k/ in Eq. (D66)], which, restricting to double-valued (spinful) coreps, are given by I's | Gr.p = Zs | Grp = LDs @ LD~
and I'y | GLp = Z7 | Gip = LDe @ LDg. (a) For a set of four spinful Bloch eigenstates at each k. point with a symmetry
data vector [see Refs. 6,82 and the text following Eq. (D65)] given by & = I ®T6 and ¢z = Zs @ Zs, a separated pair of
connected graphs can be formed from the coreps at I' and Z using the TQC graph-theory methodology detailed in Refs. 60,86.
The symmetry data in (a) is therefore compatible with an insulating (band) gap at a filling v = 4. (b) Conversely, for a set
of four spinful Bloch eigenstates at each k. point with a symmetry data vector given by ¢ = Ted®dTs and &z = Zg @ 27,
there does not exist a graph for the coreps at I' and Z that satisfies the compatibility relations. The symmetry data in (b) is
therefore incompatible with a band gap at a filling v = 4, implying that the Bloch eigenstates at I' and Z are connected to
other, unoccupied states (bands) not described by the symmetry data. In the nomenclature of Refs. 6,82, the symmetry data

in (b) consequently corresponds to an “enforced semimetal” (ES).

m

Lastly, we compute the small corep compatibility relations m!" P using Eq. (D78):

10
- 1
wiep ey oy 2Ly ) (1010 Oy
2 0101 01
01
in agreement with the subduction relations:
o1r 4 Grp =021 L GLp = 01,LD, (D92)

as well as the output of the MCOMPREL tool introduced in this work.

One of the key advances of TQC?°7:58,60,85,86 an( related works”!? was to recognize that, for each Type-I MSG and
Type-1I SSG, there existed a small number of maximal k vectors [Eq. (D16)] from which the connectivity of Bloch
eigenstates (i.e. energy bands) throughout the entire BZ could be inferred from the symmetry data [§x in Eq. (D65)].
Specifically, given a symmetry data vector {S}, the set of small coreps at each k point can be re-expressed as the
nodes of a weighted graph whose edges are required to be consistent with the compatibility relations [i.e., the values
of m;‘,’jkl in Eq. (D66)]. If such a graph cannot be constructed without violating the compatibility relations, then the
bands characterized by the symmetry data vector {{} are necessarily connected to other bands, implying that the
bulk is a form of topological semimetal [an “enforced semimetal” (ES) in the nomenclature of Ref. 6 (see Fig. 17)].
However, if a graph can be constructed, then it may further be separated into disconnected subgraphs. As we will
discuss in Appendix E, by collecting the symmetry data induced from (magnetic) atomic orbitals located at maximal
Wyckoff positions (Appendix C2) and using the compatibility relations in MCOMPREL to construct graphs (which
may be additionally separable into disconnected subgraphs), we obtain the EBRs of all 1,651 SSGs (specifically the
PEBRs of the Type-II SSGs, and the MEBRs of the Type-I, III, and IV MSGs)?23:24,57,58,60,85,86,90,96,97 * T, thig

work, we will not provide further specific details of the TQC graph theory implementation®?:3; we will instead simply
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FIG. 18: Compatibility relations and graphs for MRG (p21)ra, which is generated by a twofold screw operation (s2, =
{C>:]1/2}), and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 4.7 P2; [see Refs. 11,
12,55,128,129 and the text following Eq. (B2)]. Using the MKVEC tool on the BCS for the k; = k. = 0 line in MSG 4.7
P24, we deduce that there is only one, multiplicity-1 momentum star (Appendix D 1) in MRG (p21)re, which is labeled LD
and lies at kip = vZ. In an example of the representation monodromy discussed in this section, the matrix representatives of
the small irreps of Grp are 4m-periodic in v [Eq. (D96)]. Specializing to three values of v respectively given by v = 0 (T'"),
0 < v < 27 (A), and v = 21 (I'?), we observe that the compatibility relations [Eq. (D97)] imply that the small irreps A1 2
connect to different irreps at the I' point, depending on whether T' lies in an odd-numbered BZ (e.g. T'! in the first BZ) or
in an even-numbered BZ (e.g. I'*> in the second BZ). Crucially, the irrep labels (I'} ;) are the same at the I point in each
BZ, consistent with the restriction that physical observables in pristine crystals are 2w-periodic (i.e., any physical observable
in an infinite, periodic system must be the same at any two points k and k' that differ by a linear combination of reciprocal
lattice vectors K,,)H. Specifically restricting to spinless Bloch eigenstates, this implies that a pair of states (bands) with the
symmetry data vector &1 = I'f @ T's [see Refs. 6,82 and the text following Eq. (D65)], will be connected at an odd number
of k points in each BZ, where one of the crossing points in each BZ (i.e. the intersection of the dashed lines in this figure) is
movable, but unremovable!7s18:60:63,74,86,131,137,140,152,160

note that, for a given SSG, once the BCS tools introduced in this work have been used to obtain the momentum
stars [MKVEC, see Appendix D 1], small coreps [Corepresentations, see Appendix D 2], and compatibility relations
[MCOMPREL, see the text following Eq. (D66) in this section] then the previous graph theory construction from TQC
can be used without further modification. Concurrently with the preparation of this work, the MSG compatibility
relations in MCOMPREL were employed to perform a high-throughput analysis®? of band connectivity and topology
in the ~ 500 magnetic materials on the BCS with well-characterized MSGs”194.

As a final note, there are additional subtleties that come into play in determining the compatibility relations
[Eq. (D66)] and constructing connectivity graphs (Refs. 60,86 and Fig. 17) in non-primitive SSGs [defined as SSGs
whose gray Bravais lattices are not primitive'!], SSGs without orthogonal lattice vectors [e.g. hexagonal SSGs], and
nonsymmorphic SSGs [defined in the text following Eq. (D22)]. First, in non-primitive SSGs, and in SSGs whose
generating translations [Eq. (B1)] are not orthogonal, the construction of a graph (or failure to construct a graph)
may depend on the compatibility relations along two distinct paths between the same maximal k points. For example,
in Type-I MSG 209.48 F432, given symmetry data at the maximal k points T [kr = (0,0,0), Gr is isomorphic to
Type-I MSG 209.48 F432] and X [kx = (m,m,0), Gx is isomorphic to Type-I MSG 97.151 1422], the possibility
of constructing a graph depends on the compatibility relations along both of the lines DT [kpr = (0,v,0), Gpr is
isomorphic to Type-I MSG 79.25 4] and SM [kgnr = (u,u,0), Gsar is isomorphic to Type-I MSG 5.13 C2]. This
occurs because, for generic values of v and u, kpr and kg, are not related by any of the symmetries g € F432 —
if kpr and kgys were instead related by symmetries, then kpr and kgps would be arms of the same momentum
star, and the compatibility relations across the BZ would only depend on the compatibility relations along either DT
or SM. We note that, throughout the BCS, k points are labeled in some applications with Greek letters (e.g. I'),
whereas in other applications, the same k point is labeled with an English abbreviation (e.g. GM). Hence, in this
work, we will in general employ a mixed notation in which Greek letters and English abbreviations are consistently
used throughout each example, where specific labels are chosen to maximize consistency with previous works and
with the output of the BCS tools introduced in this work.
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As mentioned above, an additional subtlety occurs in nonsymmorphic SSGs. Specifically, as discussed in Refs. 17,
18,74,131,137,140,160, because of the monodromy of representations throughout the BZ, the compatibility relations in
a nonsymmorphic SSG can even differ at two k points that are related by a reciprocal lattice vector [K, in Eq. (D3)].
For example, consider Type-I magnetic rod group (MRG) (p21)ra [Fig. 18], which is generated by the twofold screw
Symimetry:

s2, = {Ca:[1/2}, (D93)

and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 4.7 P2; [see Refs. 11,12,
55,128,129 and the text following Eq. (B2)]. Using the MKVEC tool on the BCS for the k, = k, = 0 line in MSG
4.7 P2y, we deduce that there is only one, multiplicity-1 momentum star (Appendix D 1) in MRG (p21) g, which is
labeled LD and lies at k;,p = vZ. To see the effect of the representation monodromy on the compatibility relations, we
will calculate the values of mi—f’jk/ in Eq. (D66) at three specific k points along the rod axis corresponding to different
values of v in the same star (LD):

kri =0, ky = vz, kr2 = 27Z, (D94)
where T'''2 are related by a reciprocal lattice vector:
kF2 - kl'*l = 27Z. (D95)

For simplicity, in the current demonstration of the role of representation monodromy in the compatibility relations
of MRG (p21)rqg, we will restrict to the case of spinless Bloch eigenstates, which transform in single-valued small
coreps. Using the Corepresentations tool (Appendix D 2), we determine that, at generic points in the LD star (k = vZ),
there are two, one-dimensional small coreps LD o, for which the matrix representatives [and characters, see the text
surrounding Eq. (D28) for more information] of the twofold screw symmetry s, [Eq. (D93)] are given by:

ALp, (s2,) = XLD, (52,) = €"/%, ALp, (s2,) = XLD, (52,) = —€™/2. (D96)

Evaluated at the k points in Eq. (D94), the matrix representatives of twofold screw in Eq. (D96) become:
AF% (52,) =1, AF; (s2,) = —1, A, (s2,) = eiU/Qv Ap,(s2,) = _eiiv/gv AF% (s2,) = —1, AF% (52,) =1, (D97)

where we have employed a notation for the small irreps at the I''»2 points in which F; denotes the j*" small irrep of
the little group Gp: at the k point I'? (i.e., at the I' point in the i*" BZ). Though Gr:1 = G = Gr2, we can still
calculate compatibility relations of the form of Eq. (D66):

I1LGA=A, T3 Gr =My, T L Gp=No, T2 Gy = Ay (D98)

In Eq. (D98), we find that, because of the 4m-periodicity of the matrix representatives in Eq. (D96), the compatibility
relations at kpi,2 are different, despite kri,2 differing by a reciprocal lattice vector [Eq. (D95)]. This implies that,
as shown in Fig. 18, a pair of spinless Bloch states at ' with the symmetry data ¢qi = I't @ T'd [see Refs. 6,
82 and the text following Eq. (D65)] will connect with each other, specifically forming a pair of spinless bands
that cross at an odd number of k points in each BZ, where one of the crossing points in each BZ is movable, but
unremovable!7:18:60,63,74,86,131,137,140,152,160_

If additional symmetries are present in an SSG, such as {7000} in Type-II SSGs (Appendix B 2), then the effects
of representation monodromy on the compatibility relations may be redundant with the constraints imposed by
the additional symmetries. Specifically, in Type-II SSGs, 7 symmetry relates half of a high-symmetry line to its
time-reversal partner, providing further restrictions on corep connectivity that can be used in lieu of comparing the
compatibility relations at k points that differ by a reciprocal lattice vector (e.g. I'''2 in Fig. 18)%°. For example, adding
T symmetry to an ss,-symmetric rod [see the text surrounding Eq. (D93)] both doubles the band connectivity and
introduces pinned degeneracies at the high-symmetry points kr1 = 0 and kx: = 7z, obviating the need to consider
the compatibility relations at kr2. In the case of a rod with 7 and sg, screw symmetry, the pinned degeneracies
at high-symmetry points specifically occur at odd electronic fillings [e.g. v = 1, 3], and groups of bands connect in
“hourglass”-like patterns'” 1874131160 with odd numbers of moveable-but-unremovable twofold degeneracies in each
half of the BZ at fillings v = 2+4n, n € {Z1,0} [e.g. v = 2]. Consequently, there are only 4 Type-II single and double
SSGs in which monodromy constraints must be considered in addition to those imposed by the symmetries of the
SSG. In Table V, we list the single and double SSGs in which the monodromy of representations provides necessary
constraints on small corep (band) connectivity. The Type-I and Type-IT SSGs listed in Table V were previously
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calculated for TQC?°7:58,60,85.86 ' whereas the Type-IIT and Type-IV MSGs listed in Table V are a new result that we
have calculated for the present work. Surprisingly, in Table V, we find that there are only 4 Type-IV single and double
MSGs in which representation monodromy must be taken into account to determine corep connectivity, despite the
fact that all Type-IV MSGs are nonsymmorphic [see the text following Eq. (D22)]. This occurs because each Type-IV

SSGs in Which the Monodromy of Representations Provides
Necessary Constraints on Band Connectivity

Type Symbol Number |Symbol Number |Symbol Number |Symbol Number

Type-1 | P2, 47 Pe 724 |Ce 937 |C222, 20.31
Pme2, (S)  26.66 |Pec2 (S) 2778 |Pea2: 20.99 | Pnc2 30.111
Pmn24 31.123 | Pna2q 33.144 |Cmc2, 36.172 |Cec2 (S) 37.180
P4y 76.7 P4, 77.13 | P4s 78.19 |14 80.29
Pdyem 101.179 | Pdsnm  102.187 |Pdec (S)  103.195 |Pdne (S) 104203
P4ome 105.211 | P4sbc 106.219 |I41md 109.239 [I41cd 110.245
P3, 144.4 | P39 145.7  |P3;12 151.29 |P3,12 153.37
P3cl 158.57 |R3c 161.69 |P6, 169.113 | P65 170.117
P6, 171.121 | P64 172.125 | P63 173.129 | P6cc (S) 184.191
P63cm 185.197 | P63mc 186.203

Type-II |P3,1’ 144.5 P3,1 145.8 P3;,1217 151.30 |P35121’ 153.38

Type-1IT| P2, /m/ (S) 11.53 |P2'/c (S) 13.67 |P2}/c 14.77  |P2,/c¢ 14.78
C2/c(S) 1587 |P222, 179  |P2,2,2" 1819 |P2,22,  19.27
C2'2'2, 20.33  |Pm/a2’ 28.89 |Pca2} 29.101 |Pb a2’ 32.137
Pn’a2 33.146 |[Cm'c'2, 36.176 |Am/a2’ 40.205 |Ab' a2’ 41.213
Pcem/ (S)  49.268 |Pblan (S) 50.279 |Pm/ma (S) 51.291 |Pn’na (S) 52.307
Pnn’a 52.308 |Pm/'na 53.323 | Pmnad’ 53.325 |Pcca 54.339
Peca’ (S) 54.341 |Pblam (S) 55.355 |Pdcen 56.367 |Pccn’ (S)  56.368
Pbd'm (S)  57.380 |Pbem’ 57.381 |Pn'nm 58.395 | Pm/mn (S) 59.407
Pb'en 60.419 |Pbc'n 60.420 | Pbcn’ 60.421 |Pb'ca 61.435
Pn'ma (S) 62.443 |Pnm’a (S) 62.444 |Pnmad 62.445 |Cmem’ (S) 63.461
Cm/d'm' (S) 63.465 |Cmead 64.473 |Cm/c’a’ (D) 64.477 |[Ceem! (S) 66.494
Cecd (S) 68.514 |P4) 76.9 P4} 78.21 P4y /m’ 84.54
P4y /n/ 86.70 14, /d 88.84 P4,2'2 91.106 |P4}2'2 91.107
P4,272 92.114 | P452'2 03.122 | P45272 94.130 |P432'2’ 95.138
P442'2 95.139 |P432]2' 96.146 [14,2'2' 98.160 |P4'2'c (S) 112.261
PI2c (S)  114.277 |PAc2' (S) 116.204 |P4/m/cc (S) 124.353 | P4/n/nc (S) 126.377
P4/m/nc (S) 128.401 | P4/n/cc (S) 130.425 |Pds/m'me 131437 |Pdy/m/em  132.449
P45 /n'be 133.461 | P4y /n'nm  134.473 |P4y/m/bc  135.485 | P4y /m/nm  136.497
P4y /n'me  137.509 | P4y /n'cm  138.521 |14, /a’md 141.553 |I41/d’ed 142.563
P3,12 151.31 |P3:2'1 152.35 |P3512 153.39 |P352'1 154.43
P3cl (S) 16593 |R¥c(S)  167.105 |P6s/m’'  176.146 |P6,2'2"  178.159
P652'2' 179.165 | P652'2’ 180.171 | P642'2’ 181.177 | P632'2’ 182.183
P6'c2’ 188.218 | P6'2'c 190.229 |P6/m/cc (S) 192.245 | P63/m’cm  193.255
P63/m'mec  194.265

Type-1V|P.3; 144.6 | P.32 1459  |P.3;12 151.32 |P.3212 153.40

TABLE V: List of SSGs for which the monodromy of representations imposes additional restrictions on small corep (band)
connectivity beyond the constraints imposed by the symmetries of the SSG. The letters (S) and (D) after the symbol of an
SSG respectively indicate that the representation monodromy only provides necessary constraints on the connectivity of single-
and double-valued coreps of that SSG. In all of the other SSGs listed in this table, the representation monodromy provides
necessary constraints on the connectivity of both single- and double-valued small coreps.
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MSG [Eq. (B19)] necessarily contains a symmetry of the form:
0 ={Tlto}, (D99)
which acts the same as T symmetry ({7]000}) on points in k space [Eq. (D8)]:
0k =Tk = k. (D100)

Conversely, in Type-I MSGs, which only contain unitary symmetries (Appendix B 1), and in Type-III MSGs, which
only contain unitary symmetries and antiunitary symmetries of the form {h x 7|v} in which h is a unitary symmetry
h # E (Appendix B 3), we find that representation monodromy frequently provides necessary constraints on corep
connectivity. As shown in Table V, we specifically find that there are 38 Type-I single MSGs, 32 Type-I double MSGs,
92 Type-III single MSGs, and 65 Type-III double MSGs in which the connectivity of small coreps can only be fully
determined by considering the effects of representation monodromy on the compatibility relations.

Appendix E: Elementary Band Corepresentations of the MSGs (MEBRs)

In the sections below, we will adapt the procedure previously employed in Refs. 5,60 to obtain the magnetic
elementary band corepresentations (MEBRs) of the Type-IIT and Type-IV single and double MSGs. Along with the
Type-I MEBRs of the Type-I MSGs and the physical EBRs (PEBRs) of the Type-II SSGs previously tabulated in
Refs. 5,60, the MEBRs of the Type-III and IV MSGs form the foundation of MTQC. More generally, in this work,
we will consider PEBRs and Type-1IT and Type-IV MEBRs to both be elementary band corepresentations (EBRs),
because they derive from Type-I MEBRs of Type-I (unitary) MSGs that are related by the action of antiunitary
symmetries (Appendix D 2). We note that, previously in TQC?57:58:60.85.86 "the Type-I MEBRs of the Type-I MSGs
were termed EBRs, to draw contrast with the PEBRs of the Type-II SSGs. However, in this work, we will revise the
previous terminology to accomodate the elementary band corepresentations of the Type-III and IV MSGs — in this
work, all elementary band (co)representations are in general termed EBRs, the elementary band corepresentations of
Type-II SSGs remain termed PEBRs, and the elementary band (co)representations of Type-I, III, and IV MSGs are
respectively termed Type-1, III, and IV MFEBRs.

Below, we will show that the EBRs provide a basis for all Wannierizable , mean-field crystalline insulators,
with or without magnetism. First in Appendix E 1, we will introduce the concept of (magnetic) atomic orbitals,
which we will then relate to maximally (exponentially) localized, symmetric Wannier functions'®:162. Importantly,
in Appendix E 1, we will establish a rigorous correspondence between (magnetic) atomic orbitals and the (co)reps
of Shubnikov point groups (SPGs)!2:2461.62.8794 (a5 well as site-symmetry groups, see Appendix C1). Next, in
Appendix E 2, we will adapt the central machinery of band induction and small corep subduction from TQC to MTQC.
Specifically, in Appendix E 2, we will use the magnetic atomic orbitals introduced in Appendix E 1 to induce band
corepresentations, which we will then Fourier transform and subduce onto little groups to obtain dependencies between
small coreps in momentum space (Appendix D 2) and site-symmetry group coreps in position space (Appendix E 1).
In Appendix E 3, we will then enumerate the MEBRs by inducing band coreps from maximal Wyckoff positions and
then excluding the ezceptional cases (Refs. 60,86,137-140 and Appendix E 3 a) of band coreps induced from maximal
Wyckoff positions that are non-elementary (i.e. composite). Finally, in Appendix E3b, we will provide detailed
statistics for the EBRs of all 1,651 SSGs, as well as introduce and detail the MBANDREP tool on the BCS, which
we have implemented for this work to access both the EBRs and the composite band coreps induced from each
Wyckoff position in each SSG. We note that prior to this work, Evarestov Smirnov, and Egorov in Ref. 24 introduced
a method for obtaining the MEBRs of the MSGs and computed representative examples, but did not perform a
large-scale tabulation of MEBRs or establish a connection to magnetic band topology. As will be detailed in this
section, in this work, we have employed a method equivalent to the procedure in Ref. 24 to perform the first complete
tabulation of the single- and double-valued MEBRs of the 1,421 MSGs. Furthermore, as detailed in the main text,
in this work, we have used the MEBRs to construct the first complete position-space theory of mean-field magnetic
band topology — MTQC.

5,58,161,162

1. Magnetic Atomic Orbitals and the CorepresentationsPG Tool

One of the fundamental advances of TQC was to introduce a predictive theory of bulk topology that derived from
the position-space chemistry of a material or model®, instead of momentum-space quantities such as (nested) Wilson
loops and Berry phases!” 20:33,55,58,59,160,163-171 " Gpecifically, in TQC, trivial bands in momentum-space are induced
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from the position-space (co)reps of the site-symmetry groups of the Wyckoff positions in a pristine crystal that is
invariant under a particular SSG. As previously discussed in Appendix C 1, site-symmetry groups in SSGs, magnetic
or otherwise, are necessarily isomorphic to Shubnikov point groups (SPGs).

In the Type-II (nonmagnetic) SGs first analyzed with TQC, the authors of Ref. 5 exploited a correspondence between
the coreps of the site-symmetry groups in solid-state materials and the eigenstates of the Schrédinger Hamiltonian for
a hydrogen atom (hydrogenic ion). Specifically, because the Schrodinger Hamiltonian for an ion with a single electron
is spherically symmetric (isotropic) and nonmagnetic, then the Hamiltonian is invariant under the action of any point
group, crystallographic or otherwise®”. In the language of group theory, the Schrédinger Hamiltonian for a hydrogenic
ion is invariant under the action of the symmetries of the nonmagnetic (Type-II) group Pin™ (3) U T X Pin™ (3) [see
Refs. 152,172 for a detailed discussion of the relationship between Pin™ (3), SO(3), and SU(2) in condensed matter
physics]. For the purposes of this work, it is sufficient to note that Pin™(3) U7 x Pin™ (3) is composed of spinful
rotations [e.g. Ca., for which (C2.)? = —1], rotoinversions of the form of the product of spinful rotations and
spinless inversion Z [e.g. m, = Cq, X Z, for which (m,)? = —1, (Z)? = +1], and antiunitary elements of the form of 7°
multiplied by rotation or rotoinversion [e.g. Ca, x T, for which (7)? = —1, such that (Cy, x T)? = +1]. Consequently,
the infinite group Pin™ (3) U7 x Pin™ (3) is a supergroup of any finite single or double 3D point group®®'™ [see the
text following Eq. (C5)]. Returning to the hydrogenic ion, the eigenstates of the Schrodinger Hamiltonian are given
by ¥°(r,0,$¢) = R(r)Y (6, ¢)S‘1’/27 where 87 , is a two-level, fermionic spinor for which ¢ =1, ]. In %7, the angular
part Y (6, ¢) can be expressed in either the basis of spherical or cubic harmonics!™ 17®; therefore, in this section, we
will denote Y'(6,¢) with suppressed angular (I, m;) or orbital (e.g. s, d,) indices whenever Y (6,¢) appears in a
basis-independent expression or statement. Across the set of wavefunctions {17 (r, 0, ¢)}, the infinite set of angular
and spin parts {Y(6,¢)} @ {S7 ,} spans both the infinite set of basis functions of Pin™(3)U7 x Pin™ (3), as well as the

infinite set of basis functions of Pin™ (3), the maximal unitary (Type-I) magnetic subgroup of Pin™ (3) U7 x Pin™ (3).
We further note that the hydrogenic ion wavefunctions can also be expressed in a basis of coupled spinorbitals
Y7 (r,0,¢9) = R(r)J? (0, ¢). However, the set of all spinful basis functions (spin-orbit-coupled angular parts) {J? (6, ¢)}
can be generated using only spinless angular parts and two-level (spin-1/2) spinors,

{rea)={realels,} (1)

2,5

in which appropriately chosen Clebsch-Gordan coefficients (c.f. the tables in Ref. 89) are required to relate J;""7 (6, ¢)
and Y, (6, (j))Sff/Q for specific values of j, mj, m;, and o. Therefore, for the purposes of this work, we are free to sim-

plify notation by restricting consideration to hydrogenic ion wavefunctions of the form ¥ (r,0,¢) = R(r)Y (0, ¢)S{ /2

Hence, we may subduce the infinitely many irreducible coreps of Pin™ (3) U7 x Pin™ (3) onto any finite SPG G4 [which
can either be a magnetic point group (MPG) or a nonmagnetic SPG, see the text following Eq. (C5)], yielding the
established result®*17175 that the finite set of irreducible (co)reps of G are spanned by the [infinitely overcomplete]
set of irreducible coreps of Pin™ (3) UT x Pin™ (3) subduced onto G4. Specifically, there always exists at least one
[and in fact, are infinitely many] corep[s] of Pin™ (3) U7 x Pin™ (3) that subduce[s] to each irreducible (co)rep of
Gq. We therefore conclude that the set {Y'(6,¢)} ® {S7 ,} necessarily spans the basis functions of the single- and
double-valued (co)reps of any Gq, because the (co)reps of a particular G4 are formed from the irreps of its maximal
unitary subgroup Hg, which is a subgroup of Pin™(3).

This establishes a correspondence between appropriately chosen linear combinations of the basis functions in
{Y(0.¢)} @ {87/} and the (co)reps of Gg4. For the nonmagnetic (Type-II) SPGs (site-symmetry groups) studied
in TQC?, the correspondence is intuitive. Specifically, given a Type-II SPG G4 and a hydrogenic ion wavefunction

Yo(r,0,¢9) = R(r)Y (0, ¢)Si’/2 whose angular part Y (0, ¢) is expressed in the basis of atomic orbitals in which it is

real-valued (i.e. the basis of cubic harmonics!”®7175), one can first determine if ¥ (r, 0, $) is an eigenstate of the

unitary symmetries (i.e. proper rotations and rotoinversions) h € Hq, where Hy is the maximal unitary subgroup of
Gq, and where h includes SU(2) spin rotations if Hq is a single group. First, if ¥7(r, 6, ¢) is an eigenstate of each
h € Hq, then 97(r,0,$) can be classified by the phase \; that it acquires under the action of each h € Hq [i.e.,
by the eigenvalue A of h: htp?(r,0,¢) = A\p1p?(r,0,$)]. Conversely, if 17 (r, 0, ¢) is not an eigenstate of any of the
unitary operations h € Hq, then one can instead form an orthonormal set of symmetrized wavefunctions 1/3‘7 (r,0,¢)
from linear combinations of the wavefunctions in the set {ht?(r,0,¢)h~'} taken over all h € Hy. Using the values
of \j, for each symmetry h € Hq acting on 47(r, 60, ¢) [or on the orthonormal set of symmetrized 1,5"(7", 0, ¢) formed
from {h1p? (r,0, ¢)h~'}], each atomic [ionic] orbital [or symmetric set of atomic orbitals] can then be uniquely labeled
by a (co)rep of G¢'7177. Specifically, for each atomic orbital or symmetric set of orbitals, there is only one (co)rep p
of G4 whose characters [see the text following Eq. (D28)] satisfy x5(h) = >, An,; for each h € Hq and wavefunction
Y (1,0, ¢) in the symmetrized, orthonormal basis of {ht? (r, 8, ¢)h~'}. Following the terminology employed in TQC?,
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we refer to the correspondence between [a set of] atomic orbital[s] and a (co)rep p by stating that the atomic orbital
[or set of orbitals] “transforms in” the (co)rep p.

If T symmetry is relaxed, however, then G necessarily becomes isomorphic to a Type-I or Type-I1I magnetic point
group [MPG, see the text following Eq. (C5)]. In the case in which G4 is isomorphic to an MPG, the correspondence
between (co)reps and atomic orbitals is more opaque. Specifically, the basis functions of the (co)reps of the MPGs are
still spanned by the set {Y (0, ¢)}@{S7 ,}, which occurs because each MPG is a subgroup of a Type-II SPG [see the text

text following Eq. (C5)], which is itself a subgroup of Pin™ (3) UT x Pin™ (3). However, as we will show in this section,
for some MPG (co)reps, the corresponding 47 (r, 0, ¢) is only an eigenstate of the unitary symmetries h in the MPG if
the angular part Y (6, ¢) is expressed in the complex basis of spherical harmonics! ™17, Therefore, for this work, we
introduce the term magnetic atomic orbital to reference the basis functions that transform in the lowest-dimensional
[i.e. in one-dimensional] MPG (co)reps®®. As we will show in the examples below (Appendices E1a, E1b, and E1c),
the angular parts Y (0, ¢) of some magnetic atomic orbitals can be expressed in the real basis of the familiar cubic
harmonics (i.e. atomic orbitals, such as s and d,, ), whereas the angular parts of other magnetic orbitals necessarily
take the form of T-breaking linear combinations of cubic harmonics (i.e. spherical harmonics, such as p, % ip,
magnetic atomic orbitals).

Because the 3D magnetic atomic orbitals are relatively esoteric, especially when considering the combined effects
of SOC and magnetism, then we will leave the complete tabulation of the magnetic atomic orbitals that transform in
each (co)rep of each SPG for future works. However, we will still in this work detail representative examples of MPG
(co)reps and their corresponding magnetic atomic orbitals. In Appendices E1la, E1b, and E 1 ¢, we will respectively
determine the lowest-angular-momentum, spin-degenerate pair of magnetic atomic orbitals that transforms in each
single-valued (co)rep of Type-I MPG 9.1.29 4, Type-III MPG 9.3.31 4/, and Type-II SPG 9.2.30 41’ [as was previously
done in Appendix C 1, we will continue to label SPGs employing the notation of the MPOINT tool on the BCS?1 94
in which an SPG is labeled by its number, followed by its symbol].

Lastly, we note that double-valued MPG (co)reps in general correspond to less intuitive tensor products of fermionic
spinors and real-space wavefunctions'!:*° [i.e., linear combinations of the basis functions in {Y (0, $)} ® {S¢ /23] For

example, a (da:y + idmz,yz) ® Sl magnetic atomic spinorbital is less familiar than a nonmagnetic spinless d, orbital.
Conversely, single-valued MPG (co)reps correspond to spin-degenerate linear combinations of the basis functions
in {Y(0,¢)} ® 1,, where 1, is the 2 x 2 identity in the space of S‘l’/z. Hence, for simplicity, in the examples
in Appendices Ela, E1b, and E1c, we will restrict focus to the single-valued (co)reps of single SPGs and their
corresponding [spin-degenerate pairs of| magnetic atomic orbitals.

Throughout this section, we will obtain the (co)reps of SPGs through character tables reproduced from the Corep-
resentationsPG tool on the BCS, which we have implemented for this work. For each of the 122 crystallo-
graphic SPGs, CorepresentationsPG outputs the single- and double-valued (co)reps, character tables, and symme-
try matrix representatives. CorepresentationsPG subsumes the earlier REPRESENTATIONS DPG tool (https:
//www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=dbg), which was imple-
mented for TQC?® to output the irreps and character tables of the 32 single and double Type-I MPGs. In Fig. 19,
we show the output of CorepresentationsPG for Type-1IT MPG 5.3.14 2'/m.
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Irreducible corepresentations of the Magnetic Point Group 2'/m (N. 5.3.14)

Table of characters of the unitary symmetry operations

(1) () 3) G | G | G |G

GM; | A" | GM; | 1 1 1 1

GM, | A" | GMy | 1 | -1 | 1 | 1

GM,4GMj3| 2E1E [GM3GM,| 2 0 -2 0

Lists of unitary symmetry operations in the conjugacy classes

Cli 1

Ca: mo10
C3: dl

C4: 9mozo

Matrices of the representations of the group

The antiunitary operations are written in red color
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FIG. 19: The output of the CorepresentationsPG tool on the BCS for Type-IIl MPG 5.3.14 2'/m. For each of the 122
crystallographic SPGs (see Appendix C1 and Refs. 12,24,61,62,87-94), CorepresentationsPG outputs the irreducible (co)reps
of the SPG, the unitary symmetry operations in the SPG, and the matrix representatives of both the unitary and antiunitary
symmetry elements in the SPG. For each antiunitary symmetry ga,; in the SPG, entries in the table of matrix representatives
are labeled in red text, and the matrices listed for each (co)rep p indicate the unitary part U of the antiunitary matrix
representative As(ga,i) = UK, where K is complex conjugation. We note that the bottom table only contains a representative
subset of the output of CorepresentationsPG for Type-III MPG 5.3.14 2'/m, in order to preserve the legibility of the text in
this figure.
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a. Irreps and Magnetic Atomic Orbitals in Type-I Single MPG 9.1.29 4

Character Table for
Type-I Single MPG 9.1.29 4
Irrep‘E‘ng Cy, CZ;

A 1111 1
B |1]1]|-1 -1
2E (1| -1 i —1i
Bl —1]— i

TABLE VI: Single-valued irreps and characters for Type-I single MPG 9.1.29 4, reproduced from CorepresentationsPG on the
BCS. For each irrep p and unitary symmetry element h, elements in the table correspond to the character x,(h) = Tr[A,(h)],
where A,(h) is the matrix representative of h in the irrep p [see the text following Eq. (D22)]. Following the nomenclature
established in Appendix D 2, we use the symbol E for the identity element. Because x,[(C2:)?] = x,[(C1z)*] = x,(E) for all
of the single-valued irreps p of Type-I single MPG 9.1.29 4, then the irreps in this table can only correspond to 0D spinless
(spin-degenerate) electronic (bosonic) states.

We begin by examining the magnetic atomic orbitals that transform in irreps of Type-I single MPG 9.1.29 4. In
Table VI, we reproduce the characters for single MPG 9.1.29 4, obtained from CorepresentationsPG on the BCS. In
Table VI, and for all of the SPGs discussed in this work, we have labeled (co)reps in the notation of Ref. 11, which
is based on the notation employed by Mulliken in Ref. 178. For each irrep p and unitary symmetry element A in
Table VI, we list the character x,(h) = Tr[A,(h)], where A,(h) is the matrix representative of  in the irrep p [see
the text following Eq. (D22)].

© &3 & &

S dxy Px t+ iDy Px — Dy

FIG. 20: The lowest-angular-momentum spinless (i.e. spin-degenerate pairs of) magnetic atomic orbitals that transform
in'7%177 single-valued irreps of Type-I single MPG 9.1.29 4 (Table VI). From left to right, the orbitals specifically transform
in the A, B, 2E, and 'E single-valued irreps of MPG 9.1.29 4. While the spinless s (A) and d, (B) orbitals are the same as
their familiar nonmagnetic counterparts, the spinless p, & ip, (*'E) orbitals correspond to T-breaking linear combinations of
nonmagnetic, spinless p;,,, orbitals. Most precisely, the angular parts of the wavefunctions of the spinless s and d, orbitals
are respectively given by the s and ds, cubic harmonics, whereas the angular parts of the spinless p, + ip, orbitals are given
by the I = 1, m; = +1 spherical harmonics' ™17,

For each irrep of single-valued Type-I MPG 9.1.29 4 in Table VI, we obtain the corresponding lowest-angular-
momentum spinless magnetic atomic orbital through the following procedure. First, because we are characteriz-
ing electronic states labeled by single-valued irreps, we restrict consideration to spin-degenerate pairs of orbitals
{YT(r,0,8),9%(r,0,$)}, which we label by the spinless angular part of each orbital in the pair Y (6,¢). Next, we
search for the circular harmonics [Y (6, ¢) = Y, (6, ¢)] or cubic harmonics [Y (6, ¢) o< Y™ £Y,”™]|'73175 that are
eigenstates of all of the unitary symmetries h € Hqy while carrying the lowest possible values of | and |my|. This
procedure returns four (spin-degenerate pairs of) orbitals — one for each single-valued irrep in Table VI — which we
depict in Fig. 20. While the (spin-degenerate pairs) of s (A) and d,, (B) orbitals shown in Fig. 20 are the same as
their familiar nonmagnetic counterparts, the p, +ip, (»'E) orbitals in Fig. 20 correspond to T-breaking linear com-
binations of nonmagnetic p, , orbitals. Specifically, the angular parts of the wavefunctions of the s and d, orbitals
are respectively given by the s and d;, cubic harmonics, whereas the angular parts of the p, & ip, orbitals are given
by the [ = 1, m; = £1 spherical harmonics' ™ 172,
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b. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4

Next, in this section, we will determine the lowest-angular-momentum magnetic atomic orbitals that transform in
single-valued coreps of Type-III single MPG 9.3.31 4’. As discussed in the text surrounding Eq. (C15), a Type-III
group Gg can be re-expressed as a coset decomposition with respect to its maximal index-2 unitary subgroup Hg.
In the case of G4 = 4/, the maximal unitary subgroup Hyq is isomorphic to Type-I MPG 3.1.6 2, such that the coset
decomposition is given by:

Gq=4=2UTA'\2) = (E)2U (Cs x T)2, (E2)

where 2 and 41’ respectively refer to Type-I MPG 3.1.6 2 and Type-I1I SPG 9.2.30 41’. Eq. (E2) implies that, unlike the
previous example of Type-I MPG 3.1.6 2 in Appendix E 1 a, Type-IIT MPG 9.3.31 4’ contains antiunitary symmetries,
which comprise the coset (Cy, x T)2.

Character Table for
Type-I Single

MPG 3.1.6 2
Irrep‘E‘ Cs,
A |1 1
B |1 -1

TABLE VII: Single-valued irreps and characters for Type-I single MPG 3.1.6 2, reproduced from CorepresentationsPG on the
BCS. For each irrep p and unitary symmetry in the MPG h € Hq [Eq. (E3)], the table lists the character x,(h) = Tr[A,(h)],
where A,(h) is the matrix representative of h in p [see the text following Eq. (D22)]. Following the nomenclature established
in Appendix D 2, we use the symbol E for the identity element. Additionally, as previously emphasized in Table VI, we again
note that, because x,[(C2.)?] = x,(E) for all of the single-valued p in this table, then the irreps p can only correspond to
spinless (spin-degenerate) electronic (bosonic) states.

To determine the single-valued coreps of Type-III single MPG 9.3.31 4/, we begin by examining the single-valued
irreps of the maximal unitary subgroup:

Hy—2— {E c} (E3)

where 2 refers to Type-I single MPG 3.1.6 2. In Table VII, we reproduce the characters for Type-I single MPG 3.1.6 2
from CorepresentationsPG on the BCS. To obtain the single-valued coreps of G (Type-III MPG 9.3.31 4'), we use the
characters in Table VII to calculate the indicator J,, adapted from the modified Frobenius-Schur indicator!!-148-150
J, for little group small coreps discussed in the text surrounding Egs. (D33) and (D34):

Jp = ZXp(gi,i)» (E4)
where the sum in Eq. (E4) runs over the two antiunitary elements g4 ; in the coset (C4, x T7)2 in Eq. (E2). For the
specific case of Type-IITI MPG 9.3.31 4/, Egs. (E2), (E3), and (E4) imply that:

JP = XP(CZ%Z X T2> + XP(CEZ X 7'2)
= 2xp(C22), (E5)

where we have exploited that'! C,.Cy, = C3,, and that 72 = (C5,)? = (C4.)* = F for single groups. Inserting
p = A, B and the characters x4 g(h) from Table VII into Eq. (E5), we determine that:

Ja= |Hq|a Jp = *|Hq|a (EG)
where |Hqy| = 2 is the number of elements [see the text following Eq. (B8)] in Type-I single MPG 3.1.6 2 [Eq. (E3)].

Following the discussion surrounding Egs. (D30), (D31), and (D34), Egs. (E5) and (E6) imply that, in Type-III single
MPG 9.3.31 4, p = A forms an undoubled, one-dimensional corep of type (a), whereas p = B forms a doubled,
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two-dimensional corep of type (b). The single-valued coreps of Type-III single MPG 9.3.31 4’ are therefore given by:
p=A, BB. (E7)

In Table VIII, we reproduce the characters for Type-I11 single MPG 9.3.31 4/, obtained from CorepresentationsPG on
the BCS. To obtain the lowest-angular-momentum (spin-degenerate pairs of ) magnetic atomic orbitals that transform
in each corep in Table VIII, we follow the procedure previously described at the beginning of this section (Appendix E 1)
and in the previous section (Appendix E1a). For the corep A in Table VIII, we find that the corresponding lowest-
angular-momentum atomic orbital is a spinless (i.e. spin-degenerate pair of spinful) s orbital(s) (Fig. 20). Conversely,
there is no individual spinless magnetic atomic orbital that transforms in the corep BB in Table VIII, because BB
is two-dimensional [i.e., because xpp(E) = 2]. Instead, we find that the smallest set of magnetic atomic orbitals
with the lowest angular momenta that transform in BB are a pair of spinless p orbitals whose lobes are oriented at
Cy. X T-related angles in the zy-plane. An example of a pair of orbitals that transform in BB is one spinless p, plus
one spinless p,, orbital, which span the same two-dimensional space (four-dimensional, including spin) as one spinless
Px + ipy orbital plus one spinless p, —ip, orbital (Fig. 20). Intuitively, this can be understood by recognizing that the
lowest-angular-momentum magnetic atomic orbital that transforms in the irrep A (B) of Type-I single MPG 3.1.6 2
is a spinless s (p, £ ip,) orbital. Under the action of C4, X T in Eq. (E2), an s orbital is transformed to itself, whereas
a py t1ip, orbital is transformed into a (py Fipe)* = i(ps Fipy) X pz F ip, orbital. Hence, A1 Gq = A [i.e., the irrep
A of Hy induces a type (a) corep A in Gq, see the text surrounding Eq. (D30)], whereas B T G4 = BB [i.e., the irrep
B of Hq induces a type (b) corep BB in Gg, see the text surrounding Eq. (D31)].

c. Coreps and Atomic Orbitals in Type-II Single SPG 9.2.50 41’

As a final example, in this section, we will determine the lowest-angular-momentum, nonmagnetic atomic orbitals
that transform in single-valued coreps of Type-II single SPG 9.2.30 41’, the T-symmetric supergroup of the MPGs
previously analyzed in Appendices E1a and E1b (Type-I MPG 9.1.29 4 and Type-III MPG 9.3.31 4/, respectively).
Like a Type-II SSG [Eq. (B3)], a Type-II MPG G can be re-expressed as a coset decomposition with respect to its
maximal index-2 unitary subgroup Hq. In the case of G4 = 41’, the decomposition is:

41" =4 U (T)4, (E8)

where Hq = 4 refers to Type-I single MPG 9.1.29 4, which we previously analyzed in Appendix E1a. Hq = 4 contains
four elements (Table VI):

Hy = {E Css, Cus, 04;}. (E9)
Character Table for
Type-IIT Single
MPG 9.3.31 4/
Corep‘E‘ (.
A |1 1
BB |2 -2

TABLE VIII: Single-valued coreps and characters for Type-III single MPG 9.3.31 4, reproduced from CorepresentationsPG on
the BCS. For each corep p and unitary symmetry element h € Hy, where Hq is the maximal unitary subgroup of MPG 9.3.31 4
[Table VII and Egs. (E2) and (E3)], the table lists the character x;(h) = Tr[As(h)], where Aj(h) is the matrix representative
of h in the corep p [see the text following Eq. (D22)]. Following the nomenclature established in Appendix D 2, we use the
symbol E for the identity element. Because the matrix representatives of the antiunitary symmetries in Type-III MPG 9.3.31
4’ [i.e., the antiunitary elements of the coset (Ci. x T)2 in Eq. (E2)] are also antiunitary, then they do not have well-defined
traces, and do not appear in the character table. In Egs. (E5), (E6), (E7), we show that Type-III single MPG 9.3.31 4’ has two
single-valued coreps: there is one, one-dimensional, single-valued corep A, which is equivalent [defined in the text surrounding
Eq. (D30)] to an irrep (A) of Hq (Table VII), and there is one, two-dimensional, single-valued corep BB = B @ B, which is
equivalent [defined in the text surrounding Eq. (D31)] to two copies of the same irrep (B) of Hyg.
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Using the character table for Type-1 MPG 9.1.29 4 (Table VI), we previously determined in Appendix E 1 a that the
four single-valued irreps of Hyq = 4 given by p = A, B, ?E, ' E respectively correspond to spinless (i.e. spin-degenerate
pairs of) s, dyy, pz + ipy, and p, — ip, magnetic atomic orbitals.

Character Table for
Type-II Single SPG 9.2.30 41’

Corep‘E‘sz Cuy, Ct
A 11111 1
B 111 (-1 -1

'E2F|2]-2| 0 0

TABLE IX: Single-valued coreps and characters for Type-II single SPG 9.2.30 41’, reproduced from CorepresentationsPG on the
BCS. For each corep p and unitary symmetry element h € Hq, where Hy is the maximal unitary subgroup of SPG 9.2.30 (41")
[Table VI and Egs. (E8) and (E9)], the table lists the character x;(h) = Tr[Az(h)], where As(h) is the matrix representative of
h in the corep p [see the text following Eq. (D22)]. Following the nomenclature established in Appendix D 2, we use the symbol
E for the identity element. Because the matrix representatives of the antiunitary symmetries in Type-IT SPG 9.2.30 41’ [i.e.,
the antiunitary elements of the coset (7)4 in Eq. (E8)] are also antiunitary, then they do not have well-defined traces, and do
not appear in the character table. In Egs. (E11), (E12), and (E13), we show that Type-II single MPG 9.2.30 41’ has three
single-valued coreps: there are two, one-dimensional, single-valued coreps A and B, which are equivalent [defined in the text
surrounding Eq. (D30)] to irreps (A and B, respectively) of Hq (Table VI), and there is one, two-dimensional, single-valued
corep 'E ?E = 'E @ 2FE, which is formed [defined in the text surrounding Eq. (D32)] from pairing two different irreps (*F
and ?E) of Hy. We note that, because x5[(Caz)?] = x5[(Caz)*] = x5(E) for all of the single-valued p in this table, then the
coreps p can only correspond to 0D spinless (spin-degenerate) electronic (bosonic) states.

To determine the single-valued coreps p of Type-II single SPG 9.2.30 41, we again calculate the indicator J,
discussed in the text surrounding Eq. (E4):

Jp = pr(gi,i% (EIO)

where the sum in Eq. (E10) runs over the four antiunitary elements g4 ; in the coset (7)4 in Eq. (E8). In the specific
case of Type-II single SPG 9.2.30 41’, Egs. (E8), (E9), and (E10) imply that:

Jp = Xp(T2) + Xp(C22z X 7-2) + Xp(Cz%z X 7-2) + XP(CAIZQ X T2)
= 2[xp(E) + xp(C22)], (E11)

where we have exploited that'' C%, = Cs., and that C;2 = C;.,' = Cy, and T2 = (Cy.)? = (C4.)* = E for single
groups. Inserting p = A, B,> E,! E and the characters from Table VI into Eq. (E11), we determine that:

Ja=Jp=|Hg|, Jop = Jig =0, (E12)

where |Hg| = 4 is the number of elements [see the text following Eq. (B8)] in Type-I single MPG 9.1.29 4 [Eq. (E9)].
Following the discussion surrounding Egs. (D30), (D32), and (D34), Egs. (E11) and (E12) imply that, in Type-II
single MPG 9.2.30 41’, p = A and p = B each form undoubled, one-dimensional coreps of type (a), whereas p = %F
and p = E together form a paired, two-dimensional corep of type (c). The single-valued coreps of Type-II single
MPG 9.2.30 41’ are therefore given by:

p=A, B, 'E?E. (E13)

In Table IX, we reproduce the characters for Type-II SPG 9.2.30 41’, obtained from CorepresentationsPG on the
BCS. Like in Hq = 4, the maximal unitary subgroup of SPG 9.2.30 41’ [see Appendix E 1 a and Egs. (E8) and (E9)],
the lowest-angular-momentum (spin-degenerate pairs of) atomic orbitals that transform in the single-valued coreps A
and B of Type-II SPG 9.2.30 41’ are respectively spinless s and spinless d,, orbitals (Fig. 20). Conversely, there is no
individual spinless atomic orbital that transforms in the corep 'E 2F in Table IX, because ' E 2E is two-dimensional
[i.e., because x1g 2p(F) = 2]. Instead, we find that the smallest set of atomic orbitals with the lowest angular
momenta that together transform in 'F ?E are a Kramers pair of spinless p, + ip, magnetic atomic orbitals [i.e. one
spinless p, +ip, plus one spinless p, —ip, orbital (Fig. 20)], which are usually denoted more succinctly in other works®
as “spinless p, and p, orbitals”, because they span the same two-dimensional space (four-dimensional, including spin)
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as one spinless p, orbital plus one spinless p, orbital. Intuitively, this can be understood by recognizing that the
lowest-angular-momentum magnetic atomic orbitals that transform in the irreps A, B, 2E, 'E of Type-I1 MPG 9.1.29
4 are respectively spinless s, dyy, ps + ipy, and p, — ip, magnetic atomic orbitals (Fig. 20). Under the action of 7
symmetry in Eq. (E8), an s or dg, orbital is transformed to itself, whereas a p, £ ip, orbital is transformed into a
Pz Fipy orbital. Hence, A1 Gq = A and B T Gq = B [i.e., the irreps A and B of Hq respectively induce the type (a)
coreps A and B in Gq, see the text surrounding Eq. (D30)], whereas '2E + Gq = 'E %F [i.e., the irreps M2F of Hq
each induce a type (c) corep 'E 2F in Ggq, see the text surrounding Eq. (D32)].

2. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool

Building upon the earlier definitions of site-symmetry groups [Appendix C 1], Wyckoff positions [Appendix C 2],
little groups [Appendix D 1], small (co)reps of the SSGs [Appendix D 2], and magnetic atomic orbitals that transform in
(co)reps of the site-symmetry groups [Appendix E 1], we will now in this section define the band (co)representations
of the SSGs, which are induced from exponentially localized [Wannier!61:162] orbitals in position space. We will
also introduce and detail the MSITESYM tool, through which users may access the small (co)reps subduced from
each band (co)representation of each SSG. This section is largely a review of previous works that discuss induced
band (co)representations — most notably Ref. 60 — though throughout this section, we will employ a more general
terminology than in Ref. 60 that encompasses both magnetic and nonmagnetic band (co)representations. In particular,
in this section, we will introduce the term band corepresentation to refer to a band representation in an SSG with
antiunitary symmetries [i.e., a Type-IL, III, or IV SSG (Appendices B 2, B 3, and B 4, respectively)]. Specific examples
demonstrating usage of the theoretical machinery established in this section are provided in Appendices E3a and F2a
for cases of magnetic band (co)representations, and are provided in Refs. 5,60,85,86 for cases of nonmagnetic band
corepresentations.

To begin, consider an infinite crystal whose unit cells are furnished with initially decoupled (magnetic) atomic
orbitals. The set of atomic orbitals respects the symmetries of the SSG of the crystal G, and, by definition, each
orbital at q occupies a site in a Wyckoff position of G with a site-symmetry group Gq € G (Appendix C). As
discussed in Appendix C2, G4 is a subgroup of G (G4 C G) that is isomorphic to a Shubnikov point group (SPG)
(Appendix C1) containing a set of symmetries g € Gq, g € G. Generically, there also exist a set of symmetries:

g € G \ GCU (E14)
for which:
jga=d, (E15)

where ¢’ is a different site than g in the same unit cell. The set of all sites {q, } in the same unit cell as q (including
q itself) form the Wyckoff orbit of q, where the index « on q, runs from 1 to n, where n is the multiplicity of
the Wyckoff orbit indexed by q (see Appendix C2). We emphasize that the choice of § in Egs. (E14) and (E15) is
not generically unique — for example, in Type-I MSG 10.42 P2/m, which is generated by {Z|0}, {C4,|0}, and 3D
lattice translations, the sites q = (u,0,w) and @' = (—u, 0, —w) are related by both g = {Z|0} and § = {C%,|0}. We
additionally emphasize that the restriction to q’ that lie in the same unit cell as q is a convention choice that was
employed previously in TQC?57:58:60.85.86 that we will continue to employ in MTQC to obtain MEBRs consistent
with the PEBRs previously calculated for TQC. More generally, a set of EBRs can be still be computed as long as
each ¢’ is unique and is not related to q or to any other q’ by an integer-valued linear combination of primitive lattice
vectors.

We will find it convenient in this section to initially restrict to the case in which the crystal is furnished by a
set of (magnetic) atomic orbitals at each site of a single Wyckoff position indexed by q that transforms in one
and only one (i.e. in an irreducible) (co)rep pq of the site-symmetry group G4. Because reducible [composite] site-
symmetry [band] (co)representations may be expressed as direct sums of irreducible [elementary] site-symmetry [band]
(co)representations, then, at the end of this section, we will straightforwardly relax this restriction and consider the
more general case in which the unit cell contains larger sets of atomic orbitals that transform in direct sums of site-
symmetry (co)reps. In the language of Refs. 161,162, each magnetic atomic orbital at q (including spin) corresponds to
an exponentially (maximally) localized (spinful), symmetric Wannier orbital. Specifically, while maximally localized,
symmetric Wannier and magnetic atomic orbitals are not required to have the same radial parts [aside from the
Wannier orbital exhibiting exponential or sharper localization], we can establish a correspondence between Wannier
and atomic orbitals by restricting focus to the angular parts, which, for symmetrized [sets of] orbitals, necessarily
transform in (co)reps of the 122 crystallographic SPGs [see Appendix E 1 and Refs. 12,24,61,62,87-94].
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Next, because a Wyckoff position generically contains more than one site [i.e. the multiplicity of the Wyckoff
position n > 1], then, given a [set of] Wannier orbital[s] that transform in a single irreducible, D-dimensional (co)rep
of the site-symmetry group Ggq, in order to preserve the symmetry of the SSG G, there must additionally be D-
dimensional [sets of] Wannier orbitals on each of the n — 1 additional sites in the Wyckoff position, leading to a total
of n x D Wannier orbitals in each unit cell. For each [set of] orbital[s] at q that transforms in the (co)rep pq of Gg,
there is therefore also an orbital [or set of orbitals] at each site ' = gq mod t, 4 . for each symmetry g € G\ G4 that
transform(s] in an irreducible (co)rep fq of:

Gy =9Gag ™", (E16)

where G is isomorphic and conjugate to G4. It is important to note that even though G4 is isomorphic to Gg,
and even though G4 and G4 are both isomorphic to the same Shubnikov point group (SPG, see Appendix C1) M,
the symmetries § € G \ Gq require that the orbitals [and (co)reps] at ' are conjugate to those at q. For example,
if @ and ' are related by the symmetry {C4.|0} in an SSG G, then a p, orbital at q must be accompanied by a
py = Cu.p,Cy.! orbital at g’ in order to preserve {Cy4.|0} € G. Employing the terminology previously established in
Refs. 5,57,58,60,85,86, this can be summarized by stating that the orbitalfs] that transform in pq — along with the
orbital[s] that transform[s] in the conjugate (co)reps pq of each of the other n — 1 sites in the Wyckoff position of g
— occupy the Wyckoff position indexed by q. To formally define the conjugate site-symmetry (co)reps pqr, we first
establish that, given a unitary symmetry h € Hq — the maximal unitary subgroup of G4 — the matrix representative of
h in py is denoted as Aj, (), for which the character of h in jy is given by Tr[A_ (h)]. In this notation, it is clear that
the matrix representative Az, (ghg™!) of the conjugate symmetry ghg—! € G does not generically equal As, (h)
(which itself may not be well defined, because h is not required to be an element of both G4 and Gg/). Instead,
the matrix representatives of the conjugate symmetries ghg—! € Gy are conjugate to the matrix representatives of
h € Gg; specifically, if § is unitary, then:

As, (Gh5 1) = Ay (h), (E17)
and if g is antiunitary, then:

A (3h57") = [Ag, (1) (E18)

The central principle of TQC, which we will here extend to MTQC, is that, when a set of of magnetic atomic
orbital[s] that transform in an irreducible site-symmetry (co)rep pq occupy the Wyckoff position of q, the orbitals
induce a (co)rep of the SSG G:

where ﬁqG is a band (co)representation [band (co)rep]. Crucially, the action of induction (1), unlike subduction ({),
does not preserve dimensionality (i.e. the character of the identity element E), such that x ;¢ (E) # x5,(E). Instead:

Xpg (B) = Xpq(B) X [G : Gq] = X34 (E) xn X N, (E20)

where n is the multiplicity of the Wyckoff position indexed by q and IV is the number of unit cells in the crystal. We
next take N to be very large (i.e. countably infinite), reflecting our goal of applying MTQC to theoretical models
of infinite crystals to predict the topology of mesoscopic solid-state systems. The (now infinite) factor of N on the
right-hand side of Eq. (E20) originates from the infinite subgroup index [G : G4] of G4 in G [defined in the text
surrounding Eq. (B10)], which occurs because the site-symmetry group Gq is finite, whereas the SSG G is infinite.
This can be seen by recognizing that Gr ¢ Gg, Gr C G, in which G is the infinite group of 3D lattice translations

[Eq. (B1)].

Most importantly, as shown in Ref. 60, Eq. (E19) can be decomposed into a sum of full (co)reps:
- DL, )
k

where the sum in Eq. (E21) instead runs over each of the points k in the irreducible wedge of the first BZ!79:180,

which is defined as the set of points k in the first BZ containing one and only one arm of each momentum star [see
Appendix D 1]. In Eq. (E21), qu is a generically reducible full [i.e. space group] (co)rep of the star of the SSG G
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indexed by k [Eq. (D40)]. Hence:

56 = PHs g (E22)

where f]z i is the i*h irreducible full (co)rep of the star of G indexed by k, and where b;"q is the multiplicity of fll i in
the decomposition of ig a [i.e., b?’q is a non-negative integer that indicates the number of times that the irreducible

full (co)rep ii i appears in igq, see the text surrounding Eq. (D65)]. Using Eq. (D40), Eq. (E21) can be further

re-expressed in terms of the generically reducible small (co)reps &5 a at each k point:

Ko

k

Pa =D - DD =Dais (123)
k k k=k k

where my, is the number of arms in the star of k [see the text surrounding Eq. (D15)], such that k runs from k to Ko,

for each star indexed by k in the sum in the second equality, and where the sum on the right-hand side of Eq. (E23)
runs over each of the N (infinitely many) points k in the first BZ.

Further intuition for Egs. (E20), (E21), and (E23), can be obtained by comparing the relative dimensionality of
Pas ﬁqa, iﬁq, and &l?,q' First, while X5¢ (E) is infinite [Eq. (E20)], the component ich,q in the Fourier decomposition
of the band (co)rep ﬁfi in Eq. (E22) is finite-dimensional, and there are instead an infinite number of [generically
reducible] full (co)reps iﬁG,q — one at each of the infinitely many k points in the irreducible wedge of the first BZ

[defined in the text following Eq. (F21)]. To see this, we compute the dimensionality of 5]3 o which is defined as the
character of the identity operation E:

Xsc (B) = Xpqa(E) X n X mg, (E24)

in which n is the multiplicity of the Wyckoff position indexed by q (Appendix C2), and my is the number of arms
in the star of k [see the text surrounding Eq. (D15)]. Conversely, the [generically reducible] small (co)rep 613 q In
Eq. (E23) generically has a smaller (finite) dimensionality than igq. To see this, we first subduce &E q onto the little
group Gy:

Gl q b Gk = S (E25)

where G g is the symmetry data [see the text following Eq. (D65)] induced by the (co)rep pq of the site-symmetry
group Gq into the SSG G [Eq. (E19)] and then subduced onto the little group Gk of the point k in the first BZ.
We note that, because &ﬁ q 18 already a [generically reducible] small (co)rep of Gi [Eq. (E23)], then &S q + Gk in
Eq. (E25) is a redundant expression. However, in this work, we will continue to employ the expression &E q ¥ G on

the left-hand side of Eq. (E25) for consistency with earlier works on TQC?®’., Next, we compute the dimensionality
of the subduced symmetry data Ji q:

Xaicq (E) = Xpq(E) x 1, (E26)

where n continues to be the multiplicity of the Wyckoff position indexed by q (Appendix C2). Physically, because
the set of site-symmetry (co)reps {fq, } corresponds to xz, (£) x n magnetic atomic [Wannier] orbitals [Appendix E 1]
occupying the n sites q, in the Wyckoff position of g, and therefore characterizes x;,(E) x n bands in momentum
space, then the subduced symmetry data Gk q [Eq. (E25)] correspond to a (set of) xz,(E) x n Bloch states at k.
This can be summarized by the statement that the x;,(F) x n Bloch states at k transform in ¢ 4, analogous to the
correspondence between orbitals and position-space SPG [site-symmetry group| (co)reps established in Appendix E 1.

Though pq is an irreducible (co)rep of the site-symmetry group Gg, this does not imply that & q = &l?,q } Gx in
[Eq. (E23)] is an irreducible small (co)rep of Gk. In fact, generically, ¢k q is a reducible small (co)rep of Gy, such that:

&l?,q 1 Gk = Sq = @a;{7q&j,k7 (E27)
J
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where ;i is the 4 irreducible small (co)rep of Gy and a;“q is a non-negative integer corresponding to the multiplicity
of &k in the decomposition of i . To obtain the multiplicities a;"q in Eq. (E27), we can re-express Eq. (E27) in
terms of the characters x¢ (i) and xs,, (hi) of each of the unitary symmetries h; € |Hy|, the maximal unitary

subset of the set of coset representatives Gy [text preceding Eq. (D28)] of Gy with respect to the group of lattice
translations Gr [Eq. (B1)]:

Xea(hi) =Y d%;, , (hi). (E28)
i

As we will show below, it is important to emphasize that the values of a;(’q in Egs. (E27) and (E28) are determined by
the choice of the (co)rep pq of the site-symmetry group Gq [i.e. the (magnetic) atomic orbitals occupying the Wyckoff
position indexed by q] in Eq. (E19). This can be seen by first recognizing the values of ¢;x in Egs. (E27) and (E28)
are limited to the finite set of small (co)reps of Gy, which can be obtained through the Corepresentations tool, as
previously described in Appendix D 2. Next, we recognize that ¢k g is a component of the Fourier decomposition of
the induced band (co)rep ﬁg = pq T G [Egs. (E19) and (E23)]. Specifically, Egs. (E19) and (E23) imply that, for a
given little group Gy, the characters x¢_,(h;) for each unitary symmetry h; € H, [the maximal unitary subset of Gy,
see the text preceding Eq. (D28)] are given by:

Xaea (i) =D Xaea, (hi), (E29)
a=1

where « runs over each of the n sites q, in the Wyckoff position of q (including q itself, see Appendix C2), and
where, as will shortly be detailed below:

e~ (@a—hida)y - ({Flqy — hiQat hi) , if {E|qa — hiqa}h; € G
Xq’k’qa( 7,) _{ Xan ({ |q q } ) { |q q } qo (E?)O)

B 0 y if {E|qa - hiqa}hi g Gqcx .

When xg, . (h;) # 0 in Eq. (E30), the vectors q, — h;q, are necessarily integer-valued linear combinations of lattice

vectors [i.e. {E|qa — hiqa} € Gr, where Gy is defined in Eq. (B1)]%°. This occurs because the symmetries h; € Hy
may shift the location of a site q, in the Wyckoff position of q to a site h;q, in an adjacent unit cell that only differs
from q, by a linear combination of lattice vectors (if qo — h;q, Were not a lattice vector, then {E|qa — hiQa }h
would instead be one of the symmetries {E|qq — hiqa }h; ¢ Gq, that exchanges sites within the Wyckoft position of
q, and x5, ({E|qa —higath;) in Eq. (E30) would not be well defined). The (co)reps pq, of the sites q, in Eqs. (1529)
and (E30) are determined from the site-symmetry (co)rep pq by conjugation with the symmetries § € G, § ¢ Gq, as
described in the text surrounding Egs. (E17) and (E18).

Finally, using Eqs. (E29) and (E30) for each of the unitary symmetries h; € Hy [Eq. (D28)], we obtain |Hy|
equations of the form of Eq. (E28) for the multiplicities a;"q, which can be condensed into a matrix equation in which
the summation over j in Eq. (E28) is implicit:

Xieq = Gr@™?, (E31)

where x¢, , is an |I~Jk| x 1-dimensional column vector whose i*® entry is the value of Xéi o (i) inherited from the site-
symmetry group (co)rep jq through Eqs. (E29) and (E30), and where a%9 is an [ x 1-dimensional column vector whose
40 entry is the multiplicity a;"q of the small (co)rep &; k of the little group Gy in the decomposition of the subduced
symmetry data i o, where [ is the number of small (co)reps of Gx. In Eq. (E31), Gk is an |ﬁk| x [-dimensional,
generically non-square matrix whose ;" element is given by the character of the unitary symmetry h; € Gy in the
small (co)rep &;k of Gi:

[gk]ij = Xﬁj,k(hi)- (E32)

Consequently, Gy is simply the transpose of the character table for Gy (see Figs. 14, 15, and 16 and Table IV, for
example). Crucially, because the rows (and columns) of character tables are orthogonal'''17® then the columns (and


http://www.cryst.ehu.es/cryst/corepresentations

63

rows) of Gy are also orthogonal. This implies that the left inverse G, L of Gy is simply given by:

1

1 +
gk - |}~Ik| gk7 (E33)

such that:
Gl G = |H|1, (E34)

where 1 in Eq. (E34) is the I x [ identity. As a final step, we left-multiply Eq. (E31) by G,.' [Eq. (E33)] to solve for
aka:

aka— L giy. (E35)

thus obtaining the multiplicities a;(’q in Egs. (E27) and (E28). We note that Eq. (E35) is in fact the matrix form of
the Schur orthogonality relation (i.e. the so-called “magic formula” ).

For this work, we have implemented the MSITESYM tool on the BCS to output the multiplicities [a;"q in Eqgs. (E27)
and (E28)] of the small (co)reps ¢,k subduced in the little group Gy of each k point [Eq. (E25)] from the band (co)rep
[)qG induced into each SSG G [Eq. (E19)] from each irreducible (co)rep pq of one site-symmetry group Gq in each
Wyckoff position of G. MSITESYM subsumes the earlier DSITESYM tool (https://www.cryst.ehu.es/cgi-bin/
cryst/programs/dsitesym.pl)®®586  which was previously implemented for TQC to provide direct access to the
single- and double-valued small irreps subduced onto a given Gy from the band rep pg induced from each site-
symmetry irrep pq in each of the 230 Type-I MSGs. In Fig. 21, we show the output of MSITESYM for Type-III MSG
75.3 P4" at the A point in momentum space and the 1b Wyckoff position in position space.

In summary, we have demonstrated in this section how decoupled Wannier orbitals that transform in site-symmetry
(co)reps in position space induce band (co)reps [Eq. (E19)], which in turn subduce small (co)reps at each point in
momentum space that correspond to Bloch states (bands) [Eq. (E25)]. It is straightforward to see that, if additional
Wannier orbitals are added that either transform in different (co)reps of site-symmetry groups in the same Wyckoff
position, or occupy a different Wyckoff position, then additional bands will also be present in the energy spectrum,
corresponding to additional small (co)reps in the symmetry data at each k point. Therefore, we have also shown

Induced site-symmetry representations of the Magnetic space group P4' (No. 75.3)
k-vector: A: (1/2,1/2,1/2) and Wyckoff position 1b: (1/2,1/2,z)

Unitary site symmetry group for 1b: (1/2,1/2,z)

Irreducible representations
Shorthand !
’7 notation Matrix presentation . N .
L Character table for the magnetic point group 4
Decomposition of (*A14')
1 0 0 0

01 XLV.Z o 1 o 0 ( 10 ) £ £2 e e into irreducible

shs o 0 1 0 01 4 # 1 | 2001 | 91 |90 representations of 4'
= Al ]r]t Reps\imeps| A | BB | 1E2E

BB | M2 | 2 2 2 2 =

1x,1-yz 10 0 1 ioo pr— (A)E1
92/ "k o -1 0 1 ( . ) E2E | Mala | 2 0 -2 0 -

-is* is’ o 0 1 0 0 i (A)E2E2 . 1

*(AE3Es | - . 1
i — Subduced representations
10 o 0 a1 e Induced representations

a3 x;y,z o 1 o 0 ( ) Character table for the subduced

=878 o 0 1 0 0 -1 representations (*A14') N . |

for Wyckoff position 1b Induced representations for the point A of P4

[ ps\irreps| 01 | 92 | 93 | 0a Reps\irreps| (A)E1 [(A)E2E((A)E3Ey
| vz 40000 1 (e ) WE | 1| 1| 1|1 A 1

L

1§18 6 0 1 0 o - WEE, | 2 | 2| 2 | 2 BB . 1

‘(AE3Es | 2 0 2 0 1E%E . . 1

FIG. 21: The output of the MSITESYM tool on the BCS for Type-III MSG 75.3 P4’ at the A point in momentum space and
the 16 Wyckoff position in position space. For one k point in each momentum star (see Appendix D 1) and one site q in each
Wyckoff position in each SSG (see Appendix C2), MSITESYM outputs the irreducible (co)reps of the site-symmetry group
Gq (see Appendix E 1), the small (co)reps of the little group Gk (see Appendix D 2), and the multiplicities a;(’q in Egs. (E27)
and (E28). MSITESYM subsumes the earlier DSITESYM 0015886 which was previously implemented for TQC to provide
direct access to the single- and double-valued small irreps subduced onto a given G from the band rep induced from each
site-symmetry irrep in each of the 230 Type-I MSGs.
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that arbitrary sets of bands induced from Wannier orbitals transform in a linear combination of band (co)reps. In
the subsequent section, Appendix E 3, we will determine the minimal, or elementary, band (co)reps [EBRs, composed
of PEBRs in Type-II SSGs and MEBRs in Type-I, III, and IV MSGs|?23:24,57,58,60,85,86,90.96.97 that span all linear
combinations of band (co)reps induced from maximally localized, symmetric Wannier orbitals.

3. MEBRs, Exceptional Cases, and the MBANDREP Tool

In this section, we will use the results of Appendix E 2 to determine which of the induced band (co)reps in each SSG
are elementary — which we will rigorously define in this section — thus establishing the complete theory of MTQC. We
will specifically obtain the MEBRs of the Type-III and Type-IV MSGs, which, along with the MEBRs of the Type-I
MSGs and the PEBRs of the Type-II SSGs previously tabulated in Refs. 5,60, form the complete set of EBRs of all
of the 1,651 single and double SSGs. We note that previously in TQC?°7:58:60,85.86 the Type-I MEBRs of the Type-I
MSGs were termed EBRs, to draw contrast with the PEBRs of the Type-II SSGs. However, in this work, we will
revise the previous terminology to accomodate the elementary band coreps of the Type-IIT and IV MSGs — in this
work, all elementary band (co)reps are in general termed EBRs, the elementary band coreps of Type-II SSGs remain
termed PEBRs, and the elementary band (co)reps of Type-I, ITI, and IV MSGs are respectively termed Type-I, III,
and IV MEBRs. Finally, we note that prior to this work, Evarestov Smirnov, and Egorov in Ref. 24 introduced a
method for obtaining the MEBRs of the MSGs and computed representative examples, but did not perform a large-
scale tabulation of MEBRSs — the calculations performed in this section represent the first complete tabulation of the
MEBRs of the 1,421 single and double MSGs.

To begin, we previously established in Appendix E 2 that, if a set of [magnetic| atomic orbitals transforming in an
irreducible (co)rep fq,1 of a site-symmetry group G4 is placed at q in each unit cell of a crystal that is invariant under
an SSG G, then g1 induces a band (co)rep 55, = pq1 T G [Eq. (E19)]. From this, we may then consider the case
in which additional orbitals are subsequently added at q that transform in the (co)rep pq,2, such that the total set of
Wannier orbitals at q transforms in the reducible site-symmetry (co)rep pqr = pq,1 B fq,2. Because representation
induction is distributive®, then it follows that:

par TG = (pg1 ® paz2) T G = P51, (E36)

such that:
P51 = (11T G) & (Pg2 T G) = p5, ® 5 - (E37)

Eq. (E37) implies that [)iT is a composite band (co)rep, because ,5§7T is equivalent to a sum of two other band (co)reps
[[)(C;l and ﬁgﬂ. In this work, we define two band (co)reps [)gT and ﬁgl P ﬁgQ to be equivalent through the existence
of a relation of the form of Eq. (E37). If two band (co)reps S, and 5§, are equivalent, then this also implies
the existence of a unitary matrix-valued function S(k,t,h) that is smooth and non-singular in k and continuous in
t that interpolates for each unitary symmetry h € G between the full [space group] (co)rep matrix representatives
Aif,q,T(h) [t = 0] and Aif,q,1®if,q,2(h) [t = 1] in the decomposition [see the text surrounding Eqgs. (D40) and (E21)
and Refs. 5,23,24,57,58,60,85,86,90,96,97 for further details]:

~G G ~G ~G G G
pq,T = @ z]k,q,Tv pq,l @ pq,2 = @ 2k,q,l 2] Zk,q,2' (E38)
k k

If a band (co)rep is not equivalent to a direct sum of other band reps, then we define the band (co)rep to be elementary
[i.e., an EBR]%60,137-139,

In order to complete the theory of MTQC, we must perform a complete enumeration of the EBRs in all of the 1,651
single and double SSGs. Specifically, because EBRs are induced from (magnetic) Wannier orbitals (Appendix E 2),
then any set of bands that transforms in a direct sum of EBRs is Wannierizable, and therefore, does not exhibit stable
or fragile®3:54:56,181-190 t550]0gy2:57:58,60,85,86  With complete knowledge of the EBRs, we will then be able to identify
the bands that do not transform in linear combinations of EBRs, which, as we will show in Appendix F correspond
to stable topological (crystalline) insulators and topological semimetals.

To obtain an initial bound on the sites in each SSG from which EBRs may be induced, we first recognize that, if
a site qp indexes a Wyckoff position that is non-maximal, then G, C G4 where q is a site in a maximal Wyckoff
position that is connected to the Wyckoff position containing qq (see Appendix C?2 for definitions of connected and
maximal Wyckoff positions). Taking pq, to be (co)rep of the site-symmetry group Gg,, then, through the transitive
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property of induction®®:

a0 TG =pS0=pqotGq1G= (@ b?“*ﬁq,i> TG =Prps, (E39)
=1 1=1

where z is the number of unique irreducible (co)reps pq.i in G, b3’ is a non-negative integer, and where at least
one b°? is nonzero. Eq. (E39) implies that any band (co)rep ﬁg’io induced from a site qg in a non-maximal Wyckoff
position is equivalent to a sum of band (co)reps induced from a site q in a maximal Wyckoff position; therefore ﬁgo is
either a composite band (co)rep, or is equivalent to an EBR induced from q. Consequently, the complete set of EBRs
is contained within the set of band (co)reps induced from the sites of the maximal Wyckoff positions of each SSG.

Hence, in this work, we will obtain the EBRs of all single and double SSGs in two steps. First, we will restrict
consideration to the band (co)reps induced by the irreducible (co)reps of the site-symmetry groups of the maximal
Wyckoff positions of each SSG. We will then in Appendix E 3 a filter out the composite band (co)reps induced from
sites in maximal Wyckoff positions, which are known as the exceptional cases5%86:137 140 the remaining band (co)reps
comprise the EBRs. In Appendix E 3 b, we will then provide additional statistics for the EBRs of all SSGs — including
the MEBRs of the Type-III and IV MSGs introduced in this work — as well as detail the MBANDREP tool on the
BCS that we have implemented for this work to access the EBRs and composite band (co)reps induced from each
Wyckoff position in each of the 1,651 single and double SSGs.

a. FEzceptional Cases in the MSGs

In most cases, when a (co)rep pq of a site-symmetry group G4 in a maximal Wyckoff position [see Appendix C 2] is
induced into an SSG G, the resulting band (co)rep p§ = fq T G [Eq. (E19)] is an EBR [defined in the text following
Eq. (E37)]. However, in some ezceptional cases, ﬁg = pq T G is instead a composite band (co)rep. In Ref. 60, it was
determined that exceptional cases specifically occur under the following conditions:

1. Two maximal Wyckoff positions indexed by q and q’ in an SSG G are both connected to the same site qg in
a non-maximal Wyckoff position. In Ref. 60, G is termed the reducing group, and G, = Gq N Gy is termed
the intersection group.

2. There exists an irreducible (co)rep fq, of Gg, for which pq, T Gq is equivalent to an irreducible (co)rep of Ggq.
3. For the same irreducible (co)rep fq, of Gqy, Aq, T G is equivalent to a reducible (co)rep of Gqr.

These three conditions may be summarized through the equivalence relations:
Par T Gaq 1 G =pgtG=pg =pa, T Ga TG = pg TG = pg), (E40)

in which pq is a reducible (co)rep of Gg/, such that ﬁg;, is a composite band (co)rep, implying that the equivalent
band (co)rep ﬁg is also a composite band (co)rep, despite pq being an irreducible (co)rep of G4.

In the Type-I and Type-II SSGs previously analyzed in TQC?:57:58:60:85.86 the exceptional cases all occurred in SSGs
with point groups that were either isomorphic to Type-I MPG 8.1.24 mmm or to MPGs with higher-fold rotation,
rotoinversion, or 7 symmetries [c.f. Tables S10, S11, and S12 in Ref. 5]. Conversely, in this work, we find there
are exceptional composite band coreps in some of the lowest-symmetry Type-III and Type-IV MSGs. Previously in
TQC®°7:58:60,85,86 it was specifically recognized that if two maximal Wyckoff positions in the same symmetry group
have the same multiplicity, but the band (co)reps induced from the Wyckoff positions have different dimensionality,
then it is possible that at least one of the induced band (co)reps is composite. In this section we will consider the
example of double magnetic rod group [MRG] (p.1)rg [Fig. 22], which we have selected because the 2a and 2b Wyckoff
positions both have a multiplicity of 2, but the band coreps induced from 2a are two-dimensional, whereas the band
corep induced from 2b is four-dimensional [and indeed exceptional-case composite].

MRG (p.1)rg is generated by:

{Zl0}, {TI1/2}, (E41)

and is isomorphic after the addition of perpendicular lattice translations to Type-IV double MSG 2.7 Psl [see
Refs. 11,12,55,128,129 and the text following Eq. (B2)]. Using MWYCKPOS on the BCS %4 for Type-IV MSG
2.7 Ps1 and restricting to Wyckoff positions with z = y = 0 in the reduced notation of MWYCKPOS, we obtain the
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coordinates and site-symmetry-group-isomorphic MPGs of the Wyckoff positions of MRG (p.1)ra
q2q¢ = 07 1/2, G2a = Ia

q2p 1/4? 3/47 G2b = ilv
Qic = 2, (1/2) — 2, (1/2)+ 2, 1 — 2z, Gye = 1, (E42)

where we have employed units in which a, = 1 in Fig. 22. In Eq. (E42), the symbols 1, 1/, and 1 respectively refer
to Type-I MPG 2.1.3 1, Type-IIl MPG 2.3.5 1/, and Type-I MPG 1.1.1 1 [the trivial MPG, see the text following
Eq. (C5)]. In Eq. (E42), the 2a and 2b positions are maximal, whereas 4c is the (non-maximal) general position.
First, we will examine the site-symmetry groups of the qs, maximal Wyckoff position, which are isomorphic to Type-
I double MPG 2.1.3 1. G5, contains only four symmetry operations and is equal to its maximal unitary subgroup
Hgal

Cau = Hao — {{Em}, ()0}, {£[0}, {EI|0}}, (143)

where E is the identity operation, and E = Cj,, is the symmetry operation of 360° rotation about an arbitrary axis n,
which distinguishes single-valued (spinless) and double-valued (spinful) coreps. Using the CorepresentationsPG tool
on the BCS for MPG 2.1.3 1, we determine that there are only two double-valued irreducible coreps of Gag:

Pra = (Zlg)za, (Zlu)%, (E44)
for which:

X(a,), ({E10})

X(a,), (EI0}) = =x(4,), ({EI0}) = =x(a,) ({EI0}) =1,
X(Ag)2a({f|0}) 1,

), ({EZ|0}) = (Au)2a({z|0}) = —X(Au)za({EﬂO}) =1, (E45)

~X(4

g9

23 2b 23 2b

g"zk )

y Y
aZ

FIG. 22: An antiferromagnetic chain with magnetic rod group (MRG) (pc1)re, which is generated by {Z|0} and {711/2}
(ta,/27T) and is isomorphic after the addition of perpendicular lattice translations to Type-IV MSG 2.7 Ps1 [see Refs. 11,12,
55,128,129 and the text following Eq. (B2)]. There are three Wyckoff positions in MRG (pc1)ra — 2a, 2b, and 4c — of Which
only 2a and 2b are maximal [Eq. (E42)]. The site-symmetry group Gz, of sites in the maximal 2a position contains {Z|0}
[Eq. (E43)], whereas the site-symmetry group Gay of sites in the maximal 2b position instead contains {Z x T|1/2} [Eq. (E46)];
the site-symmetry group Gy, of sites in the general 4c¢ position does not contain either {Z|0} or {Z x T|1/2} [Eq. (E50)]. Four
{Z x T|1/2}-related spinful s orbitals occupying the 2b position in G = (p.1)rg divide into two pairs that each transform in the
two-dimensional irreducible double-valued corep (AA) of Gap [Eq. (E48)] which is a necessary — but crucially not sufficient

— condition for the four-dimensional band corep (AA)G =(A _) 1 G to be an EBR [see Eq. (E39) and the surrounding text].

Indeed, in MRG (p.1)rg, we find that the four spinful s orbltals at 2b can be moved through the 4c¢ position to 2a without
breakmg a symmetry or closing a gap. When the four s orbitals are moved to 2a, the four orbitals form two pairs of spinful
bonding and antibonding orbitals that each transform in the two-dimensional reducible corep (Ag) 20 P (A ) of G2, [Eq. (E48)],
QGG@ (Au)i. Because (AQ)SGEB (Au)zca = (A) = (AA) [Egs. (E55)
and (E57)], then we conclude that (A[l)fb is an exceptional case of a composite band corep induced from an irreducible corep
of a site-symmetry group in a maximal Wyckoff position.

and induce a four-dimensional composite band corep (Ag)
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implying that the lowest-angular-momentum spinful magnetic atomic orbitals (see Appendix E 1) that transform in
(f_lg) 9 a0d ([lu) 9, A€ Spin-split (singly-degenerate) s and p orbitals, respectively. We next examine the site-symmetry
groups of the qg;, maximal Wyckoff position in Eq. (E42) and Fig. 22, which are isomorphic to Type-IIT double MPG
2.3.5 1'. Ggy also contains four symmetry operations:

Gan = {1E10), {Zx T11/2). (B0}, (BT x TI1/2} . (B46)
in which only {E|0} and {E|0} are unitary. Hence the maximal unitary subgroup Haj, of Gay is given by:

= {10}, (B0} (Ba7)

such that Hoy, is isomorphic to the trivial MPG [Type-I MPG 1.1.1 1, see the text following Eq. (C5)]. As discussed
in Ref. 11, (Z x 7)? = E in double SPGs, and x;({E|0}) = —x;({E|0}) for double-valued coreps p. From this,
in agreement with the output of the CorepresentationsPG tool on the BCS for Type-III double MPG 2.3.5 1/, we
determine that Ggp has only one, two-dimensional, double-valued irreducible corep [see Eq. (E4) and the surrounding
text]:

pan = (AA),, , (E48)

for which:

X(aa), {EI0}) = =x(aa) ({E]0}) =2, (E49)

2b

implying that the lowest-angular-momentum spinful magnetic atomic orbitals that transform in ([lf_l) g, Are an
{Z x T|1/2}-related pair of spinful s orbitals, which are twofold-degenerate because X(44) ({Z x T|1/2})%) =

2b

~X(aa),, ({E|0}) = —2. Lastly, the site-symmetry groups in the q4. position in Eq. (E42) and Fig. 22 are isomorphic

to the trivial MPG [Type-I MPG 1.1.1 1, see the text following Eq. (C5)], and are thus equal to their maximal unitary
subgroups Hy.:

Gye = Hye = {{E|0}, {E|O}} (E50)
There is only one, one-dimensional, double-valued irreducible corep of Gy.:

ic = (A),. (B51)

for which:

x(a), ({EI0}) = —x(2) ({E]0}) = 1. (E52)
Eq. (E52) implies that the lowest-angular-momentum spinful magnetic atomic orbital that transforms in (fl) UK
spin-split (singly-degenerate) s orbital.

Next, to determine if any of the band coreps induced from the maximal 2a and 2b Wyckoff positions in Eq. (E42)
and Fig. 22 are exceptional cases (i.e. composite), we induce band coreps from the intermediate 4¢ position that is
connected to 2a and 2b [Eq. (E40) and the surrounding text]. First, we focus on band coreps induced from 4c¢ through
2b. Because Gy, is an index-2 subgroup of Gap, ([Gap : Gac] = 2, see Egs. (B10), (E46), and (E50)), and because Gy,
and Ggp have isomorphic unitary subgroups Hy. = Hop, [Eq. (E47) and (E50)], then:

(4),, 1 = (A4),,. (E59)

where (AA) 5 18 the irreducible corep of Gz, [Eq. (E48)]. Eq. (E53) implies that, for:

G = (pel)ra, (E54)
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it is possible for (A)fc = (A)4c 1 G to be an EBR, because:
(A)5, = (A),, 1 G2 1 G = (44),, 1 G = (A4)g,, (E55)

such that (/_1/_1); is a band corep induced from an irreducible corep of a site-symmetry group in a maximal Wyckoff
position [see Eq. (E39) and the surrounding text].

However, to determine if (AA);} is indeed an EBR, we must also calculate the band coreps induced from 4¢ through

2a, which are equivalent to (14_1/_1)26; [Eq. (E40)]. Because Gy is an index-2 subgroup of Ga, ([Gaq : Gac] = 2, see
Egs. (B10), (E43), and (E50)), because {E|0} € Gaq, {E|0} € G4¢, and because {Z|0} € Ga,, {Z|0} & G4, then:

(A) 4 T Goa = (Ag) 5, @ (Au)y, - (E56)

where (Ag)% and (A“)za are the irreducible coreps of Gy, [Eq. (E44)], implying that (Ag)% &) (flu)% is a reducible

corep of Ga,. Eq. (E56) indicates that (A)fc = (14_1)4C 1T G is not an EBR, but is instead a composite band corep,
because

(A)g: = (A)4c T GQ(I T G = (Ag)Qa ® (Au)Qa T G = (Ag)fa ® (Au)ga : (E57)
Because (flg)zGa & (flu)fa = ([l)i = ([l[l); [Egs. (E55) and (E57)], then we conclude that (/Lzl)i is an exceptional

case of a composite band corep induced from an irreducible corep of a site-symmetry group in a maximal Wyckoff
position.

We can gain physical intuition for why (flfl)fb is an exceptional-case composite band corep from the orbitals
and spins depicted in Fig. 22. We begin with two {Z x T|1/2}-related pairs of spin-up and spin-down s orbitals
that occupy 2b (i.e. four total spinful s orbitals separated into {Z x T|1/2}-reversed pairs at each of the two sites
in the 2b position), where each pair transforms in the two-dimensional irreducible site-symmetry corep (AA).,,.
We are then free to move the four orbitals to 2a without breaking a symmetry of (p.1)rg or closing a gap to
introduce additional Wannier orbitals (which, conversely, is required in the closely-related obstructed-atomic-limit
Wannier-sliding transitions discussed in Refs. 5,55,191). When the four spinful s orbitals reach 2a, the four orbitals
form two bonding and antibonding pairs that each transform in the two-dimensional reducible site-symmetry corep

([lg)Qa @ (A“)Za of Goo [Eq. (E44)], which induces a four-dimensional composite band corep (flg)fa @ (Au)ga of

(pel) R, indicating that (/_1/_1) fa is an exceptional composite band corep.

In Appendix G 1, we provide a complete enumeration of all of the exceptional cases in the 1,651 single and double
SSGs. For the Type-I MSGs and Type-II SGs previously analyzed in TQC?»°7:58:60:8586 ' the exceptional cases listed in
Appendix G 1 agree with the previous tabulations performed in Refs. 5,60. As shown in the text following Eq. (E39),
any band (co)rep induced from an irreducible (co)rep of a site in a maximal Wyckoff position that is not listed in
the tables in Appendix G 1 is an EBR. Hence, by calculating all of the band (co)reps induced from the irreducible
(co)reps of the site-symmetry groups of the maximal Wyckoff positions of the 1,651 single and double SSGs, and
then subsequently excluding the exceptional cases listed in Appendix G 1, we obtain the complete list of single- and
double-valued EBRs of the SSGs, completing the theory of MTQC.

b. Statistics for the MEBRs and the MBANDREP Tool

In this section, we provide general statistics for the EBRs previously obtained in Appendix E3a [which include
the MEBRs of the Type-I MSGs and PEBRs of the Type-II SSGs previously tabulated for TQC?°7-28:00.85.86 " a5 yyell
as the MEBRs of the Type-1IT and Type-IV MSGs calculated for the present work]. We additionally detail in this
section the MBANDREP tool on the BCS, which we have implemented for this work to access both the elementary
and non-elementary band (co)reps of all 1,651 single and double SSGs.

To begin, in Tables X and XI, we provide the number of elementary and composite band (co)reps of the 1,651 single
and double SSGs, respectively. Tables X and XI include the number of ezceptional cases [Appendices E3a and G 1] in
which an irreducible (co)rep of a site-symmetry group of a site in a maximal Wyckoff position does not induce an EBR.
For the Type-I MSGs and Type-II SGs analyzed in TQC?57:58:60:85.86 " the band (co)rep statistics in Tables X and XI
agree with the calculations previously performed in Refs. 5,60. In Tables X and XI, we also list the number of EBRs
that can be decomposed into disconnected branches [i.e. decomposable or “split” EBRs with disconnected subgraphs,
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see Appendix D3 and Refs. 5,6,56-58,86,141]. As shown in Refs. 5,6,57,58,141, at least one disconnected piece of
each decomposable EBR is topologically nontrivial, either in a stable or fragile sense®32456:181-190 " T Appendix F,
we will provide a complete enumeration of the symmetry-based indicators of stable band topology™>!3~1%97-101 in the
1,651 double SSGs, which can be used to diagnose the stable topological indices of the disconnected branches of the
decomposable double-valued EBRs in Table XI. Lastly, to provide complete statistics for all of the band (co)reps that
can be induced by any set of magnetic atomic orbitals in any Wyckoff position in a magnetic crystal, we additionally
list in Tables X and XI the number of composite band (co)reps that can be induced from the unique irreducible
(co)reps of the site-symmetry groups of the non-mazimal Wyckoff positions in SSGs of the same type. Specifically,
we obtain the numbers listed in the “Unique Non-Maximal Band (Co)reps” columns in Tables X and XI by summing
over the composite band (co)reps induced from each unique irreducible (co)rep of one site-symmetry group in each
non-maximal Wyckoff position in each SSG of the same type.

Single SSG Type|Number of SSGs| Number of EBRs |Exceptional | Unique Non-Maximal
[Decomposable EBRs]|  Cases Band (Co)reps
Type-I 230 3383 40 1,931
219]
Type-II 230 3,141 39 1,852
[156]
Type-I1I 674 7.492 151 5.279
833]
Type-IV 517 6,190 130 4501
699]
Total 1,651 20,206 360 13,563
1,907]

TABLE X: Single-valued band (co)reps of the 1,651 single SSGs. In order, the columns in this table list the type of the single
SSG (Appendix B), the number of single SSGs of each type, the total number of single-valued elementary band (co)reps [EBRs]
of the SSGs of the same type [see the text surrounding Eq. (E37)], the total number of exceptional composite single-valued
band (co)reps of the SSGs of the same type (Appendices E3a and G 1), and the total number of composite single-valued band
(co)reps induced from unique irreducible (co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs
of the same type.

Double SSG Type|[Number of SSGs| Number of EBRs |Exceptional| Unique Non-Maximal
[Decomposable EBRs]|  Cases Band (Co)reps
Type-1 230 2,258 107 1,589
355
Type-I1I 230 1,616 0 1,001
[426]
Type-I11 674 5,047 591 4,882
(662]
Type-IV 517 3,882 556 3,984
[639]
Total 1,651 12,803 1,254 11,456
[2,082]

TABLE XI: Double-valued band (co)reps of the 1,651 double SSGs. In order, the columns in this table list the type of the
double SSG (Appendix B), the number of double SSGs of each type, the total number of double-valued EBRs of the SSGs of
the same type [see the text surrounding Eq. (E37)], the total number of exceptional composite double-valued band (co)reps of
the SSGs of the same type (Appendices E 3a and G 1), and the total number of composite double-valued band (co)reps induced
from unique irreducible (co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs of the same type.

Next, in Appendix G 2, we provide tables of the minimum and maximum EBR dimension in each single and double
SSG. In particular, the minimum EBR dimensions in the double SSGs in Appendix G 2 provide an upper bound on
the minimal insulating filling of each double SSG16:63:125,131,152,154,192,193  hich is defined as the set of electronic



70

Band co-representations of the Magnetic Double Space Group P6/m'm'm' (No. 191.241)

and Wyckoff position 2d:(1/3,2/3,1/2)

Unitary subgroup: P622 (No. 177) in its standard setting.

Magnetic point group isomorphic to the site-symmetry group of the Wyckoff position: 6'm'2

and

unitary subgroup: 32

The second column gives the coordinates of the k-vectors in the standard setting of the unitary subgroup.

Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

Band-rep.

A11G(2)

A21G(2)

E1G(4)

1IE1G(2)

2ETG(2)

E11TG(4)

Band-type

elementary

elementary

elementary

elementary

elementary

elementary

Decomposable
\Indecomposable

Indecomposable

Indecomposable

Decomposable

Indecomposable

Indecomposable

Decomposable

r:(0,0,0) r:(0,0,0) ri(1) ® Ma(1) | M2(1) ® M3(1) Ms(2) ® Mg(2) T(2) (2 Tg(2) ® To(2)
A:(0,0,1/2) | A:(0,0,1/2) | Ax(1) ® Ag(1) | Ag(1) ® A41) As(2) © Ag(2) A7(2) A7(2) Ag(2) © Ag(2)
H:(1/3,1/3,1/2)|H:(1/3,1/3,1/2) H3(2) H3(2) H1(1) ® Ha(1) ® H3(2) Hg(2) Hg(2) HaHs(2) ® Hg(2)
K:(1/3,1/3,0) | K:(1/3,1/3,0) K3(2) K3(2) K1(1) ® Ka(1) ® K3(2) Ks(2) Ks(2) KaKs5(2) © Kg(2)
L:(1/2,0,1/2) | L:(1/2,0,1/2) | Lp(1) ® L3(1) L1(1) ® La(1) | L1(1) ® Lo(1) ® L3(1) @ La(1) L5(2) L5(2) 21L5(2)
M:(1/2,0,0) | M:(1/2,0,0) | M1(1) ® Ma(1) | Ma(1) ® M3(1) [M1(1) ® Ma(1) ® M3(1) © My(1) Ms(2) Ms(2) 2 Ms5(2)

FIG. 23: The output of the MBANDREP tool for the 2d Wyckoff position in Type-IIT MSG 191.241 P6/m'm'm’. Similar
to the earlier BANDREP tool implemented for TQC?®?5758:60:85.86 NI[BANDREP allows users to choose between the EBRs
of each SSG and the band (co)reps induced from each Wyckoff position in the SSG. When the Wyckoff position option is
selected in MBANDREP, users can additionally select non-maximal Wyckoff positions to access the unique composite band
(co)reps discussed in Tables X and XI and the surrounding text [though we have only shown the output of MBANDREP
for a maximal Wyckoff position in this figure]. Specifically, to generate this figure, we have selected the Wyckoff position
option in MBANDREP for the 2d position in Type-III MSG 191.241 P6/m’m’m’. For each irreducible (co)rep pq of one
site-symmetry group Gq in each Wyckoff position in each SSG, MBANDREP outputs whether the induced band (co)rep
ﬁg = pq T G is elementary, indicates whether ﬁg is decomposable® 62675886141 "1 lists the subduced small (co)reps in
&ﬁq 1 Gk [Eq. (E27)] for each maximal k vector [Eq. (D16) and the surrounding text] in the notation of the Corepresentations
tool introduced in this work [see Appendix D 2]. If an EBR is decomposable, users may click on the “Decomposable” button
in MBANDREP to access a list of the allowed decompositions [branches| of the band (co)rep.

fillings at which a short-range-entangled insulating phase is permitted for arbitrarily strong, SSG-symmetry-preserving
interactions, analogous to the Lieb-Schultz-Mattis filling constraints for a 1D spin chain'®*. In the cases in which
the minimum-dimension EBRs in an SSG are decomposable, a tighter bound on the minimal insulating filling can
be further obtained by determining the minimum disconnected branch dimension of each decomposable EBR!41:193,
Hence, the minimum double-valued EBR dimensions of the Type-IIT and Type-IV MSGs listed in Appendix G 2
provide upper bounds on the minimal electronic fillings at which short-range-entangled magnetic insulating phases
are permitted in each Type-III and Type-IV MSG — at fillings that violate these bounds, any gapped, MSG-symmetric
insulator must therefore exhibit long-range-entangled, magnetic topological order. Due to complications arising from
the antiunitary symmetries of Type-III and Type-IV MSGs (see Appendices B3 and B4, respectively), the search
for T-breaking, long-range-entangled MSG-symmetric, insulating topological phases has thus far only been addressed
from the perspective of minimal insulating filling in a handful of recent works'%12%:195  For each single and double
SSG, we have specifically confirmed that the minimum EBR dimension listed in Appendix G2 is consistent with
the minimum atomic insulator dimension previously calculated in Ref. 16. In summary, the Type-III and Type-IV
MEBRs computed in this work provide new information — including small (co)rep characters [Appendix D 2] and
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compatibility relations [Appendix D 3] — applicable to the search for novel long-range-entangled topological phases
with magnetic crystal symmetries.

Finally, for this work, we have implemented the MBANDREP tool on the BCS to access both the elementary and
non-elementary band (co)reps of all the 1,651 single and double SSGs. MBANDREP thus subsumes the earlier BAN-
DREP tool (https://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl)>®, which was previously imple-
mented for TQC?>?7:58:60.85.86 4 access the band (co)reps of the Type-I and Type-II SSGs. Unlike the earlier BAN-
DREP tool, MBANDREP does not provide separate options for accessing band (co)reps with and without 7~ symmetry,
which are instead separately listed in MBANDREP under Type-II and Type-I SSGs, respectively [see Appendices B 2
and B 1, respectively]. In Fig. 23, we reproduce the output of MBANDREP for the 2d Wyckoff position in Type-I11
MSG 191.241 P6/m'm/m/.

Appendix F: Symmetry-Indicated Magnetic Topological Bands

In the previous sections of this supplement, we established the theory of MTQC. The building blocks of MTQC are
topologically trivial bands that transform in direct sums of EBRs [defined in the text surrounding Eq. (E37)], and,
consequently, can be inverse-Fourier-transformed into (magnetic) Wannier orbitals in position space [see Appendix E 1].
Generically, however, energetically isolated bands [specifically, bands that satisfy the insulating compatibility relations
along all high-symmetry BZ lines and planes, see Appendix D 3] are not required to be equivalent [defined in the text
following Eq. (E37)] to integer-valued linear combinations of EBRs. As we will show in this section, if a band B
is not equivalent to an integer linear combination of EBRs, then B either corresponds to a topological semimetal
whose nodal points lie away from the high-symmetry BZ lines and planes (along which bands satisfy the insulating
compatibility relations)??1% or is the Fourier-transformed description of a stable topological insulator or topological
crystalline insulator (TI or TCI, respectively)!?20,28,29,98,165,197-201

When unitary crystal symmetries — such as spatial inversion (Z) or fourfold rotoinversion (C4 X Z) — are present in
the SSG of the 3D bulk, then the stable topology of a set of energetically-isolated bands (along all high-symmetry BZ
lines and planes) may be diagnosed using symmetry eigenvalues through a symmetry-based indicator (SI) formula. By
exhaustion, it has been demonstrated”14:15,17-19,27729,31736,98,202,203 that T_symmetric, symmetry-indicated, stable 3D
TIs and TCIs necessarily exhibit anomalous 2D surface and 1D hinge states crossing the bulk gap, where the surface
and hinge states are respectively protected by the symmetries of Type-II surface wallpaper groups and hinge frieze
or line groups!31:132:204,205 " The quintessential SI formula in 3D is the Fu-Kane parity (Z) criterion for diagnosing
3D T-symmetric TIs?®. More recently, it was shown in Refs. 7,13-15,19,97-101 that the compatibility relations and
EBRs in an SSG can be used to generate a set of linearly independent SI formulas for stable topological bands that
respect the symmetries of the SSG. The procedure introduced in Refs. 7,13,98 returns the SI group (e.g. Z4 x Z3) as
well as the SI formula for the SSG in an arbitrary basis. Previously, in Ref. 16, the authors derived the SI groups of
all 1,651 single and double SSGs, but not the SI formulas or the physical interpretation (i.e. the bulk topology and
anomalous boundary states) of the magnetic bands with nontrivial SIs.

In the sections below, restricting consideration to the double-valued (co)reps of the 1,651 double SSGs, which
characterize spinful electronic states in solid-state materials'!, we will go beyond the analysis in Ref. 16 and generate
the SI formulas in a consistent and physically-motivated basis. In the physical SI formula basis introduced in this
work, all previously identified nonmagnetic double SI formulas correspond to established nonmagnetic semimetallic,
TI, and TCI phases. Additionally, in the physical SI formula basis, the SIs of symmetry-indicated TIs and TCIs with
the same bulk topology (e.g. 3D TIs and AXIs with the common nontrivial axion angle 8 = m) are related by intuitive
SI subduction relations. We will also introduce layer constructions!4296:207 in the minimal double SSGs (defined in
Appendix F4) for each TCI phase that admits a decomposition into layered 2D Chern insulators, TIs and mirror
TCIs, which we will then use to determine symmetry-respecting bulk and anomalous surface and hinge states for
all topological bands in the minimal double SSGs. First, in Appendix F 1, we will review the method employed in
Refs. 13-15,19,36 in which the multiplicities of small (co)reps are used to determine the symmetry-indicated topology
of energetically isolated bands. Next, in Appendix F 2, we will introduce the Smith normal form?°® decomposition
of the EBR matrix of an SSG G, through which one can infer the SIs in G. Then, in Appendix F 3, we will detail a
procedure for obtaining a set of minimal SIs on which the SIs in all 1,651 double SSGs are dependent. In the following
section — Appendix F 4 — we will then compute the minimal ST formulas for spinful topological phases in the 34 minimal
double SSGs containing the minimal SIs in the self-consistent, physical basis described above. In Appendix F 4, we will
also formulate layer constructions — where possible — for the symmetry-indicated TT and TCI phases in the minimal
double SSGs. We have confirmed that the spinful SI groups obtained in this work agree with the previous tabulation
of magnetic and nonmagnetic SI groups in the 1,651 double SSGs performed in Ref. 16. The results of the calculations
that we will perform in Appendix F 4 will be summarized in Appendix F' 5. Lastly, in Appendix F 6, we will further
detail the helical (i.e. non-axionic) magnetic higher-order TCI (HOTI) phases”4:15:18720,34736,98,102 digcovered in this
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work through the SI calculations performed in Appendix F 4. For the spinful helical magnetic HOTI phases discovered
in this work, we will specifically detail symmetry-enhanced fermion doubling theorems!®3%6374 in Appendix F 6 a,
and will provide tight-binding models in Appendix F 6 b.

1. Diagnosing Band Topology from Symmetry Eigenvalues

In this section, we will review the procedure by which a symmetry data vector B [see Refs. 6,82 and the text following
Eq. (D65)] derived from the band structure of a material or model can be evaluated for nontrivial topology. The discus-
sion in this section is largely a review of previous works on stableS—2:14:15,:82,97,99-101 a1 fragile®3,54,56-58,181-184,186-190
topology. To begin, in a given SSG G, if a set of bands is energetically isolated from all of the other bands in the
spectrum at all high-symmetry k points and along all high-symmetry BZ lines and planes, then we may extract the
symmetry data By at each point k. As discussed in Appendix D 3, the symmetry data By is composed of the mul-
tiplicities of the irreducible small (co)reps of the little group Gy that correspond to the set of energetically isolated
Bloch eigenstates at k [see the text following Eq. (E26)]. Given symmetry data By at a point k, the symmetry data
By at a point k' that is connected to k [defined in the text following Eq. (D15)] is fully determined by By through the
compatibility relations m*¥ [Eq. (D67)] if the bands that transform in the symmetry data vector B are energetically
isolated at all high-symmetry k points and along all high-symmetry BZ lines and planes. Hence, we may summarize
the complete set of By in B with the symmetry data at a smaller number of k vectors consisting of one point k within
each of the maximal momentum stars in G [defined in the text surrounding Eq. (D16)]:

B = (m(&Lkl)? m(52,k1)7 T 7m(5—1,k2)v m(&lkz)? T )T7 (Fl)

where m(&;x,) denotes the multiplicity of the {*! small (co)rep of G, , and where B contains Np entries. The

multiplicities m(d;k, ) in B must obey a set of linear constraints imposed by the compatibility relations CR, such
that:

CR-B=0, (F2)
in which each row of CR provides a linear constraint on B, and where the entries in CR are given by m*¥ (mk”’k,)’1
taken over all pairs k and k” of maximal k vectors in G and all symmetry-unrelated k vectors l/(’ that are mptually
connected [defined in the text following Eq. (D15)] to k and k”. We emphasize that (m* ¥ )~1 like (c&)~! in
Eq. (D76), is guaranteed to exist (though not necessarily be unique) through Frobenius reciprocity®®:!5, because the
elements of m¥" %" are defined through subduction in Eq. (D66) [see the text surrounding Eqs. (D67) and (D74)].

In particular, the symmetry data of an EBR contain the multiplicities of small coreps that are induced from site-

symmetry coreps in position space [see the text surrounding Eq. (E19)]. For each SSG G, we may define an EBR
matrix:

EBR = (BPrar BP2ar ... BPlax BPraz ... (F3)

in which each column BPi.i contains the symmetry data vector of the EBR of G induced from the j** (co)rep Pjq. of
the site-symmetry group Gg, in the maximal Wyckoff position indexed by q; (see Appendix C2). In the SSG G, we
define the number of EBRs as Ngpr, such that EBR in Eq. (F3) is an Ng X Ngpgr-dimensional matrix. By definition,
an EBR must correspond to a set of Bloch states that are energetically isolated at all high-symmetry k points and
along all high-symmetry BZ lines and planes, such that each Bf7a: in Eq. (F3) satisfies the compatibility relations:

CR-EBR =0. (F4)

We find that, in each of the 1,651 single and double SSGs, the rank of EBR is always equal to the dimension of the
kernel of CR over the rational numbers, implying that the columns of EBR are at least a complete — and are in general
an overcomplete — basis set of the kernel of CR.

Given a set of bands that is energetically isolated at all high-symmetry k points and along all high-symmetry BZ
lines and planes, the symmetry data vector B of the bands can be expressed in terms of EBR:

[Bla = S [€BR)wsps(B) = [EBR - p(B)a, (F5)
b
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in which p(B) is a vector of EBR multiplicities:

p(‘B) = (p(ﬁl,Ch)vp(ﬁZOU)a o 'p(ﬁ17q2)ap(ﬁ2,q2)v T )Tv (FG)

where p(p;.q,) indicates the multiplicity of the EBR symmetry data vector B in B [see the text folowing Eq. (F3)],
and where each p(p; q,) is rational, but not necessarily integer-valued. For all possible symmetry data vectors B that
satisfy the compatibility relations, a decomposition of the form of Eqs. (F5) and (F6) is always permitted, because
the symmetry data of the EBRs spans the set of symmetry data vectors that satisfy the compatibility relations in
each SSG [i.e. because EBR spans the kernel of CR, see Eq. (F4) and the surrounding text] 9:14.60:82.86  When
rank(€BR) = Ngpr, the multiplicities p(p;,q,) in Eq. (F6) are unique; however, when rank(EBR) < Ngpr, then p(B)
is not unique.

As discussed in several previous works6 9:13:14,53,54,56-58,60,82,86,97-101,181,183,184,186-190 " the values of p(pjq,) can be
used to infer the topology of the bands that transform in B. Specifically, given a symmetry data vector B that satisfies
the compatibility relations, there are three possibilities for the components of p(B) in Eq. (F6):

1. In each of the possible p(B)-vector solutions to Eq. (F5), at least one of the multiplicities p(p; q,) is not an
integer (but is still rational)’.

2. There exists at least one solution to Eq. (F5) in which all of the multiplicities p(p;,q,) € Z, though there do not
exist solutions in which all of the multiplicities p(p;.q,) € {Z",0}; therefore, at least one p(p; q,) is negative in
the solution in which p(p; q,) € Z for all ¢ and j.

3. There exists at least one solution to Eq. (F5) in which all of the multiplicities p(p;,q;) € {Z,0}.

In case 3, B contains the same small (co)reps as a direct sum of EBRs, such that the bands that transform in B exhibit
the same symmetry eigenvalues as a trivial insulator. We note that this does not exclude the possibility that the
bands that transform in B exhibit non-symmetry-indicated topology!?:20:55:58:169.191 "I case 2, it is possible to add
EBRs to the bands that transform in B until the direct sum of the bands that transform in B and the added EBRs
realizes a set of bands with a symmetry data vector B’ classified by case 3. Therefore, as shown in Refs. 53,54,56—
58,181-184,186-190, in case 2, the bands that transform in B exhibit symmetry-indicated fragile topology. In the
nomenclature of Refs. 6,82,209, the symmetry data vectors in cases 2 and 3 correspond to “linear combinations of
EBRs” [LCEBR]. Finally, in case 1, there does not exist an integer-valued linear combination of EBRs that can be
added to the bands that transform in B to produce a set of bands with integer-valued p(p; q,). Consequently, as shown
in Refs. 6-9,14,15,82,209, the bands that transform in B in case 1 are not Wannierizable, and either correspond to a
topological semimetal that satisfies the compatibility relations®®, or to a symmetry-indicated stable TI or TCI with
anomalous surface or hinge states.

2. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form

In this section, we will introduce the method employed in this work to calculate the SI groups and formulas for
spinful stable topological phases in all 1,651 double SSGs. In Appendix F 2 a, we will then as an example provide an
explicit calculation of the SI groups and formulas for double-valued irreps in Type-I double MSG 3.1 P2. Variants
of the method described in this section were previously introduced in Refs. 7,13-15,19,97-101. We will leave the
enumeration of the symmetry-indicated fragile bands in the 1,651 single and double SSGs for future works. To begin,
if the entries of a matrix are integer-valued, then the matrix carries a unique Smith normal form2°®. Consequently,
given an SSG G, the EBR matrix EBR [defined in Eq. (F3)] — whose entries are the integer-valued multiplicities of
induced small (co)reps — can be decomposed into the Smith normal form:

EBR = LeprAeprRenr, (F7)

where Lepr is an Ng X Np-dimensional unimodular matrix with integer-valued entries, Rgpr is an Ngpr X Ngpr-
dimensional unimodular matrix, and Agpr is an Np X Ngpgr-dimensional (i.e. generically non-square) matrix with
integer-valued entries [Agpr];; for which:

[Aenrlij = 01if i # j. (F8)
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Consequently, Agpr — which is the Smith normal form of EBR — generically appears as:

A - 00 -0
0 -+ A0 -+ 0
Aesr = v , F9
eBR 0 000 (F9)
0 00--0

in which 1 < Ay < Ay < --- A, are positive integers and r = rank(EBR). We note that, in contrast to Agpr, Lesr
and Repr in Eq. (F7) are not unique. For example, given EBR and Agpr, for any choice of Lepr and Repr,
Lipr = —Lepr and Regn = —Repr always also satisfy the decomposition in Eq. (F7).

Next, we consider all possible bands that transform in the most general symmetry data vector B in G that satisfies
the compatibility relations [Eq. (F2)]:

B = (m(&17k1)> m(62>k1)7 T 7m(61,k2)7 m(&27k2)7 e )T7 (FIO)
where m(5;,) denotes the multiplicity of the I*' small (co)rep of the little group Gy, . Previously, in the text
following Eq. (F6), we described a procedure for diagnosing whether bands that satisfy the compatibility relations
exhibit symmetry-indicated stable topology. In the following text, we will now additionally describe a method for
classifying stable band topology, which we will accomplish by parameterizing the space of solutions to Eq. (F5). First,
we act on both sides of Eq. (F5) with the left inverse LgéR, which is guaranteed to exist, because Lggr is an integer,
unimodular matrix [see the text following Eq. (F7)]:

LzprB = AeprResr - p(B). (F11)

Because only the first 7 rows of Aggr are nonzero, then, in order for a solution p(B) to exist in Eq. (F11), the (r+1)th

to the N, rows of LgéRB must be zero. However, the (7 + 1)' to the Nf% - rows of LgéRB are guaranteed to be
zero, because EBR spans the kernel of CR [defined in Eq. (F2)], and because B satisfies the compatibility relations.
Hence, we obtain a solution for p(B) in Eq. (F11).

For each nonzero A; in Eq. (F9), we next construct an r-dimensional vector y(B) by multiplying B by LgéR and
the pseudoinverse of Agpr [Eq. (F9)]:

W1i(B) = Lk Bl = [Resr - p(B)is i =1+, (F12)

in which the entries [y];(B) are rational numbers. We then re-express B in terms of y(B) using Eq. (F12):

T

[B]; = Z[LEBR]ji[y]i(B))\i~ (F13)

i=1

Because Legr is unimodular, then the correspondance between the components of B and y(B) is one-to-one. Con-
versely, the correspondence between y(B) and p(B) is generically one-to-many. Specifically, given y(B), the most
general solution for p(B) takes the form:

p(B) = REBlR : (yl(B)ay2(B)7 o ayT'(B)ak17k27' T akNSBR—T‘)Ta (F14)

in which k; are rational-valued free parameters.

To diagnose the stable topology of bands whose symmetry data satisfy the compatibility relations in G, we therefore
restrict focus to the first » components of p(B). Because Rgpr is a unimodular matrix, then the components of p(B)
are integer-valued if and only if y;(B) and k; are integer-valued for all ¢, which reduces to the requirement that the
values of y;(B) are integer-valued, because the values of k; are free parameters in Eq. (F14). Finally, using the values
of y;(B), we define:

ZI(B) = (yz(B)/\z) mod )\i = [nglm . B]z mod )\i, 1= io R A (F15)

in which we have defined iy to be the smallest value of ¢ for which A\;; > 1, and where each y;(B) is integer-valued
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if and only if z;(B) = 0. When B is expressed in terms of the most general small (co)rep multiplicities that satisfy
the compatibility relations [i.e. in the form of Eq. (F10)], then the z;(B) — which are implicitly functions of the small
(co)rep multiplicities m (G, k, ) — are known as the SI formulas of G™'3. Correspondingly, the representative B; vector
for each i is defined as the i*® column of Lgsgr for which z;(B;) = (LgéR - Lepr)i mod A; = 1.

Next, given a specific symmetry data vector B’ with fixed values of m(&; , ) that satisfy the compatibility relations,
we may calculate the values z;(B’), which necessarily satisfy {z;(B’) € Z|0 < z;(B’) < \; — 1}. Hence, given B’, the
appearance of nonzero z;(B’) in Eq. (F15) implies that the components of y(B’) and p(B’) are not integer-valued,
and that the bands that transform in B’ exhibit stable topology. From this, we define the SI vector of B’ as:

ZG(B/) = (Z’io (BI)7 Zio+1(B/)a e 7ZT(B/))T7 (F16)

where z;(B’) € Zy,. Notably, the SI vectors of the representative B; vectors satisfy ZJG(BZ') = (LzgrLesr)ji mod \j =
d;; mod A;. Lastly, using the values of A; obtained from Egs. (F9), (F14), and (F15), we define the SI group of G:

7% = Q) Zx,. (F17)

i=ig

Consequently, in G, the bands that transform in the representative B; vectors may be summed with each other and
with the EBRs of G to generate | Z%| —1 classes of stable topological bands that are not related by linear combinations
of EBRs, as well as one class of (generically trivial) bands whose symmetry data vectors B map to the trivial (identity)
element of the ST group [z¢(B) = 0 in Eqs. (F15) and (F16)]. Specifically, the SI group is spanned by summing the
representative topological bands (e.g. 2B; = B; ® B;), such that z{(nB;) = n mod )\; where n € Z*. One stable
topological band from each of the | Z&|—1 classes of stable topological bands and one integer-valued linear combination
of EBRs that transforms in one B vector together form a nonunique set of |Z¢| bands that we designate in this work
as the SI topological bands.

Using the method described in this section, we have obtained the SI formulas and groups for the double-valued
(co)reps of all 1,651 double SSGs, which we term the double SIs. We have confirmed that the SI groups obtained in
our calculations agree with the previous tabulation performed in Ref. 16. However, in general, both the SI formulas
and the representative B; vectors are computed in an arbitrary basis that is generically not the natural (physical)
basis for classifying topological phases. Specifically, additional bulk- and boundary-state'®® or layer-construction'*
calculations must be performed to determine the semimetallic, TI, or TCI phases that correspond to each possible
value of z;(B). Later, in Appendices F 3, G 3, and F 4, we will determine a self-consistent, physically motivated basis
and the corresponding bulk topology for the double Sls in all 1,651 double SSGs.

a. Double SI Group and Formulas in Type-1 Double MSG 3.1 P2

As an example of the Smith normal form calculation described in Refs. 7,13-15,19,97-101 and in the text following
Eq. (F7), we will in this section calculate the double SI group and formulas of Type-I double MSG 3.1 P2.

z A k. A
D(0mm)
1b (0,1/2)

1d {12,,172) E(rmr) .
y >k
Ta (05:0) T'(000) Z(0n0)

Ic (1/2,y,0)

C(nm0)
X k

X

FIG. 24: The unit cell and BZ of Type-I MSG 3.1 P2. (Left panel) The unit cell of MSG 3.1 P2 with the maximal Wyckoff
positions [Eq. (F23)] labeled with red lines. (Right panel) The BZ of MSG 3.1 P2 with the maximal k vectors in Eq. (F19), as
well as the I' point [kr = (0,0, 0)], labeled with black circles.
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First, using MGENPOS on the BCS?'"?4, we determine that MSG 3.1 P2 is generated by:
{Csy|000}, {E|100}, {E]|010}, {E]001}. (F18)

Next, using the MKVEC tool (see Appendix D 1), we determine that there are four maximal momentum stars in
M = P2 [defined in the text surrounding Eq. (D16)]. Using MCOMPREL (see Appendix D 3), we then find that, due
to the compatibility relations, the small irrep multiplicities throughout the BZ of M are entirely determined by the
irrep multiplicities at only one of the high-symmetry points in each of the four maximal momentum stars (Fig. 24):

kz =27(0,1/2,0), kg =27(1/2,1/2,1/2), kp = 27(0,1/2,1/2), ke = 27(1/2,1/2,0). (F19)
1
At each of the four k points in Eq. (F19), there are only two double-valued small irreps 6f 2 for which:
X 3 ({Cay[0}) = £i. (F20)
Tk

In the notation of the Corepresentations tool on the BCS (Appendix D 2):

1 _ _
op = Zs3, E3, D3, and C3 for k =kz, kg, kp, and k¢, respectively,
_1 _ _

G’ = Zua, Ey, Dy, and C4 for k =kz, kg, kp, and ke, respectively, (F21)

such that the most general symmetry data vector B that satisfies the compatibility relations of M is given by:

B = (m(Z3),m(Z4),m(Es), m(E4), m(D3),m(Da), m(Cs),m(Ca))". (F22)

To calculate the Smith normal form of M described in the text surrounding Eq. (F7), we next determine the
symmetry data vectors of the EBRs of M. Using MWYCKPOS on the BCS?' 4, we find that M has four, multiplicity-
1 maximal Wyckoff positions (defined in Appendix C2), which are indexed by the sites (Fig. 24):

Qia = (07 Y, O), qip = (0, Y, 1/2)7 Qqic = (1/27 Y, 0)7 qid = (1/2a Y, 1/2)a (F23)
where y € [—1/2,1/2), such that each of the sites in Eq. (F23) lies along a line of {C5,|0} symmetry (modulo integer
lattice translations). At each of the four sites in Eq. (F23), the site-symmetry group Ggq is isomorphic to Type-I
double MPG 3.1.6 2, which is generated by Cy,. Using the CorepresentationsPG tool (Appendix E 1), we determine
that each site-symmetry group Gq in M has two double valued irreps (*E)q and (*E)q, where:

X0E),(C2y) =1, XE), (C2y) = —i. (F24)

To obtain the symmetry data vectors of the EBRs of M, we use the MBANDREP tool introduced in this work
[Appendix E 3, see also Egs. (E19) and (E30)], the output of which is reproduced below in the condensed notation of
Refs. 20,185:

CE) 1t M =730 E3® D3 @ Cs, ("E)1a T M =Z,®E, & Dy & Cy,
CE)YwtM=Z3;®&E,® Dy Cs, ('E)iyt M =Z,8Es® D3 & Cy,

(2E)1CTM:Z3@E4@E3@647 (1E)1CTM:74@E3@54®63,

(CE)atM =736 E3®Dy&Chy, ('E)YiatM=Z,®E,®& D3 & Cs. (F25)


https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_gen.pl
http://www.cryst.ehu.es/cryst/mkvec
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/mbandrep
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Using Eq. (F25), we next construct the EBR matrix [Eq. (F3)]:

EBR = (B(2E)1a , B(IE)IQ , B(zf)lb7 B(IE)1b7 B(QE)IC7 B(IE)IC’ B(ZE)M7 B(IE)ld)7

EBR = : (F26)

O R O~ O R O
—_ O = O = O = O
O R R O, OO
_ O O = O = = O
—_ O O R Kk OO
O = = O O = = O
_ o = O O = O
O = O = O = O

in which the eight columns respectively correspond to the eight EBR symmetry data vectors of M given in the order
of Eq. (F25), and the eight rows respectively correspond to small irrep multiplicities given in the order of Eq. (F22).
EBR in Eq. (F26) admits a Smith normal decomposition [Eq. (F7)]:

1 -10-1-1000 10000000O0 1 0 10 01 01
0 11 1 1000 01000000 0 1 10 01 10
1 1 -1 0000 00100000 0 1 01 10 10
Lepr — 0 00 1 0001 Aepr = 000100O0O0 Repn = 0 1 10 10 01,
1-11 0 0000 00002000 0-1-10-10-10
0O 10 0 0O0O0O1O0 00000O0O0O O 0 00 0O O01
1 00 0 0100 000000O0O0 0 0 00 01 00O
0 01 0 00O0O 000000O0O0 0 0 01 00 0O
(F27)
in which the left inverse of Legr is given by:
1 1 00 000 -1
1 1 00-100 0
0 0 00 000 1
1 1 1 -10 000 O
Lesr=1 5 1 10 100 -1 (F28)
-1 -1 00 001 1
-1 -1 00 110 0
-1 -1 11 000 0

As described in the text surrounding Eq. (F15), we first examine the nonzero values in Aggr to isolate the rows of
LEéR that contain SI formulas for M. There is only a single entry A; > 1 in Agpg in Eq. (F27): A5 = 2. This implies
that the double SI group of M [Eq. (F17)] is:
M = 17,, (F29)
and that the fifth row of nglaR contains the formula for a Zs-valued double SI:
20r(B) = —2m(Z3) — m(Z4) + m(E3) + m(D3) — m(C4) mod 2, (F30)
which can be re-expressed using the modulo 2 operation as:

ZQR(B) = m(74) + m(Eg) + m(ﬁ3) + m(€4) mod 2. (F31)

Recognizing that zyr(B’) = 0 for any EBR symmetry data vector B’, we next add the symmetry data vectors
(*E)14 t M and (2E)1, T M from Eq. (F25) to Eq. (F31) to rotate zor(B) into a more recognizable form:

zor(B) = m(Z3) + m(E3) + m(D3) + m(C3) mod 2. (F32)
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Specifically, using the small irrep label substitution in Eq. (F21), we recognize zor(B) as the formula from Refs. 198,203
for the Chern number modulo 2 in the k, = 7 plane:

29 = Z n,é( mod 2, (F33)
K=2,E,D,C

in which we have substituted k — K for notational consistency with previous works'®%. Because {Cs,|0} is a
symmetry of every BZ plane of constant k, (see Fig. 24), then in an insulating phase, the compatibility relations
require that the {C9,|0} eigenvalues of the occupied bands along each of the {Cy,|0}-invariant lines k, , = 0,7 are
the same at each k,. Hence 29 = 1 implies that the k, = 7 and &k, = 0 planes both exhibit odd Chern numbers, such
that the occupied bands either correspond to a 3D quantum anomalous Hall (QAH) insulator with an odd number
of chiral modes per k, on surfaces whose normal vectors point in the xz-plane, or to a Weyl semimetal with an even
number of Weyl points between k, = 0, 7.

3. Minimal Double SIs in the 1,651 Double SSGs

Because there are 805 double SSGs G for which the double SI group |Z%| > 1 (see Table XII), then individually
calculating the bulk and anomalous surface and hinge states and physical basis for each stable topological symmetry
data vector in each SSG is a practically intractable task. However, in this section, we will detail a procedure for
identifying a considerably smaller set of minimal SSGs with minimal double SIs, on which the double SIs in all 1,651
double SSGs are dependent. Specifically, by recognizing that the symmetry-indicated spinful topological semimetals,
TIs, and TCIs in non-minimal double SSGs are indicated by the same bulk symmetries as spinful topological semimet-
als, TIs, and TCIs in the minimal double SSGs, we will reduce the calculation of the physical double-SI-formula bases
and symmetry-respecting bulk and boundary states to a smaller, tractable problem.

Statistics of the Double Sls
Type  |SSGs with [Z%] > 1|Minimal SSGs
Type-1 126 18
Type-I1 117 b)
Type-II1 286 11
Type-IV 276 0
[Total | 805 34 \

TABLE XII: Statistics for the double SIs of the 1,651 double SSGs. In order, each row of this table contains the type of the
double SSG [see Appendix B], the number of double SSGs with nontrivial double SI groups [|Z| > 1, see Eq. (F17) and the
surrounding text], and the number of minimal double SSGs with minimal double SIs.

To begin, consider a double SSG G and a subgroup M of G that is isomorphic to an SSG. Using the procedure
detailed in Appendix F 2, we then calculate the double SI groups Z%™, double SI formulas (in their original, arbitrary
bases), and the symmetry data vectors BiG and B]M of the SI topological bands in G and M, respectively. We next
restrict consideration to the case in which the double SI groups Z¢™ are both nontrivial (i.e. |[Z% | # 1|). Lastly,
we determine whether the SI topological bands in G subduce to inequivalent SI topological bands in M, in which case,
we consider the double SIs in G to be dependent on the double Sls in M. Specifically, for an SSG G and a subgroup
M of G that is isomorphic to an SSG (but not necessarily an SSG with the same Bravais lattice as G), the double
SIs in G are dependent on the double SIs in M if and only if:

L |ZC] <|ZzM).

2. For each SI topological band in G with a symmetry data vector BS [defined in the text following Eq. (F17)], the
subduced SI vector zM (B | M) [Eq. (F'16)] exhibits a distinct value for each choice of i. Specifically, given any
two SI topological bands BY and B in G for which z(Bf) # z(B¢), the Sls in G can only be dependent
on the SIs in M if ZM(Bg I M) # zM(Bg 1 M) for all choices of Bg and Bg.

The above requirements indicate the conditions under which the double SIs in G are dependent on the double SIs
in M. However, there may also exist subgroups M’ of M where the double SIs in both G and M are dependent on
the double SIs in M’. Hence, given an SSG M for which |ZM| > 1, if there does not an exist a subgroup M’ of M
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for which the double SIs in M are dependent on the double SIs in M’, then we define M as a minimal double SSG.
Correspondingly, we define the minimal double SIs of the 1,651 double SSGs as the double SIs of the minimal double
SSGs.

We note that in this work, we have employed a more narrow definition than in other previous works'*?? for minimal
SIs. Specifically, in Refs. 14,99 the authors considered cases in which the SIs in G in are neither dependent on the Sls
in the subgroups M C G and M’ C G (where M is not isomorphic to M'), but where the SIs in G are still spanned by
the combined Sls in M and M’. As we will show below, using our narrower definition of minimal SIs, we still obtain
a manageable number of minimal double SSGs.

Next, given a minimal SSG M and an SSG G in which the Sls are dependent on the SlIs in M, it follows that all of
the symmetry-indicated stable topological semimetals, TIs, and TCIs in G are indicated by the same bulk symmetries
that indicate the bulk topology in M. Specifically, this dependency occurs because the set of SI topological bands in
G subduced onto M is spanned by the SI topological bands in M modulo EBRs of M, and because the EBRs of M
do not exhibit topological bulk, surface, or hinge states'1%2%, as they are Wannierizable®57:58:60:85,86

Conversely, if the bulk bands of a symmetry-indicated TI or TCI in G are subduced onto an SSG M where the Sls
in G are dependent on the SIs in M, the subduced topological insulating phase in M may exhibit different anomalous
boundary states. For example, when symmetry-indicated 3D TIs — such as an insulator with z5 = 1 in Type-II double
SG 81.34 P41’ (see Ref. 14) — are subduced to magnetic axion insulator (AXI)19:20:29,68,1037121 phages in minimal
MSGs (in this case, Type-I double MSG 81.33 P4, see Appendix G 3), the twofold surface Dirac cones of the parent
3D TI become gapped on surfaces in which the Dirac cones are only protected by 7 symmetry (see Refs. 20,33—
35,210), revealing a symmetric-sample-spanning network of chiral hinge modes. More generally, given a TI or TCI
that respects the symmetries in the bulk SSG G, the anomalous 2D surface states on a surface with a Miller index
vector N are necessarily protected by the symmetries of a wallpaper subgroup of G'31:132 that leaves f invariant.
However, when the occupied topological bands are subduced onto a subgroup M C G where M is isomorphic to an
SSG, it is not generically guaranteed that the 2D surface states on the n-normal surface are still gapless, because
the n-normal surface only respects the symmetries of a wallpaper subgroup of M. Nevertheless, we find that a finite
(0D) geometry can in many cases be chosen for a symmetry-indicated TT or TCI that respects the symmetries of a
bulk SSG G such that, upon subducing the bulk bands onto a subgroup M C G, the boundary states do not become
gapped. Importantly, 3D TIs that subduce to magnetic AXIs?" 3% represent a notable exception, because all 2D
surfaces of 3D TIs exhibit odd numbers of twofold Dirac cones, whereas there do not exist magnetic AXIs in which
all 2D surfaces are gapless!?20:29,68,103-121

Furthermore, we note that it is also possible for an SI topological band B in G to correspond to a gapless
(semimetallic) phase even if a subduced SI topological band BiG J M corresponds to a gapped (TI or TCI) phase.
An example occurs in Type-IV double MSG 75.5 P4 and its minimal double subgroup Type-I MSG 75.1 P4. As we
will show below in Appendix F 4 e, all of the double SIs in M = P4 are compatible with rotation-symmetry-indicated
QAH states. However, because:

G = Pod = PAU{Tt./2} P4, (F34)

then G contains the antiunitary symmetry {Cs, X T [t./2}, which enforces the presence of gapless (Weyl) points in the
k. = 0,7 planes for all nontrivial values of the SIs in G'%3%2!1 This can be seen by recognizing that {Cy, x T |t./2}
symmetry can protect gapless points in 2D systems (e.g. high-symmetry BZ-planes), and that the Chern numbers of
the occupied bands in {Cs, x T|t./2}-invariant planes (e.g. k, = 0,7) are required by symmetry to vanish. After
the submission of this work, the authors of Ref. 84 performed a complete enumeration of the cases in which an SI
topological band BY in G corresponds to a gapless phase while the SI topological band BE | M in the subgroup
M C G is compatible with a gapped topological phase.

In this work, we have exhaustively calculated the double SI groups and formulas of all 1,651 double SSGs, and have
determined that, remarkably, there are only 34 minimal double SSGs (see Table XII):

1. Minimal Type-I Double MSGs (18 MSGs): 2.4 P1, 3.1 P2, 10.42 P2/m, 47.249 Pmmm, 75.1 P4, 77.13 P4,,
81.33 P, 83.43 P4/m, 84.51 Pdy/m, 88.81 T4, /a, 123.339 P4/mmm, 143.1 P3, 147.13 P3, 168.109 P6, 174.133
P6, 175.137 P6/m, 176.143 P65/m, 191.233 P6/mmm.

2. Minimal Type-II Double SGs (5 SGs): 2.5 P11/, 83.44 P4/m1’, 87.76 I4/m1’ 175.138 P6/m1’ 176.144 P63/m1’.

3. Minimal Type-IIT Double MSGs (11 MSGs): 27.81 Pc'¢'2, 41.215 Ab'a’2, 54.342 Pc'c'a, 56.369 Pc'c'n, 60.424
Pben’, 83.45 P4’ /m, 103.199 PAc'c/, 110.249 4,c'd’, 130.429 P4/nc'c’, 135.487 P4l /mbc’, 184.195 P6c'c’.

Interestingly, we observe that there are no minimal Type-IV double MSGs (see Table XII). As discussed in the
main text, this implies that symmetry-indicated spinful topological phases in Type-IV MSGs are actually enforced
by the symmetries of lower-symmetry Type-I or Type-III double MSGs. For example, we find that the inversion-
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(Z-) symmetric antiferromagnetic (AFM) TCIs introduced in Ref. 76, which respect the symmetries of Type-IV
MSGs containing {Z|0}, in fact subduce to Z-symmetric AXIs!?20:29,68,1037121 i, Type T double MSG 2.4 P1 (see
Appendix F4a for the double SI group and formulas of double MSG 2.4 P1). Previously, in Ref. 14, the authors
determined that the double SIs in all Type-II double SGs are dependent on the double SIs in one of six Type-II
double SGs: 2.5 P11/, 81.34 P41’, 83.44 P4/m1’, 174.134 P61’, 175.138 P6/m1’, and 176.144 P63/m1’. However, in
this work, we find that Type-I1I SGs 81.34 P41’ and 174.134 P61’ are no longer minimal double SSGs after including
magnetic subgroups of Type-II SGs, because their double SIs are respectively dependent on the double SIs in Type-I
double MSGs 83.33 P4 and 174.133 P6. Additionally, for the purposes of this work, we have included Type-II SG
87.76 14/m1’ in our list of minimal double SSGs, because its double SI formulas can only be spanned by subducing
ST topological bands onto two different minimal double SSGs (Type-II SGs 2.5 P11’ and 83.44 P4/m1’), rather than
one. In the Supplementary Table in Appendix G 3, we provide a complete enumeration of the minimal double SSGs
with the minimal double SIs on which the double SIs in each double SSGs are dependent.

4. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs

Previously, in Appendix F 3, we determined that the SIs in each of the 1,651 double SSGs are fully dependent on
the minimal double SIs in one of 34 minimal double SSGs (the minimal double SSG associated to each double SSG is
listed in the Supplementary Table in Appendix G 3). In this section, we will present the minimal double SIs in all 34
minimal double SSGs, and hence, the minimal double SIs of spinful band topology in all 1,651 double SSGs. We will
additionally transform the double SI formulas into a unified basis — which we term a physical basis — in which the double
SIs for previously established spinful topological semimetals (SMs), T1Is, and TCIs!7-18:27-29,31-33,35,40,64-66,202,212 5o
the same form as the double SIs introduced in previous works” 315:19,34,36,97-101,203 " Tpy 5 physical basis, the SIs for
topological phases with the same response theories [e.g. a zg = 1 3D TT in Type-II SG 123.340 P4/mmml’ and an
na; = 2 magnetic AXI in MSG 2.4 P1, see Ref. 14 and Appendix F 4 a] are related through simple relations obtained
from group-subgroup subduction [e.g. the relation 747 = 2(zg mod 2) introduced in this work].

Below, for each minimal double SSG G, we will list the SI group Z¢ [Eq. (F17)] and the SI formula(s). We will
additionally formulate layer constructions for the gapped (TI and TCI) phases, where admitted (see Refs. 14,207 for
further discussions of cases in which TT and T'CI phases do not admit layer constructions). For the symmetry-indicated
3D QAH phases that we identify in the 34 minimal double SSGs, the anomalous boundary states are chiral modes along
surfaces perpendicular to the Chern-layer stacking direction!®:64212, We will show that the remaining 3D symmetry-
indicated, spinful, gapped topological phases in the 34 minimal double SSGs are 3D TT and TCI phases — which we
will show to consist of AXIs!?:20,29.68:103121 ith chiral hinge states, 3D TIs with twofold-degenerate, T-symmetry-
protected surface Dirac cones?”3°, helical mirror TCIs with mirror-protected surface states®?2°2, and higher-order
TCIs (HOTIs) with mirror- or T-protected helical hinge states”-!4:15,18-20,34-36,98,102 " \We emphasize that, employing
the convention of Refs. 18,34, a 2D crystal surface can only respect the symmetries of a wallpaper group, whereas
a 1D hinge may either respect the symmetries of a frieze group or a line group [defined in Refs. 131,132,204,205],
depending on how the finite sample is cut from an infinite crystal. In this work, we define a helical (i.e. non-axionic)
TCI phase to be higher-order topological if the TCI phase, when cut into a nanorod geometry, exhibits anomalous
helical states that run along nanorod edges that are parallel to bulk rotation axes, where each edge is left invariant
under a frieze or line group that contains either 7 symmetry or a mirror line parallel to the nanorod edge.

For each of the 34 minimal double SSGs, we will additionally identify the minimal layer constructions necessary
to span the subset of SI topological bands [defined in the text following Eq. (F17)] corresponding to gapped (TI and
TCI) phases; however, as we will detail below, we find that some of the symmetry-indicated spinful TT and T'CI phases
in the 34 minimal double SSGs are not layer-constructable. Specifically, as demonstrated in Ref. 14, a large subset of
the previously identified TT and TCI phases in each Type-II SG G can be modeled by placing decoupled, flat layers of
Chern insulators, 2D T1Is, and 2D TClIs in each unit cell of a crystal that respects the symmetries of G. In this work,
we find that a subset of the AXI phases in the minimal double SSGs cannot be constructed from layers of 2D TIs and
TCIs. We conjecture that the AXI phases without layer constructions can still be constructed using the “topological
crystal” framework discussed in Ref. 207, which incorporates cell complexes of 2D TIs and TClIs.

Throughout this section, we will obtain the properties of each minimal double SSG using tools on the BCS. Specifi-
cally, we will obtain the generators for each minimal double SSG using the MGENPOS tool?' 94, the maximal Wyckoff
positions using the MWYCKPOS tool?! %4, the maximal momentum stars using the MKVEC tool (see Appendix D 1),
the small (co)reps using the Corepresentations tool (see Appendix D 2), and the EBRs using the MBANDREP tool
(see Appendix E 3).

In this work, we will provide each double SI formula in the notation of Appendix F2a and Refs. 14,99. For
centrosymmetric SSGs (i.e. SSGs that contain {Z|0} in at least one definition of the unit cell origin), we will use


https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_gen.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/mbandrep
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the symbols nji{ to respectively indicate the number of Bloch eigenstates at the inversion-invariant point k = K with
the parity ({Z|0}) eigenvalues +1 in a given energy range (which is typically runs over the occupied bands). For
SSGs that contain rotation symmetries of the form {C),|0} or screw symmetries of the form {C,;|t;/b} in at least
one definition of the unit cell origin, we will use the symbol nJ. to indicate the number of Bloch eigenstates at the
Cp-rotation(or screw)-invariant point k = K with the rotation eigenvalue e~ in a given energy range. Because
we are restricting focus in this work to the double Sls of spinful band topology in the 1,651 SSGs, the factor of j in
each rotation eigenvalue e~ is half-integer-valued; in this work, we term j the angular momentum (taken modulo
n) of the rotation- or screw-invariant Bloch eigenstates at K. Next, for SSGs that contain fourfold rotoinversion
symmetries of the form {540} = {C4 x Z|0} (but not fourfold rotation symmetries of the form {C4|0}) in at least
one definition of the unit cell origin, we will use the symbol n}- to indicate the number of Bloch eigenstates at the
Sy-invariant point k = K with the {S4|0} rotoinversion eigenvalues e~ in a given energy range. Generically, n’-
(j = £1,+32) is defined using {S4]0} eigenvalues only if the point K is {S4|0}-invariant, but not {C4|0}-invariant.
Conversely, if K is {C4|0}-invariant, then n (j = +1,+32) is always defined using the eigenvalues of {C4|0}. Lastly,
for SSGs that contain both mirror symmetries of the form {m,;|0} and rotation symmetries of the form {C,,;|0} or
screw symmetries of the form {C|t;/b} in at least one definition of the unit cell origin, we will use the symbols ="
to respectively indicate the number of Bloch eigenstates at the rotation- or screw-invariant point k = K with the
rotation or screw eigenvalue e~%%J and the mirror eigenvalue +¢ in a given energy range.

Before we will derive the double Sls in the 34 minimal double SSGs, we will first summarize our labeling convention
for double SIs. First, for double SIs that have the same SI formulas as the nonmagnetic double SIs introduced in
Refs. 14, we have followed the labeling convention established in Ref. 14:

1. 29w, (i =1,2,3) are the weak TI SIs in the k; = 7 planes, or the weak mirror Chern numbers modulo 2 in the
k; = 7 planes in the absence of {7|0} symmetry.

2. Zpmk (n =4,3,6, k =0, 7) are the mirror Chern numbers (modulo n) in the k, = k plane indicated by rotation
eigenvalues in SSGs 83.44 P4/ml1’, 174.134 P61’, 175.138 P6/m1’ for n = 4,3,6, respectively. In this work,
we will use the symbol zfm . to represent the Chern numbers of sets of bands with mirror eigenvalues =i,
respectively. ’

3. 24, 22, 28, 212, and 2], indicate strong 3D TIs and helical TCIs and HOTIs in SSGs 2.5 P11/, 81.34 P41/, 83.44
P4/ml’, 175.138 P6/ml’, 176.144 P63/m1’, respectively. Odd values of z4, 22, 28, 212, and 2], correspond to
strong TIs. z4 = 2, 25 =4, 212 = 6, 2], = 6 correspond to non-axionic HOTT phases with helical hinge states or
mirror TCIs with even mirror Chern numbers (see Appendices F 4s through F 4w and Ref. 14).

If the double SIs in a Type-II SSG G continue to indicate stable topological phases in a magnetic subgroup M of G,
then we will use the same double SI labels and formulas in G and M.

We additionally find that there are Type-I1 and Type-III double MSGs with new double Sls that are not subduced
from Type-II SSGs (see Table XII). For these minimal magnetic double SIs, we have adopted a convention in which:

1. zpr (n =2,3,4,6) represent Chern numbers (modulo n) indicated by rotation eigenvalues.

2. 2l p and 2//p (n = 2,3,4,6) represent doubled Chern numbers indicated by rotation eigenvalues [i.e. 2/, =

(C/2) mod n| in nonsymmorphic MSGs.

3. mar is defined in MSG 2.4 P1. Odd values of 747 correspond to Weyl semimetals, and 7n4; = 2 corresponds to
an AXI provided that the net Chern numbers are zero and there are no Weyl points in the BZ interior. We use
the symbol “n” rather than “z” to distinguish n4; from the double SI z4 in the minimal double SSGs 2.5 P11/,
47.249 Pmmm, and 83.45 P4’ /m and from the double SI z} in double MSG 135.487 P4, /mbc’.

4. 291, (i =1,2,3) are defined in double MSG 2.4 P1, and respectively represent the Chern numbers modulo 2 in
the k; = 7 planes indicated by Z (parity) eigenvalues. We have used the subscript “I” to distinguish za;; from
zop (the Chern number modulo 2 indicated by Cs rotation eigenvalues) and za,,; (the weak TT and TCI parity
indices discussed above).

5. mh; = %7741 represents a doubled variant of 74; that is present in SSGs in which symmetry requires 745 to be
even.

6. dnm (n =2,3,4,6) represent the differences between the mirror Chern numbers in the k., = 0,7 planes (modulo
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7. 245 and o5 are defined in MSG 81.33 P4. Respectively, z45 and a5 represent the total Chern number (modulo
4) in the k, = m plane and twice the difference of the total Chern numbers in the k, = 0,7 planes (i.e.
(523 = [(Ckz:ﬂ- — Ckz:O)/2] InOd 2)

8. zj in MSG 135.487 P4/, /mbc’ represents a different Z4-valued doubled variant of the double SI 7y than the
double SI z, discussed above [e.g. na; = (22}) mod 4].

9. For all of the symbols of the double SIs, the first number (n) in the subscript indicates that the corresponding
double SI takes integer values in the range [0,n — 1].

a. Double SIs in Type-I Double MSG 2.4 P1

The double MSG 2.4 P1 is generated by {E|100}, {E|010}, {E|001}, and {Z|0}. The SIs of MSG 2.4 P1 were
previously analyzed in Refs. 16,213; the previous analyses performed in Refs. 16,213 agree with the analysis performed
in this section.

Double SIs — The double MSG 2.4 P1 has the SI group Z, x Z3. We define the four SIs of double MSG 2.4 P1 to
be (Nar, 2211, 221,2, 221,3), and we define the four SI formulas to be:

1
N4y = an} mod 4 = Z i(nl} —nj) mod 4, (F35)
K K
and:
221,i=1,2,3 = Cki:ﬂ— mod 2 = Z ’I’LI_( mod 2, (F36)
K,Ki:ﬂ‘

where K runs over the eight Z-invariant momenta in the first BZ, and ni are the number of Bloch states with
+1 parity (Z) eigenvalues at K in the group of bands under consideration (typically the occupied bands). We find
that z9r,; indicates the parity of the momentum-space Chern number in the k; = 7 plane, in agreement with the
Chern number SI formulas previously introduced in Refs. 198,203. Correspondingly, we find that 74y mod 2 is the
parity of the difference between the Chern numbers in the k, = 0 and &k, = 7 planes. Because a 3D |C| = 1 Weyl
point is equivalent to the quantum critical point®* between 2D Chern insulating phases with |AC| = 1, then this
implies that ny; = 1,3 correspond to Weyl SM (WSM) phases that satisfy the insulating compatibility relations (see
Appendix D 3), similar to the WSM and nodal-line SM phases previously analyzed in Refs. 19,64,99,113,196,214,215.
The boundary states of the n4; = 1,3 WSM phases differ from each other by a chiral hinge state or gapless surface
states, because, as we will show below, the SI difference Any;r = 3 —1 = 2 either corresponds to an AXI or a 3D QAH
state. In this work, we refer to symmetry-indicated SM phases that satisfy the insulating compatibility relations as
Smith-index SMs (SISMs).

Layer constructions — We will now formulate layer constructions of the symmetry-indicated spinful TT and TCI
phases in double MSG 2.4 P1. In each unit cell, we will use the relative 3D coordinates (z,y,2) to index layer
positions, where the unit cell is defined as lying within 0 < z,y,z < 1. In position space, an Z center at (0,0, 0)
transforms the coordinates (z,y, z) to (—x, —y, —z). For a position r to be considered Z-invariant, we require that:

Ir = r mod (1,0,0) mod (0,1,0) mod (0,0,1). (F37)

Consequently, the eight maximal Wyckoff positions (i.e. the Z centers) in MSG 2.4 P1 lie at x,y,2 = 0,1/2.

We next study the layer constructions of the insulating subset of the SI topological bands (i.e. the symmetry-
indicated topological phases that do not correspond to Weyl SISMs with odd 74; indices). We first introduce the
layer construction generators, each of which is equivalent to a 3D QAH insulator!6:194:105:212 " swhere the double Sls
for each layer construction are given in the order (nar, 2251, 221,2, 221,3)"

1. An %x-normal Chern layer with C,, = 41 in the = 0 plane has the SIs (2100).
2. An %-normal Chern layer with C;; = +1 in the = 1 plane has the SIs (0100).
3. A y-normal Chern layer with C, = %1 in the y = 0 plane has the SIs (2010).
4. A y-normal Chern layer with C;, = +1 in the y =  plane has the SIs (0010).
5. A z-normal Chern layer with C, = £1 in the z = 0 plane has the SIs (2001).
6. A z-normal Chern layer with C, = +1 in the z =  plane has the SIs (0001).
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For the double SIs of the above layer constructions, we have adopted the convention used in Refs. 14,99 in which
commas are suppressed for specific values of the SIs [e.g. (11, 221,1, #21,2, 221,3) = (2100)]. Below, we will detail the
explicit calculations that we have performed to calculate the SIs of each layer construction, focusing on the cases of
z-normal Chern layers with C, = 1 respectively placed at z =0 and z = % In this work, we will only consider layer
constructions of stable topological phases (as opposed to fragile phases, see Appendix F 1 and Refs. 53,54,56-58,181—
184,186-190), which do not depend of the positions of layers with trivial 2D stable topological invariants [i.e. layers of
2D fragile phases or (obstructed) atomic limits]'*. Hence, for stable topological phases that admit layer constructions,

the stable Sls are fully determined by the positions, orientations, and 2D stable topology of the layers.

First, we consider a crystal in double MSG 2.4 P1 that is constructed of layered, Z-normal Chern insulators with
C, =1 that lie at z = 0 in each unit cell. We assume, without loss of generality, that each Chern insulator originates
from placing one valence (occupied) spinful s orbital at (x,y) = (0,0), placing one conduction (unoccupied) spinful p
orbital at (z,y) = (0,0), and then inverting bands at (k;, ky) = (0,0), resulting in the occupied parity eigenvalues:

N(0,0) = -1, X(m,0)=1, N(0,7) =1, N(m,7)=1. (F38)

As shown in Refs. 198,203 the Chern number C', of each layer satisfies:

0% =11 IT ».&), (F39)

K ne€occ

where K runs over the four Z-invariant momenta in Eq. (F38), and XK,n is the parity eigenvalue of the n'? energetically
isolated band at K [though for the specific case that we are discussing, there is only one isolated (valence) band n = 1].
The parity eigenvalues shown in Eq. (F38) indicate that each layer carries a nontrivial Chern number C, mod 2 = 1.

Next, we express the occupied band of each Chern layer in a basis of hybrid Wannier functions'¢*'? in which

states within the layers are exponentially localized in z and depend on the crystal momenta k, ,. We then return to
momentum space by Fourier-transforming the z component of the hybrid Bloch-Wannier wavefunction of the occupied
band:

)= —— 3 e, ), (F40)

VN: 2=0,41--

in which NV, is the number of unit cells in the crystal in the z-direction. In the hybrid basis of (kg, ky, 2):
T(kas by, 2) = (—h, —hys —2), (F41)

and hybrid coordinates h are considered to be Z-invariant if:

Zh = h mod (2,0,0) mod (0,27, 0) mod (0,0, 1). (F42)

However, it is important to emphasize that the hybrid wavefunction [y, ,..) of each layer, unlike the Bloch
wavefunction [¢k), is generically not an eigenstate of Z:

Tk, kyz) = N (kay ky) [k, ey —2) (F43)

in which \'(k,,k,) is the parity eigenvalue of the occupied band in the 2D BZ of a single Chern insulator. For a
crystal in double MSG 2.4 P1 furnished by z-normal, C’, = 1 Chern layers in the z = 0 plane of each cell, this implies
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that the parity eigenvalues at the Z-invariant k points are given by:

1 —1z
I|1/)k> = \/]T Z € kZIW}km,ka)
? 2=0,%1---
1

—izk, \/
- Z e N (kg ky) Wk, gy —2)
\/Fz z=0,%1---

1 1z
= N(ka, ky) VN, Z € kzlwkw)kyvz>]
1

= N(ks, ky) e 1ek: [eikz]% ¢km,k,,,z>]
LV E 2=0,%1-- ‘
- |
= N(ky, ky) e_”kzww,sz)]
LY NZ 2=0,%1---
= N(ka, ky) ), (F44)

where in the fifth line, we have used the relation [e?*:]2* = 1 for Z-invariant momenta k. = 0,7 and z € Z. Through
Eq. (F44), we determine that the 3D parity eigenvalues A(ks, ky, k.) satisfy A(kg, ky, k.) = X (kz, ky). From the parity
eigenvalues of each layer listed in Eq. (F38), this implies that:

A(0,0,0) = —1, A(m,0,0) =1, A(0,7,0) = 1, A(m,m,0) =1,
A0,0,7) = =1, A(m,0,m) =1, A0, m,7) =1, A(m,m,7) = 1. (F45)
Substituting the parity eigenvalues from Eq. (F45) into Egs. (F35) and (F36), we obtain the SIs (2001) for a 3D

crystal in double MSG 2.4 P1 with Zz-normal C, = 1 Chern insulators placed at z = 0 in each cell.

We next consider the case in which the 3D crystal is furnished with layers of z-normal, C’, = 1 Chern insulators
that lie at z mod 1 = % The Bloch wavefunction of the occupied band of the 3D crystal takes the form:

1
VN

e g, ey 2)- (F46)
amiltde

[Yx) =

Unlike previously in Eq. (F44), for a crystal in double MSG 2.4 P1 furnished by z-normal, C;, = 1 Chern insulator in

the z = % plane of each unit cell, the parity eigenvalues at the Z-invariant k points are given by:

1 —iz
Ilpx) = S e Tk, 2)

11 3
2=+l 42..

VN
1 —izky \/
— Z oizks \ (k:r,ky)‘,l/}kmﬁky7fz>
mz::ﬁ:%,:ﬁ:%---

1 _
= N(ky, ky) Z e (g, ey 2)
VN 2=41,43..
1

= Nharky) | = S e (%) )

41 43,
z=*x5,t5

i 1 —iz
= Nok)e™ | T 20 )

_41 43,
z==%3,t5

= N(ks, ky)e™ =), (F47)

where in the fifth line, we have exploited that the summation is taken over half-integer values of 2. Eq. (F47) implies
that the 3D parity eigenvalues A(ky, ky, k.) satisfy A(ky, ky, k2) = €= X (kz, ky). From the parity eigenvalues of each
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layer listed in Eq. (F38), this indicates that:

(0,0,0
A(0,0,m)

=

= —1, A\(m,0,0) =1, A(0,7,0) =1, A(m,7,0) =1,
1, A(m,0,7) = -1, NO,7,7) =—1, A(m,m,m) = —1. (F48)

Substituting the parity eigenvalues from Eq. (F48) into Egs. (F35) and (F36), we obtain the SIs (0001) for a 3D
crystal of z-normal C, = 1 Chern insulators placed at z = % in double MSG 2.4 PI.

For the remainder of this work, we will not explicitly calculate the 3D symmetry eigenvalues that are implied by
each layer construction. However, because the unitary symmetries of magnetic crystals are drawn from the same
set as the unitary symmetries of nonmagnetic crystals [i.e. because the unitary subgroups of both Type-II SGs and
Type-IIT and IV MSGs are isomorphic to Type-I MSGs, see Appendix B], then the symmetry eigenvalues of the
magnetic layer constructions introduced in this work can be extrapolated from the analogous analyses of nonmagnetic
layer constructions in Ref. 14.

The inversion Zs invariant and AXIs — We find that n4; = 2 if and only if the Z-center at the origin (000) is occupied
by a layer with an odd Chern number. For 3D QAH states (i.e. 3D insulators with nonzero Chern numbers), the
nar = 0,2 phases have the same bulk response. For example, layer constructions 1 and 2 for double MSG 2.4 P1 -
which exhibit 747 = 2,0, respectively — are related by a shift of origin from (000) to (00%). Nevertheless, the boundary
states of insulators with ny; = 0,2 are distinct. For a finite-size sample with an Z center at (000), the state with
N4 = 2 has a single Chern layer passing through the Z center, and pairs of Chern layers at positions (00, £z). In the
finite sample, the total Chern number is therefore odd, and there is an Z-symmetric chiral hinge (or surface) mode
surrounding the sample guaranteed by the net-odd Chern number. However, in the state with ny; = 0, all of the
Chern layers appear in pairs at the positions (00, £z), such that the total Chern number is even. This implies the
possibility of a completely gapped finite sample (i.e. a total sample Chern number of zero).

For 3D insulators with vanishing Chern numbers, n4; = 0,2 correspond to trivial insulators and AXIs, respectively.
For example, the TCI constructed by one C, = 1 layer in the z = 0 plane and one C, = —1 layer in the z = % plane
is an AXI with the double SIs (2000)'¢-108,114,115,118,119,213 * The chiral hinge states of the AXI can be understood
by observing that the chiral modes on the boundary of the layered crystal alternate in direction, and can hence
pairwise annihilate — when the finite-sized crystal is Z-symmetric, there is an unpaired chiral mode that is equivalent
to a boundary-encircling chiral hinge state. Specializing to the even sector of 747, this implies that an inversion Z,
invariant may be defined as:

1
Moy = 371 mod 2. (F49)

We emphasize that it is 747 — as opposed to n5; — that is returned by the Smith normal form calculation (see
Appendix F 2) for double MSG 2.4 P1. The non-minimal index 7}, is integer-valued only for 3D insulators or WSMs
with even numbers of Weyl points in each half of the bulk BZ. Nevertheless, as we will show below, in many higher-
symmetry double SSGs in which the SIs depend on the SIs in double MSG 2.4 P1 (see Appendix G 3), the Smith
normal form calculation does return n5;. From previous works!?2%:29:68,1037121 " \we recognize that ny; = 1 is related
to the axion angle 6 = m:

6 mod 27 = ;. (F50)

However, it is crucial to note that the axion angle § = w does not always indicate an axionic band-insulating phase
(i.e. an AXI or 3D TI, see Refs. 19,20,27-29,68,103-121). For example, consider the case of a crystal in MSG 2.4 P1
furnished by one C, = 1 layer in the z = 0 plane and one C, = 1 layer in the z = % plane — the bulk topological
phase is not an AXI, but is instead a 3D QAH insulator with C, = 2 per unit cell. For the C, = 2 QAH insulator,
the SIs [(2000)] are the same as those of the AXI discussed in the text surrounding Egs. (F49) and (F50), indicating
that @ = 7y, = m, despite the fact that the bulk is not an AXI. This can be understood by recognizing that the
axion # angle is origin-dependent when the Z-valued, non-symmetry-indicated Chern numbers of a 3D crystal do
not vanish!08:118:119,216.217 "4 q hence @ can still be nonzero in a 3D QAH phase depending on the choice of origin.
Therefore, in order for Eq. (F50) to indicate the origin-independent 6 angle of an AXI, it is additionally required
that the total Chern numbers C ,, . vanish in each unit cell. Lastly, we note that Eq. (F50) differs by = from the
definition of 6 as a “Chern number polarization” employed in Refs. 108,118,216. Hence, in 3D insulators with non-
vanishing position-space Chern numbers (i.e. nonzero total Chern numbers in any direction summed across the layers
in each position-space unit cell) and origin- (i.e. convention-) dependent 6 angles, the SIs introduced in this work [e.g.
Eq. (F50)] return values of 6 that are shifted from the values in Refs. 108,118,216 by w. Importantly, however, both
Eq. (F50) and the Chern number polarization in Refs. 108,118,216 correctly diagnose the convention-independent
bulk 6 angle of AXIs to be § = 7.
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Relationship with the SIs in other double SSGs — As shown in Refs. 7,14,15, the double SIs in double SG 2.5 P11’
take the same form as Egs. (F36) and (F35) under the replacement of nj; with ny /2 [i.e. the number of energetically
isolated Kramers pairs of Bloch states at K]. The SI topological bands in double SG 2.5 P11’ subduced onto double
MSG 2.4 P1 imply the double SI dependencies:

(247ZQw,laZQw,2722w,3)Pil’ — (7741,221,1,Z2I,27221,3)pi = (2(24 mod 2)7000)}91- (F51)

b. Double Sls in Type-I Double MSG 3.1 P2

The double MSG 3.1 P2 is generated by {F|100}, {E|010}, {E|001}, and {C3,|0}, and has the double SI group
Zs. We first recall the formula established in Refs. 104,198,203 for the parity of the Chern number in a y-normal 2D
insulator with {C4,|00} symmetry:

)% = ] [[& ), (F52)

nc€occ K

where C, is the Chern number in the y-direction, ¢, (K) is the {Ca,|00} eigenvalue of the n'! energetically isolated
state at K, and K runs over the four {Cs,|00}-invariant momenta in 2D. Using Eq. (F52), we define the double SI
zor of MSG 3.1 P2 to be the parity of the Chern number Cy in the k, = 7 plane:

1
zp =Cry—ymod 2= Y n} mod 2, (F53)
K=Z,D,C,E

where nlé( is the number of energetically isolated states with the {Cs,|0} eigenvalue —i [corresponding to an angular
momentum (modulo 2) of j = %] at K. For 3D insulating phases, the Chern numbers in all of the BZ planes of
constant k, for —m <k, < 7 must be the same (otherwise, there would be bulk Weyl points, and the bulk would not
be an insulator). Hence, a 3D insulator with 2o = 1 is a 3D QAH state with Cy mod 2 = 1.

If the symmetry operation {70} were added, a crystal in double MSG 3.1 P2 would become invariant under Type-
IT double SG 3.2 P21'. In P21’, states at the four TRIM points K in Eq. (F53) form Kramers pairs with opposite

1
{C5,|0} eigenvalues, causing nZ to be even, and zar to be zero. This agrees with the absence of double SIs in Type-II
double SG 3.2 P21’ (see Appendix G 3), and the requirement that the position-space Chern numbers C,, , , vanish in
a nonmagnetic (7-symmetric) crystal®”218,

c.  Double SIs in Type-I Double MSG 10.42 P2/m

The double MSG 10.42 P2/m is generated by {E|100}, {E|010}, {E|001}, {C4,|0}, and {m,|0}.
SIs — The double MSG 10.42 P2/m has the SI group Z3. In the physical basis, the three double SIs of double MSG
10.42 P2/m (82m, 23, x> Zam,) have the respective SI formulas:

1. P
Som = C;f —Cy mod 2 = Z nf(’Jr — Z ni  mod 2, (F54)
K=2,D,C,E K=T,A,B,Y

23w = Cf mod 2 = Z nf(’ﬂ mod 2, (F55)

K=2,D,C,E

1

Zome=Cyrmod2= > nZ "mod?2, (F56)

K=2,D,C,E

where n Ki is the number of occupied states with angular momentum j, the {C2,|0} eigenvalue e=™ and the {my|0}
eigenvalue £i. Because the matrix representative of {m,|0} commutes with the matrix representatlve of {C,|0} in
all double-valued small irreps at each of the Z-invariant k points in double MSG 10.42 P2/m, then sz - Tespectively
indicate the Chern number parities in the mirror sector of the k, = 7 plane with {m,|0} eigenvalue i, As discussed
in Appendix F 2a, if the bulk is a 3D insulator, then the occupied states in the by, = 0,7 planes have the same total
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Chern numbers (i.e the sum of the Chern numbers over the two mirror sectors in each of the k, = 0,7 planes is the
same), because the insulating compatibility relations require that the occupied bands in the k, = 0,7 planes have the
same {Cs,|0} eigenvalues.

Layer constructions — To diagnose the topology associated to each nontrivial value of the double SIs, we employ
the layer construction method. We denote the Chern numbers of the occupied bands in each mirror sector — which
we term the mirror sector Chern numbers — as (C,;’;:O, Ck_y:07 C,;Z:ﬂ, Ck_yzw)' The insulating compatibility relations

require that Cz;::o + ), —o mod 2 = C,;Z:Tr + €, = mod 2. We emphasize that the double Sls in Egs. (F54), (F55),
and (F56) are fully determined by the above mirror sector Chern numbers (Clj,,:o’ Cr,, =0’ th:ﬂ, Cl;,:w)- We next
calculate the minimal double SIs of double MSG 10.42 P2/m in the order (82, 23, Zam.x)> as well as the subduced

2m,m>

double SIs (nar, 2211, 221,2, 221,3) p1 in the subgroup double MSG 2.4 P1 for a physical comparison and to identify
symmetry-indicated AXI phases in MSG 10.42 P2/m.

1. A y-normal layer with C{f =1, C, =0 in the y = 0 plane has the mirror sector Chern numbers =(1010) and
the SIs (110). The subgroup SIs are (nar, 2211, 221,2, 221,3) p1 = (2010) p1.

2. A y-normal layer with C;F =0, C,” = 1 in the y = 0 plane has the mirror sector Chern numbers (0101) and the
SIs (101). The subgroup SIs are (2010) p.

3. A y-normal layer with C;f =1, C,” = 0 in the y = 1 plane has the mirror sector Chern numbers (1001) and the

2
SIs (001). The subgroup SIs are (0010) p5.

4. A y-normal layer with CJ =0,C, =1linthey = % plane has the mirror sector Chern numbers (0110) and the
SIs (010). The subgroup SIs are (0010) p5.

Relationship with the SIs in other double SSGs — To identify the AXI phases in double MSG 10.42 P2/m, we
subduce the SIs onto the SIs of double MSG 2.4 P1:

(82m» 23 > Zz_m,ﬁ)Pz/m — (a1, 221,15 2212, 221,3) PT = (202m, 0, 230, « + 2o s O)Pi : (F57)

We find that both the (100) and (111) states in double MSG 10.42 P2/m are consistent with AXI phases [but may
also, for example, be 3D QAH phases, see Appendix F4a]. We label the four layer constructions as L1 234. The
(100) and (111) states in double MSG 10.42 P2/m can be constructed as Ly — Ly and Ly — L3, respectively. Lastly,
—Ls3 (—L4) has the same construction as L3 (L4), except for a difference in the position-space mirror sector Chern
number C;F = —1 (C = —1).

Lastly, Type-II double SSG 10.43 P2/m1’ — the double SSG that results from adding {70} symmetry to Type-I
double MSG 10.42 P2/m — has the SI group Z4 x Z‘;’ . The subduction relations between the double SIs in double
SSG 10.43 P2/m1’ and double MSG 10.42 P2/m are given by:

(24, 220,15 20,2, 220,3) P2/m1" — (02m Zam x> Zam ) P2/m = (7 MOd 2, 290 2, Z2w,2) P2 /m- (F58)

d. Double SIs in Type-I Double MSG 47.249 Pmmm

The double MSG 47.249 Pmmm is generated by {£|100}, {E£|010}, {E|001}, {m,|0}, {m,|0}, and {Z|0}.

SIs — The double MSG 47.249 Pmmm has the SI group Z, x Z3. In double-valued small irreps of the little groups
at the Z-invariant k points, the matrix representatives of perpendicular mirror symmetries (e.g. {m,|0} and {m,|0})
anticommute. Hence, Bloch states at the eight Z-invariant momenta must be at least twofold degenerate (and in fact
are exactly twofold degenerate in double MSG 47.249 Pmmm). The double SIs can be chosen to be the same as
the double SIs of SSG 47.250 Pmmm]1’, because the addition of 7 symmetry to double MSG 47.249 Pmmm does
not change the dimensions and characters of the small irreps at the high-symmetry BZ points or the compatibility
relations between the high-symmetry-point small irreps. In the physical basis, the Z4 double SI is:

1
24 = Z i(n} —nj) mod 4, (F59)
K

where K indexes all Z-invariant momenta and ni is the number of occupied states with +1 parity (Z) eigenvalues
at K. z4 has the same form as ny; [Eq. (F35)], but carries an additional prefactor of 1/2. The extra factor of 1/2
in Eq. (F59) can be understood from the double degeneracy of the Bloch states at the Z-invariant TRIM points,
where the two states in each doublet have the same parity eigenvalues and complex-conjugate pairs of spinful mirror
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eigenvalues +i, due to the anticommutation relations discussed above. Hence, the SI formula for z4 [Eq. (F59)] is
simply one half of the SI formula for ny; [Eq. (F35)] (before applying the modulo 4 operation). The three Zy Sls are
the mirror Chern number parities in the k1 2 3 = 7 planes:

1
Z2w,i=1,2,3 = Z in;{ mod 2. (F60)
K,Ki:W

Specifically, because an in-plane mirror operation reverses the sign of a 2D Chern number, and because all of the
mirror planes in the bulk BZ have additional in-plane mirror symmetries (e.g. the Hamiltonian in each BZ mirror
plane must respect the symmetries of magnetic layer group!?18:63:128:129,131 5004 then the net Chern number in
each BZ mirror plane in double MSG 47.249 Pmmm must vanish. For a group of bands in a mirror-invariant BZ
(position-space) plane for which C,;t_ = —C,. (CT = —C7), we then define the mirror Chern number®**°? to be |C’2‘|
(Ilc)).

Layer constructions — To diagnose the topology associated to each nontrivial value of the double Sls, we employ
the layer construction method. In the layer constructions below, C* = —C~ due to the net-zero Chern numbers
enforced by the mirror symmetries. Hence, we will omit C~ in further discussions of the topology in double MSG
47.249 Pmmm. The layer constructions for the double SIs (24, 22w,1, Z2w,2; 22w,3) of MSG 47.249 Pmmm are given
by:

1. An %x-normal mirror Chern layer with C;f = 1 in the z = 0 plane has the mirror sector Chern numbers
(CF _,Cif _) = (11) and the SIs (2100).

2. An %X-normal mirror Chern layer with C;7 = 1 in the x = % plane has the mirror sector Chern numbers
(CF _,Cif _) = (1,—1) and the SIs (0100).

3. A y-normal mirror Chern layer with C; = 1 in the y = 0 plane has the mirror sector Chern numbers
(Cyi —0- Cf, ) = (11) and the SIs (2010).

4. A y-normal mirror Chern layer with C?j = 1 in the y = % plane has the mirror sector Chern numbers
(Cy —0: Oy —) = (1, 1) and the SIs (0010).

5. A z-normal mirror Chern layer with C} = 1 in the z = 0 plane has the mirror sector Chern numbers
(CF o, C ) = (11) and the STs (2001).

6. A z-normal mirror Chern layer with C} = 1 in the z = % plane has the mirror sector Chern numbers

(Cy 0, Cf ) = (1,—1) and the SIs (0001).

The layer-construction calculations in this section parallel with the previous calculations in Appendix F4a of the
layer constructions of the insulating phases in double MSG 2.4 P1. Hence, we will only consider layer construction 5
as an example of the generalization from the layer constructions and bulk topology in double MSG 2.4 P1 to that in
double MSG 47.249 Pmmm.

In layer construction 5, we take each layer to consist of a z-normal 2D mirror Chern insulator (C}f = —C; = 1)
with the occupied parity (Z) eigenvalues X| 5(ks, ky) = ——, ++, ++, ++ at (kz, ky) = (00), (07), (70), (77), respec-
tively. The subscripts 1,2 on A} 5(kz,k,) represent the {m.|0} eigenvalue sectors i and —i, respectively. Apply-
ing the Fourier transformation in Eq. (F40), we find that the parity eigenvalues of the 3D system are given by
A12(ke, Ky, ko) = N o (e, ky) [Eq. (F44)]. This implies that Ay o(ka, ky, k2) = ——, ++, ++, ++, =, ++, ++, ++ for
(ks ky, k) = (000), (070), (700), (7m0), (007), (Or~), (707), (w7wm), respectively. Substituting the parity eigenvalues
of layer construction 5 into Egs. (F59) and (F60), we obtain the SIs (2001).

Axion insulators — We find that states with odd z4 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z4. First, as we will show below, (1000) and (3000) subduce to (2000)p7 in MSG 2.4 P1. Hence, if the (1000)
and (3000) phases in double MSG 47.249 Pmmm are insulating, then the bulk insulator must either be an AXI or
a 3D QAH state. Because the net Chern numbers C, , . = 0 must vanish if the bulk is gapped, due to the mirror
symmetries of double MSG 47.249 Pmmm, then the (1000) and (3000) states must be AXIs. This result can also be
understood by subducing from a 7-symmetric SSG. Specifically, because (1000) and (3000) in MSG 47.249 Pmmm can
respectively be subduced from (1000) prmm1s and (3000) prmm1s in Type-1T SG 47.250 Pmmm]1’, which correspond
to T-symmetric 3D TIs with § = 771415 then (1000) and (3000) are compatible with bulk-gapped states. Hence, we
conclude that 3D insulators with (1000) and (3000) in double MSG 47.249 Pmmm are AXIs, without ambiguity. We
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FIG. 25: Surface Dirac points protected by mirror Chern numbers. In this figure, we respectively depict the surface states
of insulators with the bulk mirror Chern numbers C* = —C~ = 1,2,3, where C* respectively refer to the Chern number in
the mirror sector with eigenvalue +i. In each panel, we depict a topological surface band structure along a mirror-invariant
surface BZ line, where the red and blue lines respectively indicate bands with the mirror eigenvalues ¢ and —i. At half-filling,
the number of twofold surface Dirac points is given by the mirror Chern number |C"|, where |Ct| = |C 7.

conjecture that the (1000) and (3000) AXIs in MSG 47.249 Pmmm can be constructed using the topological crystal
method?’7, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TClIs.

Helical HOTI phases protected by mirror — First, the double SIs (2000)pnmmi of Type-II double SSG 47.250
Pmmm1’ correspond to a helical (non-axionic, i.e. 6 mod 2w = 0) HOTI protected by Z and T symmetries. In the
7Z- and T-symmetric HOTI phase, an odd number of helical modes encircle a finite sample with Z-symmetry. Because
double SSG 47.250 Pmmm]l’ contains {m, , .|0} symmetries, then a single helical hinge mode on a boundary must
also be pinned to the hinge projection of a bulk mirror plane, and must indicate a bulk mirror Chern number C,,, = 2
(because a mirror-invariant hinge is a 1D domain wall between two 2D surfaces with two massive twofold Dirac cones
with oppositely-signed masses related by mirror symmetry, see Refs. 14,18,34).

Returning to the magnetic subgroup Type-I MSG 47.249 Pmmm of Type-11 SG 47.250 Pmmm1’, we denote the six
layer constructions introduced in this section as L, (a = 1---6), respectively. Without loss of generality, we consider
(2n+1)L1 @ (2m+1)Ls. We next consider a 90° hinge of a z-directed, mmme-invariant rod that lies between z+y > 0,
x —y < 0, where the rod is centered at the origin. On the 1D hinge, (2n + 1)L, which has the mirror sector Chern
numbers C;f = —C, = 2n+ 1 and has 2D TCI layers at = 0,£1---, will contribute 2n + 1 helical modes to the
hinge at z =y = 0.

We next note that the bulk mirror Chern numbers (C’,;Z:O, C,jw:ﬁ) are (2n+2m+2,2n—2m). If n—m mod 2 = 0,
then Cli:o mod 4 =2 and Clj;:ﬂ' mod 4 =0, and if n —m mod 2 = 1, then C,jmzo mod 4 = 0 and C,;;:W mod 4 = 2.
In general, the SIs (2000) can be constructed as (2n 4+ 1)L; @ (2m + 1)La, or (2n + 1)Ls @ (2m + 1)Ly, or
(2n+1)Ls ® (2m+1)Lg (m,n € Z), or through any superposition of an odd number of the aforementioned layer con-
structions. Hence, there exists a direction i € {x,y, z} such that the mirror Chern numbers in the 7 direction are either
(C,;ZO mod 4, C,;:ﬂ mod 4) = (2,0) or (C’,;::O mod 4, Cl;::ﬂ mod 4) = (0,2). Therefore, the bulk of the (2000) is a
mirror T'CI. Nevertheless, in this work, we refer to the (2000) phase in double MSG 47.249 Pmmm as a helical HOTTI,
because the (2000) phase of double MSG 47.249 can be connected to a (24, 22w,1, 22w,25 22w,3) Pmmm1’ = (2000) prmm1s
mirror TCI phase in the 7-symmetric supergroup Type-II double SG 47.250 Pmmm1’ without closing a bulk or surface
gap. In turn, the (2000) pymm1 TCI phase subduces to an Z- and 7-protected (24, 22,1, 22w,2, 22w,3) 117 = (2000) p11/
helical HOTTI in Type-II double SG 2.5 P11’ [see Appendix F 45 and Refs. 7,14,15,19]. To summarize, there exists at
least one mirror-symmetric surface in the (2000) HOTI state that has 2 + 4n (n € {Z*,0}) twofold Dirac points, in
agreement with nontrivial even bulk mirror Chern number. We depict the anomalous surface and hinge states of the
(2000) HOTT phase in Fig. 26(a).

For completeness, we next consider the boundary states of the layer construction (2n + 1)L; & (2m + 1)Ly. The
Chern numbers in the {m,|0} mirror sectors are C,j;zo =—C}.—o =2n+2m+2, C’g;zﬂ = —C}.—, = 2n—2m. We
consider either a y- or a z-normal surface, either of which preserves {m;|0} mirror symmetry. In the 2D surface BZ,
the bulk Chern number th:o mandates the presence of |2n + 2m + 2| twofold Dirac points on the k, = 0 line (see
Fig. 25), and C’,:;:Tr mandates the presence of |2n — 2m| Dirac points on the k, = 7 line. Hence the total number
of twofold surface Dirac points is |2n + 2m + 2| + |2n — 2m| mod 4 = 2. Similarly, (2n + 1)L3 @ (2m + 1)L, and
(2n + 1)Ls @ (2m + 1)Lg will exhibit 2 + 4n (n € {Z",0}) twofold Dirac points on {m,|0}- and {m|0}-preserving
surfaces, respectively. In Appendix F 6 a, we will prove that, on surfaces of the (2000) state that respect the symmetries
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FIG. 26: The boundary states of the non-axionic magnetic HOTI phases in double MSGs (a) 47.249 Pmmm, (b) 123.339
P4/mmm, (c) 191.233 P6/mmm. In the top panel, we show the mirror-protected surface twofold Dirac cones and side-surface
helical hinge modes of each non-axionic magnetic HOTI (see Appendix F 6 for further details). The symmetry groups of the
top (z-normal) surfaces are Type-I magnetic wallpaper groups (a) pmm, (b) p4dm, and (c) p6m (see Refs. 18,35,63,131,132 and
Appendix F 6). We note that, in this work, we have labeled wallpaper groups — which are also sometimes termed plane groups —
using the short notation previously employed in Refs. 18,55,131; in the long notation of the Get Plane Gen tool on the BCS62
the magnetic wallpaper groups in (a-c) pmm, pdm, and p6m are respectively labeled by the symbols p2mm, p4mm, and p6mm.
In (a~c), the helical hinge states are pinned to the hinge projections of the bulk mirror planes, and therefore originate from
nontrivial bulk mirror Chern numbers. In the middle and bottom panels, we depict two possible configurations of anomalous
twofold Dirac points in the top-surface BZ, where the dashed lines represent the top-surface projections of bulk mirror planes.
In Appendix F 6 a, we will introduce magnetic Dirac fermion doubling theorems for 2D insulators with the magnetic wallpaper
groups of the top surfaces in (a~c). The fermion doubling theorems for the top-surface wallpaper groups in (a-c) are respectively
circumvented by the non-axionic magnetic HOTI phases discovered in this work.

of Type-I double magnetic wallpaper group!®35:63:13L132 pm - the presence of 2 + 4n (n € {Z*,0}) twofold surface

Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group
pmm.

Relationship with the Sls in other double SSGs — To identity the AXI phases, we subduce the SIs onto double MSG
2.4 P1. As explained in the text following Eq. (F59), because each doublet of Bloch states at an Z-invariant k point
in MSG 47.249 Pmmm has the same parity eigenvalues (and complex-conjugate mirror eigenvalues), then z4 is simply
a doubling of 74;. Hence n4;r = 224 mod 4. Similarly, zor ; = 2224,,; mod 2 = 0. In summary:

(24, 22w,1, Z2w,25 Z22w,3) Pmmm — (a1, 2211, 221,2, 221,3) p1 = (224 mod 4, 000) p1. (F61)

Hence, the (1000) and (3000) states in double MSG 47.249 Pmmm, if gapped, correspond to AXIs.

Lastly, the correspondence between the double Sls of Type-I double MSG 47.249 Pmmm and the double Sls of
Type-II double SSG 47.250 Pmmm1’ is one-to-one.

e. Double Sls in Type-I Double MSG 75.1 P4

The double MSG 75.1 P4 is generated by {E|100}, {£|010}, {F|001}, and {C4.|0}.
The double SI group of double MSG 75.1 P4 is Z4. To determine the physical basis for the double Sls, we first
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recall the formula for the Chern number in the presence of fourfold rotation symmetry2°3:

i9 = (=1)Neee T €u(00)&n ()¢ (0m), (F62)

neoce

where &, (K) is the {C,.|0} eigenvalue of the n*" occupied state at K, and ¢, (K) is the {C5.|0} eigenvalue of the n'h
occupied state at K. We can define the SI as the Chern number in the k, = 7 plane modulo 4:

1 2 1 _r 3 8 3 _3 1 _1
24r = Ck,=r mod 4 = 2Ny¢c + Z <—2nf(+2nK2 —an(—l—an?) —n}+ng”® mod 4
K=2,A
1 1 1 -+ 3 3 3 _3 1 _1
= Z (—2nf(+2nK2 —2nf{+2nK2>+n§—nR2 mod 4, (F63)

K=Z,A

-
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1 . . . _im m ;3w .
where n% A are the number of occupied states with {Cy,|0} eigenvalues e™ "1, e'1, e "2 | e""2 | respectively,

1

and n%_f are the number of occupied states with {C5,|0} eigenvalues e 7, e'7, respectively. In deriving Eq. (F63),
we have used the relation Nyec = “1%% + n;%.

Due to the compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a
momentum-space Chern number, a 3D insulator must satisfy Cj_—. = C}_ for all k,. Hence, we may have equivalently
defined the SI z4r using the occupied {C4.|0} and {C5.|0} eigenvalues in k, = 0 plane, or in any other BZ plane of
constant k. In general, in this work, in order to match the convention employed in Ref. 14, we will use the rotation
eigenvalues in the k; = 7 plane to define double SIs in the physical basis. To summarize, if a 3D system is insulating
and exhibits z4p # 0, then the system is in a 3D QAH state with Cj_—o = Ck_=» and zyr = Cj_ =0 mod 4.

Because the physical meaning of the double Sls is straightforward (i.e. the nontrivial phases are 3D QAH states
composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 75.1 P4.

If we impose T-symmetry, then the position-space Chern numbers must vanish, which enforces z4r to be zero.
Furthermore, if we add 7 symmetry to a system that respects double MSG 75.1 P4, we specifically find that the SI
group becomes trivial.

f- Double SlIs in Type-I Double MSG 77.13 P4,

The double MSG 77.13 P4, is generated by {E£[100}, {£|010}, {£[001}, and {C4.[003}.
The SI group of double MSG 77.13 P45 is Zs. We can define the SI as half of the Chern number Cj in the k, = 0
plane modulo 2 (where we will show below that Cy is always even due to the screw symmetry {Cy.[004}):

1 1 1
ny + in)f mod 2, (Fo64)

1
3~
where ng iy
1
-2

5 are the number of occupied states with {C4z|00%} eigenvalues e /%, e'%, e7¥F, €'7 , respectively,
and n)%( are the number of occupied states with {Cs.|0} eigenvalues e~?3, €3 respectively. For Chern number
SIs determined by screw symmetry eigenvalues, we note that we may, in general, either define the SI using the screw
eigenvalues in the k; = 0 plane or the eigenvalues in the k; = 7 plane. However, as we will shortly see in the case of
double MSG 84.51 P45/m in Appendix F 41, if a mirror symmetry is also present whose matrix representatives do
not commute with those of screw symmetry at all k points where both symmetries are in the little group Gy, then
additional constraints are imposed on the small (co)rep characters of screw. Hence, in this work, we will only use
screw eigenvalues in the k; = 0 plane to define double Sls.

Due to the monodromy of small (co)reps in nonsymmorphic SSGs [see Appendix D 3|, the overall sign of each

eigenvalue of {C4z|00%} changes when k, is advanced through a period of the reciprocal lattice. This implies the
1 3 1 3 1 3 1 3

compatibility relations: ng = np?, np? = ng, n}, = n,2, n,” = ni;. Imposing the compatibility relation
constraints on Eq. (F63) [and substituting ', M, X for Z, A, R, respectively], we find that the Chern number Cy is
always even.
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We therefore define (Cp/2) mod 2 [as opposed to Cp mod 4] to be the SI 2}, of double MSG 77.13 P4,. Using
Noce = n% +ny?, and the compatibility relations, we then simplify Eq. (F64) to be:

3
!/ T2 -
Z2p = T5lr T 5Nr

1 s 1 1 1 1
5”M2 + in}"{ - 5”){2 mod 2. (F65)

$_ 1.3
If an insulating state has 25, = 1, then the state is a 3D QAH phase with Cp mod 4 = 2 in the z-direction.

We can also understand the even Chern number from the perspective of layer constructions. Specifically, if a Chern
layer is placed in the z = zy plane, then, because of the {C’4z|00%} symmetry, there must be another Chern layer with

the same Chern number in the z = zy + % plane.
If we impose 7 symmetry then the position-space Chern numbers must vanish, which enforces 24 to be zero.

g. Double SIs in Type-I Double MSG 81.33 P4

The double MSG 81.33 P4 is generated by {E|100}, {E|010}, {E|001}, and {S4.|0}.
SIs — The double MSG 81.33 P4 has the SI group Z4 x Z3. We choose the Z4 SI to be the Chern number in the
k., = 7 plane modulo 4:

Ly, 14 3¢ 3.4 13 1.3 33 3.3 & -
245 = Ch=r m0d4:—§nz+§nz — 5Nz TNy’ —gnat g’ = gnitgng® Fng —ng mod 4, (F66)
1 13 _3 . T ;T - 37 ;37 .
where ny,*? ? are the number of occupied states with {S;,|0} eigenvalues e "1, e'1, e"ST, 6137, respectively, and

n%fé are the number of occupied states with {Cy.|0} eigenvalues e~?%, €', respectively. Due to the compatibility
relations, the occupied bands in the k., = 0,7 planes must have the same {C5,|0} rotation eigenvalues; hence, the
Chern numbers Cy_—g and Cy_—, have the same parity (Cj.—o mod 2 = Cy_—, mod 2). We define the first Z SI to
be half of the difference between the Chern numbers in the k, = 0, 7 planes, taken modulo 2:

Cr.=n — C
dog = kz*ﬂQ =0 1hod 2
1+ 1 -:r 38 3 -3 11 1 _-r 338 3 -3 11 1
:—zn%—i—znZ?—an—l—anz—znj—i—inAz—1n2+1nA2+§n§—fnR2
11 1 -+ 33 3 3 11 1 -1 3 3 3 1 1 1 _1
+1nﬁ inrz—i—znﬁ inrz—l—zn]@ anQ—I—anM—Zan —§n§(+§nx2 mod 2. (F67)
Next using the relations:
1 _3 1 _3  _1 3 1 3 1 1 1 1
Np N =Nz a4ty ey TP =Ng F N7 4 N =Np, Nx® =ng?, (F68)
we simplify dog:
3 _3 3 _3 3 _3 3 _3
das =-—nz+ny,* —nji+ny®+ngt —np?+ng —n,” mod 2. (F69)

Because of the difference of 2 (modulo 4) in the Chern numbers in the k, = 0, 7 planes indicated by dog = 1, we deduce
that dog = 1 indicates a WSM with 2 + 4n (n € {Z",0}) Weyl points between k, = 0 and k, = 7. Additionally, the
Chern number in the k, = 0 plane (modulo 4) is completely determined by the compatibility relations and the SIs —
specifically, C_—¢ mod 4 = z45 — 2d25 mod 4. We note that during the preparation of this work, an SI equivalent to
025 was introduced in Ref. 211 as an intermediate quantity relevant to the high-throughput numerical identification
of nonmagnetic solid-state WSMs.

The second Zs SI in double MSG 81.33 P4 is given by:

H
leo

m= > % mod 2. (F70)
K=T,M,Z,A

Below, we will show that z2 is in one-to-one correspondence with the WSM and 3D TI invariant (z2)pz;/ in the
Type-II double SSG 81.34 P41’ generated by adding {7]0} symmetry to double MSG 81.33 P4, where (22) pzy, Was
previously introduced in Ref. 14. Hence, we will show below that a gapped state with zo = 1 is compatible with a
fourfold-rotoinversion- (Sy) -protected AXI phase if z45 = dos = 0.
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Layer constructions — We next employ the layer construction method to diagnose the topology of the symmetry-
indicated topological insulating phases in double MSG 81.33 P4, where the double Sls of each layer construction are
given in the order (245, da2s, 22):

1. A Z-normal Chern layer with C, = 1 in the z =0 plane can be realized by a 3D insulator whose occupied bands
transform in the small irreps %7 %7 —%, %, %, and —= at I''M,X,Z, A, and R (Nocc = 1), respectively. The SIs
of this layer construction are (101).

2. A z-normal Chern layer with C; =1 in the z = 3 plane can be realized by a 3D insulator whose occupied bands
transform in the small irreps 3,3, -4, -3, —1 and —3 at I', M, X, Z, A, and R (Nocc = 1), respectively. The
SIs of this layer construction are (100).

Both of the layer constructions are 3D QAH states with C' =1 in the z-direction. Because Sy, = IC’4_Z1, and 7 leads

to an additional minus sign in the occupied Sy, = ICZ; eigenvalue in the k, = 7 plane contributed by the layer z = %

(i.e. eI fe*iZij, see Appendix F 4 a), then the {S4,|0} eigenvalues at Z and A in the z = % layer construction
have opposite signs compared to the occupied {Sy,|0} eigenvalues at I' and M, respectively. We additionally note
that the occupied C5, eigenvalues are required to be the same at R and X due to the compatibility relations.

The Sy Zgy invariant and azion insulators — When the total Chern number is zero and the bulk is insulating, the
axion angle  is given by 6 mod 27 = w29, where 25 is termed the Sy Zy invariant. We may construct an AXI phase
by placing a Chern layer with C, = 1 in the z = 0 plane and a Chern layer with C, = —1 in the z = % plane. The
AXI phase has the SIs (001). However, we emphasize that the total Chern number cannot be completely determined
by the SIs. For example, the 3D QAH state consisting of a Chern layer with C, = 3 in the z = 0 plane and a Chern
layer with C, = 1 in the z = 1 plane also has the SIs (001).

Relationship with the SIs in other double SSGs — Double SSG 83.34 P41’, which is the double SSG that results from
adding {70} symmetry to Type-I double MSG 81.33 P4 — has the SI group Zs. The Zs double SI in double SSG
83.34 P41’ either corresponds to a T-invariant WSM, or to a T-symmetric 3D TI'*. Consequently, a 3D TI phase in
double SSG 83.34 P41’ must subduce to an AXI in double MSG 83.33 P4 if {S,.]|0} and primitive lattice translation
symmetries are preserved while breaking 7, because both insulators share the common nontrivial axion angle 6 = 7.
Hence, the double SI subduction relations are given by:

(22) parr — (215,025, 22) pa = (00, 22) pi. (F71)

h. Double SIs in Type-I Double MSG 83.43 P4/m

The double MSG 83.43 P4/m is generated by {FE|100}, {E|010}, {E|001}, {C4.|0}, and {m.|0}.
SIs — The double MSG 83.43 P4/m has the SI group Z3. We choose the three Z,-valued Sls to be:

64m - C;—: —r + C —0 mod 4

1 1 1 1 3 3.4 3 _ 1 14, 1 4.
. (—271;(’+Z—|—27’LK27+Z—27L27+ o ,+z>+n122,+ e R
K=Z,A
3 3
2 2

1 1 1 -1
b3 (g gt

K=D,M

1

-8, - 1. -1 -
ng?’ )—n% +ny?  mod 4, (Fr2)

—i

3
ny + =

1 124 1 14 3 34 3
2 =Cif _,  mod 4 = Z (—nf(’+7 + 5”1{2’“ - §nf(’+7 +

_3 44 1.y N S
2nK2’+>+nf3’+ —nR2’+ mod 4, (F73)
K=2,A

1 - 1 1., 3 38_; 3 _38_ 1 1y
Zimn = Cp—y mod 4= )~ (—n}? UL S L) SR LS >+nR —ngp? "mod4, (FT4)
K=Z,A

where the +i superscripts indicate the signs of the mirror eigenvalues. In Egs. (F72), (F73), and (F74), we have defined
d4m to be —C’,j —» T C}. g, rather than C’,j —» — C}. 0, such that the double SI zg in double MSG 123.339 P4/mmm,
which we will shortly define in Appendix F4k is related to d4m through the subduction relation d4,, = zs mod 4.
Layer constructions — To diagnose the topology associated to each nontrivial value of the double SIs
(54m,zirm,7r,z;mm), we employ the layer construction method. We denote the Chern number in each mirror sec-
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tor in the k, = 0,7 planes as (thzo, Cr.—os th:ﬂ, Ck::ﬂ), respectively. We will also calculate the subduced Sls in
the subgroups double MSG 2.4 P1 and double MSG 81.33 P4, which we will shortly use to determine the double SI
subduction relations. The layer constructions for Type-I double MSG 83.43 P4/m are given by:

1. A z-normal layer with CF =1, C; = 0 in the z = 0 plane has the mirror sector Chern numbers (1010) and the
SIs (310). The subduced subgroup SIs are (nar, 2211, 221,2, 221,3) p1 = (2001) p1, (245,025, 22) p1 = (101) p3.

2. A z-normal layer with C =0, C; =1 in the z = 0 plane has the mirror sector Chern numbers (0101) and the
SIs (101). The subduced subgroup SIs are (2001) p7, (101) pj.

3. A z-normal layer with C} =1, C; =0 in the z = % plane has the mirror sector Chern numbers (1001) and the
SIs (001). The subduced subgroup SIs are (0001)p1, (100) p3.

4. A z-normal layer with CF =0, C; =1 in the z =
SIs (010). The subduced subgroup SIs are (0001)p

plane has the mirror sector Chern numbers (0110) and the
(100) ps.

We emphasize that Chern insulators whose normal vectors lie in the xy-plane are disallowed by {m,|0} symmetry.

Relationship with the Sls in other double SSGs — In order to identify the AXI phases, we will subduce the SIs in
double MSG 83.43 P4/m onto the SIs in double MSG 2.4 P1 and double MSG 81.33 P4. The subduction relations
are given by:

1
2
1>

(54ma ij’ﬂ—v Z47'm,‘n')p4/m — (77411 221,15 221,25 221,3)Pi = (2(54m mod 2)7 07 07 Zim,ﬂ' + Z47m,7r mod 2) Pi’ (F75)

(84m» 2 > ZZm»W)P4/m — (245,025, 22) pa = (24 r + Zagm.» mod 4, 0, 04y, mod 2) Py (F76)

which imply that n}; = $nur = 22 = 64, mod 2 [see Egs. (F49) and (F70)]. In MSG 2.4 P1 and MSG 81.33 P4,
we previously found in Appendices F4a and F4g that the n5; = 1 and 2z, = 1 states are AXIs protected by {Z|0}
and {S4.]|0}, respectively (provided that the non-symmetry-indicated net Chern numbers are zero). Hence, the AXI
phases in MSG 83.43 P4/m are simultaneously protected by {Z|0} and {S,.|0}.

Lastly, we will study the effects of imposing 7 symmetry. Adding {70} symmetry to Type-I double MSG 83.43
P4/m generates the Type-IT double SSG 83.44 P4/m1’, which has the ST group Zg X Z4 X Zs. The Sls in double SSG
83.44 P4/m1’ are related to the SIs in double MSG 83.43 P4/m through the subduction relations:

(287 Z4m,ms ZQw,l)p4/m1/ — (64ma Zz_myﬂa Z4_m77f)P4/m = (38 mod 4, —R4m,m Z4m,7r)p4/m . (F77)

The subduction relations imply that strong 3D TIs in double SSG 83.44 P4/m1’ indicated by odd zg and mirror
TCIs indicated by zg mod 4 and z4y, . will continue to exhibit symmetry-indicated nontrivial topology if {70} is
broken while preserving the symmetries of double MSG 83.43 P4/m. Conversely, the weak TT phases indicated by
Zow,1 and the rotation-anomaly HOTI indicated by zs = 4 in double SSG 83.44 P4/m1’ no longer exhibit symmetry-
indicated stable topology when subduced onto double MSG 83.43 P4/m. Specifically, the SIs (400) p4/p,1- correspond
to either a mirror TCI phase with Cli:o mod 4 = 8 or thzﬂ mod 8 = 4 or a HOTI with vanishing mirror Chern
numbers®. The HOTI phase has a gapless top (z-normal) surface®® with 4 + 8n (n € {Z*,0}) twofold Dirac cones
that are locally protected by {C3, x 7|0} symmetry and are anomalous due to surface and bulk {Cy,|0} symmetry
(see Appendix F 6a and Ref. 35). The HOTI phase, when cut into a 4/m1’-symmetric rod geometry, exhibits 4 + 8n
helical hinge states that are locally protected by 7 symmetry and globally protected by {C4.|0} symmetry. If T
symmetry is relaxed, then the HOTT hinge states must become gapped, because there are no side-surface mirror lines
to protect helical spectral flow in the absence of 7 symmetry in MSG 83.33 P4/m (see Appendix F 6). We leave the
finer question of whether any non-symmetry-indicated crystalline topology in MSG 83.33 P4/m is subduced from the
(400) p4/m1- HOTI phase in double SSG 83.44 P4/m1’ for future works.
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1. Double SIs in Type-I Double MSG 84.51 P42/m

The double MSG 84.51 P4,/m is generated by {E|100}, {E|010}, {E]|001}, {C4.]005}, and {m.|0}.
SIs — The double MSG 84.51 P45 /m has the SI group Z4 X Zs. We define the two SIs to be:

+ _t
Z47n,0 _Ckzzo mod 4

| 1 14y 3 3.4 3 _3 4, 14y _1
_ Z <2n12(7+l+2nK2»+7f2n12(7+1+2nK2:+1> +n§(7+l*nx27+l mod 4’ (F78)
K=I'M

)

Som = Cjf _. — C}, _y mod 2, (F79)

where an explicit formula for d9,, was previously provided in Eq. (F54). Because the matrix representatives of
{C4:1004} and {m.|0} do not commute in all of the small irreps at the k points in the k. = 7 plane at which
{C4.]004} and {m.|0} are both elements of the little group, then we cannot determine the mirror sector Chern
numbers (modulo 4) in the k, = 7 plane using {C4Z|00%} eigenvalues. Conversely, because the matrix representatives
of {C2,|0} and {m,|0} commute in all of the small irreps at the k points in the k, = 7 plane at which {C2,|0} and
{m.|0} are both elements of the little group, then we can determine the mirror sector Chern numbers (modulo 2) in the
k. = 7 plane using the occupied {C5,|0} eigenvalues. We thus specifically determine that da,,, = C,i:W—Ck: _o mod 2.

Layer constructions — We find that all of the double SIs in double MSG 84.51 P45/m can be realized by layer
constructions. Before introducing the layer constructions, we ﬁrst note that the mirror planes in double MSG 84.51
P4, / m lie at z = O . However, the 7 centers lie in the z = 0, & 5 Planes, whereas, conversely, the S, centers lie in the
z= 17 3 3 planes. For each layer construction, we also compute the subduced SIs in the subgroup MSG 2.4 P1, which

we will shortly use to determine the SI subduction relations. The layer constructions of the double SIs (z4m’0, dom,)
in double MSG 84.51 P45/m are given by:

1. A z-normal layer with C} = 1, C; = 0 in the z = 0 plane. Due to the {C4.[001} symmetry, there is
another C =1, C; = 0 layer in the z = £ plane. The mirror sector Chern numbers in momentum space are
(th:ovcl;:ovclj —r> Cr.—) = (2011), where the subscripts 0 and 7 indicate values of k.. The Sls are (21).
The subduced subgroup SIs are (nar, #2511, 221,2, 221,3) p1 = (2000) p1, (245,025, 22) p1 = (200) p3.

2. A z-normal layer with CJ = 0, C; = 1 in the z = 0 plane. Due to the {Cy.|005} symmetry, there is
another CF = 0, C7 =1 layer in the z = % plane. The mirror sector Chern numbers in momentum space are
(CF _0,Cr 0, Cff s C.—) = (0211). The SIs are (01). The subduced subgroup Sls are (2000) p1, (200) p3.

3. A z-normal layer with C, = 1 in the z = 1 plane. Due to the {C4.|00%} symmetry, there is another C, = 1 layer
in the z = % plane. The mirror sector Chern numbers in momentum space are (C,Z:O, Cr.—o» C,jz:w, Croen) =
(1111). The SIs are (10). The subduced subgroup SIs are (0000)pi, (201) p3.

Relationship with the SIs in other double SSGs — In order to later identify the AXI phases, we subduce the SIs onto
double MSG 2.4 P1 and double MSG 81.33 P4:

(2400 02m) Payym — (5> 2211, %21,2, 221,3) p1 = (202m, 000) p1, (F'80)

(zi'm’o, O2m) Pay/m — (245,025, 22) pa = (224m,0 — 202, mod 4, 0, Zz—m,o mod 2) p;z. (F81)

We next study the effects of imposing 7 symmetry. The double SSG 84.52 P45 /m1’ — the SSG generated by adding
{710} symmetry to MSG 84.51 P45/m — has the SI group Zs X Zy. The Z4 SI is the parity index z4 (i.e. the Z z4
index), and the Zy SI is the Z zg,, 1 index. Hence, the subduction relations are given by:

(24, 220,1) Pagym1’ = (Zirn 01 02m) Pagym = (24, 22 m0d 2) pay /i, (F82)

implying that adding {770} to an insulating phase in double MSG 84.51 P45/m results in an insulator with the SIs
d2m = za mod 2. Furthermore, in an insulator, it is required that C} _,+C, _o = C _ +C, _. =2C; _ . {T|0}

=T
further enforces C,j' =0, C,j' —0= C’k _o» such that &g, = C’k C’k _pmod 2= C’,:' -0 mod 2=2z mod 2.
Axion insulators — Because “the Sy centers in position space do not coincide with the Z centers in MSG 84.51
P45 /m, then the Sy invariant zo = zirm,o mod 2 is free to differ from the Z invariant n5; = da,,,. An AXI phase
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must have vanishing position-space Chern numbers, as well as z = n5; = 1, due to the definitions § mod 27 = 70},
and 6 mod 27 = 72y (see Appendices F4a and F 4 g, respectively). Thus, in order to guarantee that the net Chern
numbers vanish, we may, for example, only construct an AXI phase with C' = 1 layers at z = 0, % if C = —1 layers
are additionally placed at z = i %. In this example of an AXI, the C =1 (C = —1) Chern layers occupy the Z (Sy4
centers).

j.  Double SIs in Type-I Double MSG 88.81 141/a

The double MSG 88.81 I4;/a is generated by {E| — 3, 3,4}, {E|3,—3, 3}, {El3, 3. — 3} {Caz[353}, and {Z|0}.
SIs — The double MSG 88.81 I4/a has the SI group Z3. As we will explicitly derive later in this section, the first
Zs SI 1y is related by subduction to the Z invariant 75, in double MSG 2.4 P1 [Eq. (F49)]:

Nar1 1 _ 1 _ 1 _ 1 3 _ 1
7751 = o mod 2 = 5”1" + inM + §nX + in} + inN + in} mod 2. (F83)

The second Zs SI 25 is related by subduction to the Sy invariant 2 in double MSG 81.33 P4 [Eq. (F70)]:

1 1 _3 3 1
ni —n n:—np?+nsdt—np?
29 = T 5 T 4 P P 5 P P . (F84)

Layer constructions — The double MSG 88.81 has a body-centered lattice generated by:

111 1 11 11 1
ay ( 272a2)7 ag (27 252)7 as (2a ) 2) ( 85)
There are two types of maximal Wyckoff positions: Z centers:
1 1 311 33 3
8c: (030,0)7 (5’0’5)’ (17134)7 (Zaivl)a (FSG)
1 1 313 331
8d : 0,0, = -,0,0 - == - == F87
003, 00, Gpp G (s7)
and Sy ({S1:1332} = {Cu2|32331{Z]0}) centers:
11 113
da : -, = — == F
@i 003 Gyl (Fss)
15 117
4b. (Oji’g), (ivzvg)’ (FSQ)

using the notation of the MWYCKPOS tool on the BCS?' %4, and where all coordinates are given in the conventional
cell. We consider the following layer constructions:

1. A Z-normal Chern layer with C, = 1 in the z = 0 plane. The screw symmetry operation additionally generates

Chern layers with C, = 1 in the z = %, %, % -+ planes. All of the Z centers are occupied, all of the S; centers

are unoccupied, and the total Chern number in each unit cell is C, = 2, such that n5; =1, 25 = 0.

2. A z-normal Chern layer with C, = 1 in the z = é plane. The screw symmetry operation additionally generates

Chern layers with C, =1 in the z = %, g, % -+ planes. All of the Z centers are unoccupied, all of the S, centers
are occupied, and the total Chern number in each unit cell is C, = 2, such that n}; =0, 2o = 1.

Axion insulators — Because the Sy centers do not coincide with the Z centers in position space in double MSG 88.81
I4; /a, then the Sy invariant 2 is free to differ from the 7 invariant 75;. An AXI phase must have vanishing position-
space Chern numbers, as well as zo = n); = 1, due to the definitions 6 mod 27 = 7n); and 6 mod 27 = 7z (see
Appendices F4a and F 4 g, respectively). Hence, to generate an AXI with vanishing position-space Chern numbers
by placing C' = 1 layers at z = 0, i, %, %, we must also place C = —1 layers at z = ,3,5 T such that the Chern

8787878’
layers with C'=1 (C' = —1) occupy the Z (S4) centers.


https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
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Relationship with the Sls in other double SSGs — We will now study the effects of imposing 7 symmetry. The
double SSG 88.82 I4;/al’ — which is generated by adding {70} to Type-I double MSG 88.81 I4;/a — has the SI
group Z4. The subduction relations for the double SIs are given by:

(24) 14, a1 = (Mg, 22) 14, ja = (22 mod 2, 24 mod 2) 14, /q- (F90)

Hence, a symmetry-indicated 3D TI in I4;/al’ will necessarily become an Z- or Sy-protected AXI if 7 symmetry
is relaxed while preserving the symmetries of MSG 88.81 I4;/a, because infinitesimal T-breaking in a 3D insulator
cannot change the momentum-space Chern numbers of the occupied bands in any 2D BZ plane.

Subduction of nh; onto double MSG 2.4 P1 — In MSG 88.81 I4,/a, the reciprocal lattice is generated by:
b; = (0,27, 27), by = (27,0, 27), bs = (27, 27, 0). (Fa1)
There are four inequivalent, Z-invariant momenta:
1(0,0,0), M(27,0,0), X(mw,7,0), N(m,0,7), (F92)

where the equivalence between k points is defined in Eq. (D5) and the surrounding text, and where the coordinates
of ', M, X, and N in Eq. (F92) are given in the conventional cell.
The star of X has two arms — X (m,7,0) and Xo(7, —m,0), which are related by the screw operation {042\%%i

If [¢x,) is a Bloch state at X1, then |[¢x,) = {Cu.|311}x,) is a state at Xo. Taking |tox,) to have the parity (Z)

eigenvalue £, we will now determine the parity eigenvalue of |¢x,). Because:

{TIOHCa 5 HEIO) ™ = (Bl - 5, —2, ~SHCal3 17}, (F93)

then:
3 1 1

Hence, taking the parity eigenvalue of |1x,) to be £, the parity eigenvalue of |¢x,) is —¢&.

Next, the star of N has four arms: Ni(m,0,7), Nao(0, 7, 7), Ng(—ﬂ,O,w), and Ny (0, —7, 7), which are related to Ny
by the operations, {E|0}, {Cy.|231}, {C2.|203}, and {C}.! 323}, respectively. Because:

(TIOHCa S HEIO) ™ = (8] = 5,2~ S HCal S 1 1), (F95)
{TI0}H{Co- |03 HII0} ™ = {B] ~ 1,0, ~1}{Ca:] 305, (F96)
TOHCE 222y iy = (Bl - 2. -2~y 122, (Fo7)

then the extra phase factor in the SI for the occupied parity eigenvalue at ky_ is given by e~ ta¥Na (o = 2,3, 4),
where t, is the extra translation determined above, and where ky_ is the momentum N,. The parity SI phases at
N3, N3, and Ny are thus —1, 1, and 1, respectively.

To determine the Z double SI 747, we apply Eq. (F35) to the parity eigenvalue multiplicities at the eight Z-invariant
momenta I', M, X; », and Nj 2 34, respectively:

Nar = np +ny +ny +nk +3ny +njk mod 4. (F98)

We find that the parity eigenvalues enforce that 74y mod 2 = 0. Hence, the Z double SI in MSG 88.81 I4;/a is
My = 37ar [Eq. (F49)].

Subduction of zo onto double MSG 81.33 P4 — There are three inequivalent Ss-invariant momenta:

I'(0,0,0), M(27,0,0), P(m,m, 7). (F99)
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First, the star of P has two arms — Py (7, m,7) and Po(—m, —m, —), which are related by Z. Because,

133 133 133

L THTIO S, 3551 = (B, 5. SHTloh, (F100)

{54| 444

and:

exp (z (; g 2) (=7, -, —7r)> = exp (zg) , (F101)

1 42170 > I ~i27, Py
then, if P, has a Bloch State with the {S |4 % 4 eigenvalue e™*27, Ps is required to have a Bloch state with the
{S4z|4, 1 4} eigenvalue e %3 U~1). We thus conclude that:

np = nk . (F102)

To determine the Sy double SI z3, we apply Eq. (F70) to the {S4]333} eigenvalue multiplicities at the four
{S4]3 23} - invariant momenta I', M, and Py »:

1 3 1 3 3 _1

1 _3 1 _3
2 2

LT i ;"M2 e ;"12” " od 2. (F103)

Using the Corepresentations, MCOMPREL, and MBA\TDREP tools on the BCS introduced in this work (see Appen-
dices D 2, D 3, and E 3, respectively), we find that n 2, =mn,,” is required in any insulating state in double MSG 88.81

1 3

Z9 =

I41/a. Hence, the factor of W can be omitted in Eq. (F103), leading to a final expression:

1 _3 1 _3 3 _1
2 2 2 2 2 2
e Mp T Mp tNp—Np

2 2

z9 = mod 2. (F104)

k. Double SIs in Type-I Double MSG 123.839 P4/mmm

The double MSG 123.339 P4/mmm is generated by {E|100}, {E|010}, {E|001}, {C4.|0}, {m,|0}, and {Z|0}.

SIs — The double MSG 123.339 P4/mmm has the SI group Zg X Z4 X Zs. In double-valued small irreps of the little
groups at the Z-invariant k points, the matrix representatives of perpendicular mirror symmetries (e.g. {m,|0} and
{m,|0}) anticommute. Hence, Bloch states at the eight Z-invariant momenta must be at least twofold degenerate
(and in fact are exactly twofold degenerate in double MSG 123.339 P4/mmm). The double SIs can be chosen to be
the same as the double SIs of SSG 123.340 P4/mmm]1’ (previously introduced in Refs. 14,15,98), because the addition
of T symmetry to double MSG 123.339 P4/mmm does not change the dimensions and characters of the small irreps
at the high-symmetry BZ points or the compatibility relations between the high-symmetry-point small irreps. In the
physical basis, the Zg double SI is:

1
— 7n2v+ + 7n%’7 mod 87 F105
2

. 1
JhE JE 3.+
n’* = E ny + E nyo, (F106)
K=T',M,Z,A K=X,R
J, £

where ny7 is the number of states with parity (Z) eigenvalue 1 and angular momentum j (modulo 4) at the

momentum K, which corresponds to the {Cy.|0} eigenvalue e=#57 at K = I, M, Z, A, and the {C5.]|0} eigenvalue
e"%3J at K = X, R. The Z4 Sl is Z4m, =+ Which indicates the Chern number in the negative mirror sector in the k, =
plane z;,, ., and is related by subduction to the same SI (z},, ) in double MSG 83.43 P4/m [Eq. (F74)]. The Zg SI
corresponds to the weak TCI Z invariant zg, 1 for the mirror Chern number (modulo 2) in the k, , = 7 planes, and
is related by subduction to the same SI (224,1) in double MSG 47.249 Pmmm [Eq. (F60)].

Layer constructions — To diagnose the topology associated to each nontrivial value of the double SIs, we employ the
layer construction method. In the layer constructions below, C* = —C~ due to the net-zero Chern numbers enforced
by the mirror symmetries. Hence, we will omit C'~ in further discussions of the topology in double MSG 123.339


http://www.cryst.ehu.es/cryst/corepresentations
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/mbandrep
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P4/mmm. The layer constructions for the double SIs (zg, 21, »» z2w,1) in MSG 123.339 P4/mmm are given by:

1. A z-normal layer with C =1 in the z = 0 plane has the SIs (230).
2. A z-normal layer with CF = 1 in the z = 1 plane has the SIs (010).

3. An %X-normal layer with C;f = 1 in the z = 0 plane has the SIs (401). We emphasize that, in this layer
construction, there is also a superposed y-normal layer with C?j =1 in the y = 0 plane implied by the {Cy.|0}
rotation symmetry.

4. An %-normal layer with C;/ = 1 in the z = % plane has the SIs (001). We emphasize that, in this layer

construction, there is also a superposed y-normal layer with C?j =1in the y = % plane implied by the {Cy,|0}
rotation symmetry.

5. An (x + y)-normal layer with C;+y =1 in the # + y = 0 plane has the SIs (400). We emphasize that, in this

layer construction, there is also a superposed (X —y)-normal layer with C;'_y =1 in the z —y = 0 plane implied
by the {C}4.|0} rotation symmetry.

Axion insulators — We find that states with odd zg SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of zs. First, as we will show below, (100), (300), (500), and (700) subduce to (2000)p7 in MSG 2.4 P1. Hence, if the
(100), (300), (500), and (700) phases in double MSG 123.339 P4/mmm are insulating, then the bulk insulator must
either be an AXI or a 3D QAH state. Because the net Chern numbers C, , , = 0 must vanish if the bulk is gapped,
due to the mirror symmetries of MSG 123.339 P4/mmm, then the (100), (300), (500), and (700) states must be AXIs.
This result can also be understood by subducing from a 7-symmetric SSG. Specifically, because (100), (300), (500),
and (700) in double MSG 123.339 P4/mmm can respectively be subduced from (100)p4/mmmi/, (300)pa/mmm1s
(500) pa/mmm1s, and (700) py/mmm1s in Type-II SG 123.340 P4/mmm]1’, which correspond to 7-symmetric 3D TIs
with 0 = 771415 then (100), (300), (500), and (700) are compatible with bulk-gapped states. Hence, we conclude
that 3D insulators with (100), (300), (500), and (700) in double MSG 123.349 P4/mmm are AXIs, without ambiguity.
We conjecture that (100), (300), (500), and (700) AXIs in double MSG 123.349 P4/mmm can be constructed using
the topological crystal method?’?, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and
TCIs.

Helical HOTI phases protected by mirror and Cy rotation symmetry — First, the double SIs (400) p4/mmm1s of
Type-1I double SSG 123.340 P4/mmml’ either correspond to a rotation-anomaly (non-axionic, i.e. § mod 27 = 0)
HOTI protected by C4 and T symmetries, or a mirror TCI with Cy,. mod 8 =4 (c.f. Table 7 in the Supplementary
Material of Ref. 14). In the Cy- and T-symmetric HOTI phase, there are 4+ 8n (n € {Z*,0}) helical hinge modes on
a z-directed, Cy- and T-symmetric rod, and 4 + 8n twofold Dirac points on the top (z-normal) rod surface that are
locally protected by mirror symmetry (see Appendix F 6). Because double SSG 123.340 P4/mmm1’ contains {m ,|0}
symmetries, then four of the helical hinge modes on the boundary of a 4/mmml’-symmetric sample must also be
pinned to the hinge projections of bulk mirror planes whose normal vectors lie in the zy-plane, and must be indicated
by bulk mirror Chern numbers. Hence, when 7" symmetry is relaxed in a fourfold rotation-anomaly (400) p4 /mimm1/
HOTI phase in Type-IT double SSG 123.340 P4/mmm]1’ while preserving the symmetries of MSG 123.339 P4/mmm,
the surface and hinge states will remain gapless and anomalous [see Fig. 26(b) and Appendix F 6 b].

We will next prove that there are 4 4+ 8n twofold Dirac points on the top surface of a 4/mmm-symmetric nanorod
of the (400) fourfold rotation-anomaly magnetic HOTI phase in double MSG 123.339 P4/mmm introduced in this
work. We denote the five layer constructions as L, (a = 1---5), respectively. The fourfold rotation-anomaly HOTI
phase can be constructed as (2n + 1)Ls @ (2m + 1) L4, or (2n+ 1) L5, or through any superposition of odd number of
the aforementioned layer constructions. Adding 4n'L; or 4m/Ls, which have the SIs (000), to the layer-constructed
HOTT phase will not change the top surface spectrum, because Ly and Lo consist of horizontal (i.e. Z-normal) layers,
and hence only contribute surface and hinge states on boundaries whose normal vectors lie in the zy-plane.

We will thus focus on the top surface spectra of the (2n + 1)Ls @ (2m + 1)L4 and (2n + 1) L5 layer constructions.
We first consider (2n + 1)L3 & (2m + 1)Ls. The Chern numbers in the m, mirror sectors are C; _j = —C} _ =

2n+2m+2, C,;Z:Tr = —C} _, = 2n—2m. Due to the Cy symmetry, the Chern numbers in the m, mirror sectors are
th,:o =—Cp.—o =2n+2m+2, C,jy:ﬂ = —C}. = = 2n—2m. In the 2D top surface BZ, C;;:O (C,jy:o) mandates
the presence of |2n 4 2m + 2| twofold Dirac points on the k, = 0 (k, = 0) line, and C;. __ (C’,;::Tr) mandates the
presence of |2n — 2m/| twofold Dirac points on the k, = 7 (k, = m) line. Hence, the total number of Dirac points is
212n + 2m + 2| + 2|2n — 2m| mod 8 = 4.

Lastly, we consider the layer construction (2n+1)Ls. As shown in Supplementary Note 5 in Ref. 14 and in Table 6 of
the Supplementary Material of Ref. 14, the mirror sector Chern numbers are given by C,jx k=0 = O 4 ky—=0 = dn+2,
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Cf o o=-"Cp 1 _o=4n+2,and C}f .,

T Y= x y= x L

unit cell to a supercell with the lattice vectors (1,1,0) and (1,—1,0). We emphasize that mirror (sector) Chern

numbers do not change upon enlarging the unit cell if the number of layers per cell does not change; hence we can
1. 1

compute the mirror sector Chern numbers in the supercell. We define ' = %er %y, y' = 52— 5y, and correspondingly

define k), = k; + ky, k;, = kz — ky. As shown in Appendix I"4a, the Chern numbers of the layers at =’ =0 (y" = 0)

and 2’ = 1 (y' = 1) contribute with the same signs towards C}/, _, = —C}, _ (C}, _; = —C}, _,) and with opposite
x x Yy Y

= —Cp s (C’,'J;,J:7r = —C’,;,J:F). Hence, C’,;Z:O = —Cpo=4n+2, C’,;Z =—Cp_r =0,

= 0. In the 2D top surface BZ, C’,:;Jrkyzo (O/jm—ky:o) mandates the

presence of |4n 4 2| Dirac points on the k, + k, = 0 (k; — k, = 0) line. We additionally note that the mirror sector
Chern numbers CT = —C~ mandate the presence of |CT| twofold Dirac points on the surface, as shown in Fig. 25.
In summary, the total number of top-surface twofold Dirac points in the first surface BZ is 2|4n + 2| mod 8 = 4.

In Appendix F 6 a, we will prove that, on the top surface of the (400) HOTI state — which respects the symmetries
of Type-I double magnetic wallpaper group'®3%63:131:132 p4m — the presence of 4 + 8n (n € {ZT,0}) twofold surface
Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group
pdm.

Relationship with the SIs in other double SSGs — To identify the AXI phases, we subduce the SIs onto double MSG
2.4 P1:

= —Ck;iky:ﬂ = 0. To understand this result, one can enlarge the

y=m

signs towards C}, __

C,;Z:O =—Cj, o =4n+2, and C,;Z =—Cy,

=T

=T

=T

(28, 2 > Z20,1) Pajmmm — (Nar, 2211, Z21,2, Z21,3) p1 = (2(28 mod 2),000) p. (F107)

Because the AXI Z SI no;r = 3n4; = 25 mod 2 [Eq. (F49)], then we conclude that insulators with odd zs SIs in double
MSG 123.339 P4/mmm are AXIs.

[.  Double SIs in Type-1 Double MSG 143.1 P3

The double MSG 143.1 P3 is generated by {E|100}, {E£|010}, {E|001}, and {C5,|0}, where the angle between the
{E|100} and {FE|010} translations is chosen to be 27/3 for consistency with the {C3.|0} rotation symmetry.
The double MSG 143.1 P3 has the SI group Zs. To determine the physical basis for the double SlIs, we first recall

the formula for the 2D Chern number in the presence of threefold rotation symmetry23:
GEC _ (—1)Noce H 0,(T)0,, ()0, (KA), (F108)
neocc

where 0, (T, K, CA) is the {C3.]|0} eigenvalue of the n'™ occupied state at the corresponding momentum (where it
is important to distinguish the {C5,|0} eigenvalues 6,, from the axion angle #). We can define the SI as the Chern
number in the k£, = m plane modulo 3:

3 1 1 1 -1+ 3 3
zsp = Ck,=r mod 3 = = Noyec + Z (—nf( +ong? + nf{> mod 3, (F109)

2 K=AHHA 2 2 2

113 ]

. . . _j2rm 4T s . .
where the superscripts j = —3, 5, 5 represent the {C3.|0} eigenvalues e™* 57/ = e™'5,e'5, —1, respectively, and N is
1

_1 1 3
the number of occupied bands. Because %NOCC = ZK:A’H’HA %nif + %nf( + %nf(, then Eq. (F109) can be simplified:

_1 3
BrR= Y (nK2 —n%) mod 3. (F110)
K=A,H,HA

Due to the compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a
momentum-space Chern number, a 3D insulator must satisfy C_—. = Cy_ for all k,. Hence, we may have equivalently
defined the SI z3p using the occupied {C5,|0} eigenvalues in k, = 0 plane, or in any other BZ plane of constant k..
To summarize, if a 3D system is insulating and exhibits 23z # 0, then the system is in a 3D QAH state with
Ci.—0 = Ck_=r and 2z3g = Cj_—o mod 3.

Because the physical meaning of the double Sls is straightforward (i.e. the nontrivial phases are 3D QAH states
composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 143.1 P3.

If we impose T-symmetry, then the position-space Chern numbers must vanish, which enforces z3g to be zero.
Furthermore, if we add T symmetry to a system that respects double MSG 143.1 P3, we specifically find that the SI
group becomes trivial.
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m. Double SIs in Type-I Double MSG 147.13 P3

The double MSG 147.13 P3 is generated by {E|100}, {E|010}, {E|001}, {C5.]|0}, and {Z|0}, where the angle be-
tween the {£|100} and {E]010} translations is chosen to be 27/3 for consistency with the {C5,|0} rotation symmetry.

SIs — The double MSG 147.13 Pg has the SI group Z12 X Zg ~ Z4 X Z3 X ZQ. We find that the Z4, Z3, and Zg
double SIs in double MSG 147.13 P3 all subduce to previously introduced double SIs. First, the Z4 SI subduces to
n4r in double MSG 2.4 P1 [Eq. (F35)], where, as shown in Appendix F4a, ny; = 1,3 indicate WSM phases, 1747 = 2
indicates that an insulator is either an AXI or in a 3D QAH state, and 7n4; = 0 indicates that an insulator is either
topologically trivial or in a 3D QAH state. The Zs SI subduces to z3r in double MSG 143.1 P3 [Eq. (F110)]. In
insulating states, z3r indicates the Chern number modulo 3 in BZ planes of constant k.. Lastly, the Zs SI subduces
to 2273 in double MSG 2.4 P1 [Eq. (F36)], where 295 5 indicates the Chern number modulo 2 in the k, = 7 plane. In
summary, the double SIs in double MSG 147.13 P3 in the physical basis are given by the previously-defined double
SIs (a1, 23R, 221,3)-

Layer constructions — In Cartesian coordinates (x,y, z), the primitive lattice translation vectors in double MSG

147.13 P3 — {E|100}, {E]010}, and {FE|001} — respectively correspond to t; = (0,—1,0), to = (?,%,O), and
ts = (0,0,1). We consider the following four layer constructions, where the double SIs of each layer construction are
given in the order (nar, zsg, 221,3):

1. A z-normal Chern layer with C, = 1 in the z = 0 plane has the SIs (211).
2. A z-normal Chern layer with C, = —2 in the z = 0 plane has the SIs (010).
3. A z-normal Chern layer with C, =1 in the z = 5 plane has the SIs (011).

4. An %x-normal Chern layer with C;, = 1 in the = 0 plane has the SIs (200). We emphasize that, in this
layer construction, there are also |C| = 1 Chern layers in the C3,% and C2,% directions implied by the {C3,]|0}
rotation symmetry.

We label the four layer constructions as Lj 234, respectively. We note that —2L; and —2Lj3 exhibit the same
symmetry-indicated topology as Lo, where —L; (—L3) has the same construction as Ly (L3), except for a sign change
in the Chern number C, — —C.,.

Total Chern number modulo 6 — The Chern number at k, = m can be determined modulo 6:

Ckz:ﬂ— mod 6 = —2z3p + 322[73 mod 6. (F].].l)

Eq. (F111) takes the same form as the SI introduced in Ref. 203 for the Chern number in a 2D insulator with sixfold
rotation symmetry, which occurs because the point group of double MSG 147.13 P3 (isomorphic to Type-I MPG
17.1.62 P3) exhibits sixfold symmetry generated by C3, and Z'1%. In general, we find that, if 747 = 0,2, then the
Chern number of the occupied bands in the k, = 0 plane is the same as the Chern number of the occupied bands in
the k., = m plane (modulo 6). Lastly, if n4; = 1,3, then the Chern number of the occupied bands in the k, = 0 plane
differs from the Chern number of the occupied bands in the k, = 7 plane by 3 (modulo 6), implying the presence of an
odd number of Weyl points in the BZ between k., = 0, 7, in agreement with the odd value of n4; (see Appendix F 4 a).

Relationship with the SIs in other double SSGs — The double SSG 147.14 P31’ — which is generated by adding
{T|0} symmetry to double MSG 147.13 P3 — has the double SI group Z4 x Zs. The SIs in double SSG 147.14 P31’
are related to the SIs in double MSG 147.13 P3 through the subduction relations:

(24, 22w,3) P31/ — (a1, 23R, 221,3) p3 = (2(24 mod 2),00) p3. (F112)

n. Double SIs in Type-I Double MSG 168.109 P6

The double MSG 168.109 P6 is generated by {E|[100}, {E|010}, {E|001}, and {Cs.|0}, where the angle between
the {E|100} and {E|010} translations is chosen to be 27 /3 for consistency with the {C3.|0} = ({Cs.|0})? rotation
symmetry.

The double MSG 168.109 P6 has the SI group Zg. To determine the physical basis for the double SIs, we first recall
the formula for the 2D Chern number in the presence of sixfold symmetries2’3:

2

e C = (1) Noce H (D)0, (K) G (M), (F113)

neoce
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where 1, (T), 6,,(K), ¢, (M) are the {Cg|0}, {C5]0}, and {C3|0} eigenvalues of the n'" occupied state at I', K, and
M, respectively. We define the SI as the Chern number in the k, = 7 plane modulo 6:

Ly 1oy 348 4 58 5 - 4 o .3 3.4 8-}
26R =Ch,=n m0d6:3Noccf§nA+§nA — 5" 5Ma *gnAJrinA —ng+ng +3an§nL+§nL mod 6
1 1 1 -1 E _3 5 _5 1 —1 E 1 ~1
:—inf‘-i-inAQ—gnf‘+gnA2—gnj+gnA2—n12_1+nH2+3nfl+gnZ—gnL2mod6, (F114)

where the superscripts n’y represent the {Cg.|0} eigenvalues eI at A, n}; is the number of occupied states with
{Cs5.]0} cigenvalue e~*%77 at H, and where n’ is the number of states with {C2,|0} eigenvalue e~¢27 at L. Due to the
compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a momentum-space
Chern number, a 3D insulator must satisfy Cr_—r = Cf, for all k,. Hence, we may have equivalently defined the
SI zgr using the occupied rotation symmetry eigenvalues in the k, = 0 plane, or in any other BZ plane of constant
k.. To summarize, if a 3D system is insulating and exhibits zgg # 0, then the system is in a 3D QAH state with
Ckz=0 = Ckz:ﬁ and Z6R — Okzzo mod 6.

Because the physical meaning of the double Sls is straightforward (i.e. the nontrivial phases are 3D QAH states
composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 168.109
P6.

If we impose T-symmetry, then the position-space Chern numbers must vanish, which enforces zgg to be zero.
Furthermore, if we add 7 symmetry to a system that respects double MSG 168.109 P6, we specifically find that the
SI group becomes trivial.

o. Double SIs in Type-I Double MSG 174.133 P6

The double MSG 174.133 P6 is generated by {E|100}, {E]010}, {E|001}, {C5.]0}, and {m.|0}, where the angle
between the {E[100} and {E|010} translations is chosen to be 27 /3 for consistency with the {C3,|0} = ({Cs.|0})?
rotation symmetry.

SIs — The double MSG 174.133 P6 has the SI group Z3. In the physical basis, the three Zz-valued Sls are:
(83m» Z3m x> Z3m =)+ for which the SI formulas are:

14, 3 44 _1 3 g
Sgm = C,;:ZW — Cy.—g mod 3 = Z (nK2’+ — n}“(’+ ) - Z (nKQ’ —n} ) mod 3, (F115)
K=A,H,HA K=TK,KA
1 45 3 44
23 = C’,j;zw mod 3 = Z (TLKQ’Jr - nf(’Jr ) mod 3, (F116)
K=A,H,HA
1 3
Z3mnx = Cp.—r mod 3 = Z (nK2’ 2 l) mod 3, (F117)
K=A,H,HA

such that a 3D insulator with z;fmm # —Z3,,. mod 3 is in a 3D QAH state. The compatibility relations require the
k. = 0,7 planes to have the same occupied Cj5, eigenvalues, and hence the same Chern numbers (modulo 3). In an
insulating state (i.e. in the absence of bulk Weyl points), it is further required that C’;'Z:O +Ch o= C’,jz:ﬂ +Ch—r
and C’,jzzo —Cy.—, mod 3= th —r—Ch.—o mod 3 = d3,,. As we will show below, in insulators with net-zero position-
space Chern numbers, AXI phases may be stabilized in double MSG 174.133 P6 by S rotoinversion symmetry, but
will not be symmetry indicated, because the strong index ds,, is Zs-valued, whereas the axion angle 0 is Zy-valued (if
quantized).

Layer constructions — To diagnose the topology associated to each nontrivial value of the double SIs
(§3m,2;m7ﬂ,23_m,,7), we employ the layer construction method. In each layer construction, we denote the mirror
sector Chern numbers of the occupied bands at k, = 0,7 as (Cljz:ov Cr.—o» C,jzzw, Cy.—,)- The layer constructions
for Type-1 double MSG 174.133 P6 are given by:

1. A z-normal Chern layer with CJ =1, C; = 0 in the z = 0 plane has the mirror sector Chern numbers (1010)
and the SIs (110).

2. A z-normal Chern layer with C = 0, C; =1 in the z = 0 plane has the mirror sector Chern numbers (0101)
and the SIs (201).
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3. A z-normal Chern layer with CF =1, C; =0 in the z =
and the SIs (001).

plane has the mirror sector Chern numbers (1001)

N[ =

4. A z-normal Chern layer with C =0, C; =1 in the z = % plane has the mirror sector Chern numbers (0110)

and the SIs (010).

Relationship with the Sls in other double SSGs — We next study the effects of imposing 7 symmetry. The double
SSG 174.134 P61’ — the SSG generated by adding {770} symmetry to MSG 174.133 P6 — has the SI group Zs3 x Zs.
The SIs in double SSG 174.134 P61’ are related to the SIs in double MSG 174.133 P6 through the subduction relations:

=

(23m.0, 23m,n) P61 = (03m» Zam x» Zam.n ) PG = (23m,x + 23m,0 mod 3, 23z, —23m,x mod 3) pg. (F118)

In Type-IT double SSG 174.134 P61’ insulators with net-odd odd mirror Chern numbers'? are 3D TIs. However,
because 23,0 and 23y, only indicate the mirror Chern numbers in the k, = 0,7 planes modulo 3, then there is
no relationship between z3,, ¢ and 23, . and the axion (3D TI) angle 6. Specifically, consider a 3D TI in double
SSG 174.134 P61’ with (23mm.0, 23m.x)pg1r = (10)g1,, where the bulk axion angle # = m. Taking three superposed
copies of the 3D TI results in an insulator with the SIs (00),, and the axion angle # = m. Hence, 23y, 0 and zgm «
are individually (and as a set) independent of 6, because 23, 0 and 2z, . are Zs-valued, whereas 6 is Zg-valued (if
quantized). We thus conclude that, while axionic mirror TCI phases can be stabilized by {m.|0} mirror and {Ss|0}
rotoinversion symmetries in the magnetic subgroup double MSG 174.133 P6 of double SSG 174.134 P61’, @ is not
symmetry-indicated in double MSG 174.133 P6.

p.  Double SIs in Type-I Double MSG 175.137 P6/m

The double MSG 175.137 P6/m is generated by {E|100}, {E|010}, {E|001}, {Cs.|0}, and {Z|0}, where the angle
between the {E[100} and {E|010} translations is chosen to be 27 /3 for consistency with the {C3,|0} = ({Cs.|0})?
rotation symmetry. We note that double MSG 175.137 P6/m additionally contains a mirror symmetry operation:
{m.]0} = {Ca.|0}*{T 0},

SIs — The double MSG 175.137 P6/m has the SI group Zg. In the physical basis, the three Zg-valued Sls are:
(O6m, zérm,ﬂ, Zgm.x)> for which the SI formulas are:

1 14 1 —14; 3 384, 3 _34; 5 5.; 5 _s5_4y
=Cf_. —Ci mod6=—§n,24’+l 5 A27+1_§”3+1 ) AQ’JFZ_5“127%+§n“2’+Z
1 3 44 3 L4y 3 1.4y
—nj " +n H2 g 5”27“ Tl o
113 1 1.4 33 3 3.3 5354 5 _35_
+§nfw7 Z_§HF2’ Z“rinl—%, Z_inl—‘27 Z+§n1—2~ l_inl—‘27 !
1 1 3 14 3 -1y
Fng T e = 30T = Sn T Sy mod 6, (F119)
1 1 _ 3 34, 3 _ 5 5 5 4
z(}"mﬂ—C,j'_7T mod6:*§nf&7+l 5 A2,+17§n37+1 9 A2’+17§n§l’+l+§n,427+1
. 3 3 1 : 3 _1 i
nH7+l +ng’ A +3 12{7-‘” + 5”2’“ o inL > mod 6, (F120)
_ _ 1 1 1 -1 3 234 3 -3¢ 5 354 5 -3
%o, = Oy M0d 6 = — 53" 4 ony P = Snd 4 Sy - ond T oy
1 1y 3 3 1 3 _1_.
—ng gt 3y S = St mod 6, (F121)

such that a 3D insulator with zg,, . # —Zgm.» mod 6 is in a 3D QAH state. As we will show below, in insulators with
net-zero position-space Chern nufnbers, odd values of &g, indicate mirror TCI phases with § = w. The compatibility
relations require that the occupied bands in the k, = 0,7 planes have the same rotation symmetry eigenvalues, and
hence the same Chern numbers (modulo 6) In an 1nsu1at1ng state (i.e. in the absence of bulk Weyl points), it is
further required that C’k 0+ Cr.—0= C’k —n +Cp —, and C’]C —0—Cf.—, mod 6= C,j' —r — Cp.—o mod 6 = dg.
Layer constructions — To dlagnose the topology associated to each nontrivial value of the double SIs
(56m,zérm,7r,z6mm) we employ the layer construction method. In each layer construction, we denote the mirror
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sector Chern numbers of the occupied bands at k, = 0,7 as (C,i:O,C,;ZO,C;rZ:ﬁ,C,;:ﬂ), and additionally com-
pute the subduced SIs (14, 221.1, 2212, 221.3) p1 in the subgroup double MSG 2.4 P1 (see Appendix F4a). The layer
constructions for Type-I double MSG 175.137 P6/m are given by:

1. A z-normal Chern layer with C} =1, C; = 0 at z = 0 has the mirror sector Chern numbers (1010) and the
SIs (110). The subduced subgroup SIs are (nar, 2211, 221,2, 221,3) p1 = (2001) p1.

2. A z-normal Chern layer with C} =0, C; = 1 at z = 0 has the mirror sector Chern numbers (0101) and the
SIs (501). The subduced subgroup SIs are (2001) p1.

3. A z-normal Chern layer with C =1, C; =0 at z =
SIs (001). The subduced subgroup SIs are (0001) pi.

has the mirror sector Chern numbers (1001) and the

N[

4. A z-normal Chern layer with C} =0, C; =1 at z =
SIs (010). The subduced subgroup SIs are (0001) p1.

has the mirror sector Chern numbers (0110) and the

N[

Relationship with the SIs in other double SSGs — To identify the AXI phases in double MSG 175.137 P6/m, we
subduce the SIs onto double MSG 2.4 P1:

(86m, zé‘m’ﬂ, ZG—mJ)PG/m — (a1, 2211, 221,2, 221,3) p1 = (2(06m mod 2),0,0, zg'mm + 26, mod 2)PI . (F122)

Eq. (F122) implies that the Z AXI index 7oy [Eq. (F49)] is related to g by n2r = %7741 = 06, mod 2, such that

gapped states with dg,, mod 2 = 1 and zg'merzgmm mod 2 = 0 in MSG 175.137 P6/m are AXIs if the non-symmetry-
indicated Chern numbers vanish.

Lastly, we study the effects of imposing 7 symmetry. The double SSG 175.138 P6/m1’ — the SSG generated by
adding {770} to double MSG 175.137 P6/m — has the SI group Zj2 X Zg. The SIs in double SSG 175.138 P6/m1’
are related to the SIs in double MSG 175.137 P6/m through the subduction relations:

(212, 26m,7) P6/m1” — (O6m. Zérm,m Z6m.x)P6/m = (212 MOd 6, 26 7, —26m,x MOd 6) pg /- (F123)

q. Double SIs in Type-I Double MSG 176.143 P63/m

The double MSG 176.143 P63/m is generated by {E[100}, {E£]010}, {E|001}, {C6.|001}, and {Z|0}, where the
angle between the {F|100} and {F|010} translations is chosen to be 27/3 for consistency with the {C5,|0} =
{E|001}{C5-|003}? rotation symmetry. We note that double MSG 176.143 P63/m additionally contains a mirror
symmetry operation: {m.|001} = {F|001}{C.|005}3{Z|0}.

SIs — The double MSG 176.143 P63/m has the SI group Zg x Zs. In the physical basis, the SIs are (ng,()v I3m),
where 83, = G} _ — C}. _; mod 3 subduces to the same SI (d3,,) in double MSG 174.133 P6 [Eq. (F115)]. The SI
formula for ng,o is given by:

1 24 1 —r4; 3 2344 3 —34i 5 54i b _s 44
+ _ ot _ 5,11 3,1 5,1t 5,11 5,11 3,11
Z6m,0 = Cp.—o mod 6 = — Pl + 5r — 3Nt + 3nr — 3"t 3Mr
Io4i i 34, 3 L4 3 Ll
g e 3T+ ini/[ P - §nM2 “ mod 6, (F124)
] L . . . . . . . . 2T
where n;’(ﬂ is the number of occupied states with mirror {mz\OO%} eigenvalue ¢ and rotation eigenvalue e™*= 7

(n=6,3,2for K =T, K, and M, respectively). As we will show below, insulators with Zg_m,O mod 2 = 1 and net-zero
position-space Chern numbers in double MSG 176.143 P63/m are AXIs — all of the other insulators in double MSG
176.143 P63/m with nontrivial SIs are 3D QAH states.

Layer constructions — To diagnose the topology associated to each nontrivial value of the double Sls (ngo7 d3m),
we employ the layer construction method. In each layer construction, we denote the mirror sector Chern numbers
of the occupied bands at k, = 0,7 as (C’,;Z:O,C,;:O,C,z:wq;zﬂ), and additionally compute the subduced SIs
(Mar, 221,15 221,2, 221,3) p1 in the subgroup double MSG 2.4 P1 (see Appendix F 4a). We note that, while the Z centers
in MSG 176.143 P63/m lie in the z = 0, % planes, the mirror planes lie at z = %, % in each cell. The layer constructions
for Type-I double MSG 176.143 P63/m are given by:

1. A z-normal layer with C, =1 in the z = 0,% planes has the mirror sector Chern numbers (1111) and the SIs
(10). The subduced subgroup SIs are (nar, 221.1, 221,2, 221,3) p1 = (2000) p7.
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2. A z-normal layer with C} =1, C7 =0 in the z =
the SIs (21). The subduced subgroup SIs are (0000

, % planes has the mirror sector Chern numbers (2011) and

N

~—

P1-

3. A z-normal layer with C} =0, C; =1 layer in the z =
and the SIs (02). The subduced subgroup SIs are (0000

1,3 planes has the mirror sector Chern numbers (0211)
)p1-

Relationship with the Sls in other double SSGs — To identify the AXI phases, we subduce the SIs in double MSG
176.143 P63/m onto double MSG 2.4 P1:

(26m.0003m) = (a1, 2211, 221,2, 221,3) 1 = (2(2gpm,0 mod 2),000) p1, (F125)

which implies that the Z AXI index nop [Bq. (F49)] is related to zg,, o by 721 = 041 = 2y, o mod 2. Hence, we
conclude that insulators in double MSG 176.143 P63/m with zérm o mod 2 = 1 and net-zero position-space Chern
numbers are AXIs. 7

Lastly, we study the effects of imposing 7 symmetry. The double SSG 176.144 P63/m1’ — the SSG generated by
adding {70} to double MSG 176.143 P63/m — has the SI group Zi2. The SIs in double SSG 176.144 P63/ml’ are
related to the SIs in double MSG 176.143 P63/m through the subduction relations:

(212) P65 /m1r — (zérm)o, 03m ) P6y /m = (215 mod 6, 215, mod 3) pg, /m- (F126)

r. Double SIs in Type-I Double MSG 191.238 P6/mmm

The double MSG 191.233 P6/mmm is generated by { E[100}, { E]010}, {E|001}, {Cs.|0}, {Z]0}, and {m,|0}, where
the angle between the {F|100} and {F]010} translations is chosen to be 27/3 for consistency with the {C5,|0} =
({Cs.]0})? rotation symmetry. We note that double MSG 191.233 P6/mmm additionally contains a mirror symmetry
operation: {m.|0} = {Cs.|0}>{Z|0}. In Cartesian coordinates (z,y, 2), the primitive lattice translation vectors in
double MSG 191.233 P6/mmm — {E|100}, {E|010}, and {E|001} — respectively correspond to t; = (0,—1,0),

ty = (@7 %7O)a and ty = (0707 1)

SIs — The double MSG 191.233 P6/mmm has the SI group Zia X Zg. In double-valued small irreps of the little
groups at the Z-invariant k points, the matrix representatives of perpendicular mirror symmetries (e.g. {m,|0} and
{m,|0}) anticommute. Hence, Bloch states at the eight Z-invariant momenta must be at least twofold degenerate
(and in fact are exactly twofold degenerate in double MSG 191.233 P6/mmm). The double SIs can be chosen to be
the same as the double SIs of SSG 191.234 P6/mmml’ (previously introduced in Ref. 14), because the addition of
T symmetry to double MSG 191.233 P6/mmm does not change the dimensions and characters of the small irreps
at the high-symmetry BZ points or the compatibility relations between the high-symmetry-point small irreps. In the
physical basis, the Z;5 double SI is:

212 = O6m + 3[(0gm — 24) mod 4] mod 12, (F127)

where dg,,, is computed by subduction onto double MSG 175.137 P6/m [Eq. (F119)], and z4 is computed by subduction
onto double MSG 2.4 P1 [Eq. (F59)]. As we will show below, odd values of the strong index 215 indicate mirror TCI
phases with § = 7 (i.e. AXIs), and nontrivial even values indicate non-axionic (helical) magnetic TCI and HOTI
phases. Lastly, in the physical basis, the Zg-valued double SI is the weak TCI invariant zgm’W for the mirror Chern
number (modulo 6) in the k., = 7 plane, and can also be computed by subduction onto double MSG 175.137 P6/m
[Eq. (F120)].

Layer constructions — To diagnose the topology associated to each nontrivial value of the double SIs, we employ the
layer construction method. In the layer constructions below, C* = —C~ due to the net-zero Chern numbers enforced
by the mirror symmetries. Hence, we will omit C~ in further discussions of the topology in double MSG 191.233
P6/mmm. The layer constructions for the double SIs (212, zérmm) in MSG 191.233 P6/mmm are given by:

1. A z-normal layer with C;F =1 in the z = 0 plane has the SIs (21).
2. A z-normal layer with C" =1 in the z = § plane has the SIs (05).
3. An %-normal layer with C;f = 1 in the z = 0 plane has the SIs (60). We emphasize that, in this layer

construction, there are also |C*| = 1 mirror Chern layers in the Cq.%, C2,%, C3.%, Cg, %, and C3,%x directions
implied by the {Cs,|0} rotation symmetry.
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4. A y-normal layer with C?j‘ = 1 in the y = 0 plane has the SIs (60). We emphasize that, in this layer construction,
there are also |CT| = 1 mirror Chern layers in the Ce, ¥y, C2.y, C3,y, C&,¥y, and Cg.¥ directions implied by the
{C6:|0} rotation symmetry.

Azion insulators — We find that states with odd 212 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z12. First, as we will show below, insulators in double MSG 191.233 P6/mmm with z15 mod 2 = 1 subduce to
(2000) p7 in MSG 2.4 P1. Hence, if the z12 mod 2 = 1 phases in double MSG 191.233 P6/mmm are insulating, then
the bulk insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers Cy, . = 0 must
vanish if the bulk is gapped, due to the mirror symmetries of double MSG 191.233 P6/mmm, then insulators with
z12 mod 2 = 1 in double MSG 191.233 P6/mmm must be AXIs. This result can also be understood by subducing
from a T-symmetric SSG. Specifically, because insulators with the double SIs z;2 mod 2 = 1 in double MSG 191.233
P6/mmm can be subduced from insulators with (212) pg/mmm1- mod 2 = 1 in Type-II SG 191.234 P6/mmm]1’, which
correspond to T-symmetric 3D TIs with § = 77'%15, then the double SIs z;2 mod 2 = 1 in double MSG 191.233
P6/mmm are compatible with bulk-gapped states. Hence, we conclude that 3D insulators with z15 mod 2 = 1 in
double MSG 191.233 P6/mmm are AXIs, without ambiguity. We conjecture that z;5 mod 2 = 1 AXIs in double MSG
191.233 P6/mmm can be constructed using the topological crystal method?°”, which additionally incorporates cell
complexes of 2D Chern insulators, T1Is, and T'CIs.

Helical HOTI phases protected by mirror and Cg rotation symmetry — First, the double SIs (60) pg /mmm1- of Type-II
double SSG SG 191.234 P6/mmml’ either correspond to a rotation-anomaly (non-axionic, 4.e. § mod 2w = 0) HOTI
protected by Cg and T symmetries, or a mirror TCI with C,,, mod 12 = 6 (c.f. Table 7 in the Supplementary
Material of Ref. 14). In the Cg- and T-symmetric HOTI phase, there are 6 + 12n (n € {Z",0}) helical hinge modes
on a z-directed, Cs- and T-symmetric rod, and 6 4+ 12n twofold Dirac points on the top (z-normal) rod surface that
are locally protected by mirror symmetry (see Appendix F 6). Because double SSG SG 191.234 P6/mmm]l’ contains
{mg 4|0} symmetries (as well as their conjugates under Cs, symmetry), then six of the helical hinge modes on the
boundary of a 6/mmm1’-symmetric sample must also be pinned to the hinge projections of bulk mirror planes whose
normal vectors lie in the zy-plane, and must be indicated by bulk mirror Chern numbers. Hence, when 7 symmetry
is relaxed in a sixfold rotation-anomaly (60) pe/mmm1- HOTI phase in Type-II double SSG 191.234 P6/mmm1’ while
preserving the symmetries of MSG 191.233 P6/mmm, the surface and hinge states will remain gapless and anomalous
[see Fig. 26(c) and Appendix F 6D].

We will next prove that there are 6 + 12n twofold Dirac points on the top surface of a 6/mmm-symmetric nanorod
of the (60) sixfold rotation-anomaly magnetic HOTI phase in double MSG 191.233 P6/mmm introduced in this work.
We denote the four layer constructions as L, (a = 1---4), respectively. First, we note that the (60) mirror TCI
phase with C,,. mod 12 = 6 can be constructed as (6m + 3)L; ® (6m’ + 3)Lo. Next, the sixfold rotation-anomaly
HOTTI phase can be constructed as (2n + 1)Ls, or (2n 4+ 1)Ly, or through any superposition of an odd number of the
aforementioned layer constructions. Adding 6L; or 6Ls, which have SIs (00), to the layer-constructed HOTI phase
will not change the top surface spectrum, because L; and Lo consist of horizontal (i.e. z-normal) layers, and hence
only contribute surface and hinge states on boundaries whose normal vectors lie in the zy-plane.

We will thus focus on the top surface spectra of the (2n+1)L3 and (2n+ 1) L4 layer constructions. We first consider
(2n + 1)L3. As shown in Supplementary Note 5 in Ref. 14 and in Table 6 of the Supplementary Material of Ref. 14,
the Chern numbers in the m, mirror sectors are given by Clj,:o =-Cp _o=4n+2, C’,i;: =—C, _, =0. In the
2D top surface BZ, C’,:; _o mandates the presence of [4n + 2| twofold Dirac points on the k, = 0 line. Due to the Cs.

us

symmetry, there must also be 2|4n + 2| twofold Dirac points on the Cq, and Cﬁj conjugates of the k, = 0 line. Hence,
the total number of top-surface Dirac points is 3|4n + 2| mod 12 = 6. Lastly, we note that performing the analogous
analysis on the (2n 4+ 1) L4 layer construction also returns the same number of mirror-protected twofold Dirac points
on the top surface (6 + 12n).

In Appendix F 6 a, we will prove that, on the top surface of the (60) HOTT state — which respects the symmetries
of Type-I double magnetic wallpaper group!®:3%63:13L132 64, — the presence of 6+ 12n (n € {Z*,0}) twofold surface
Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group
pbm.

Relationship with the SIs in other double SSGs — To identify the AXI phases, we subduce the SIs onto double MSG
2.4 P1:

(2125 Zgm ) P6mmm — (a1, 2211, Z21,2, 221,3) p1 = (2(212 mod 2),000) p. (F128)

Because the AXI Z SI oy = %7741 = 212 mod 2 [Eq. (F49)], then we conclude that insulators with odd z12 SIs in
double MSG 191.233 P6/mmm are AXIs.
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5. Double SIs in Type-II Double SG 2.5 P11’

Using the definition of a minimal double SSG established in Appendix F 3, we find that there are only five min-
imal Type-II double SSGs: 2.5 P11/, 83.44 P4/m1’, 87.76 I4/m1’, 175.138 P6/m1’, and 176.144 P63/m1’. The
SIs, SI formulas, and physical interpretation of the SIs in the Type-II double SSGs were previously determined in
Refs. 7,14,15. In the physical basis employed in this work, the SI formulas, physical interpretations, and layer con-
structions of the double SIs in the above minimal Type-II double SSGs are provided in Ref. 14. Here and below
[Appendices F4t, F4u, F4v, and F 4w, respectively], we will briefly review the established SI formulas and physical
interpretations of the double SlIs in the five minimal Type-II double SSGs.

To begin, the double SSG 2.5 P11’ is generated by {E|100}, {E£|010}, {E|001}, {Z|0}, and {7T]0}.

The SI group is Z4 x Z3. In the physical basis, the four double SIs (24, 20 1, 22w,2, 22w,3) of double SSG 2.5 P11’
have the respective SI formulas:

1 _ Ny — n}
z4 = Z oK = Z 1 mod 4, (F129)
K K

1 _ Ny — n;r{ .
Zwi= Y 37K = e med2  (i=1,23), (F130)
K,K;,=x K,K;,=x

where K runs over the eight Z-invariant momenta in the first BZ, and n[i( are the number of Bloch states with +1
parity (Z) eigenvalues at K in the group of bands under consideration. The double SIs (24, 22w 1, 22w,2, Z2w,3) P11/
in double SSG 2.5 P11’ have the same SI formulas as the double SIs in (24, 2211, 22,2, 22w,3) Pmmm i double MSG
47.249 Pmmm [Egs. (F59) and (F60)], which we previously analyzed in Appendix F 4d.

The physical interpretations of the double SIs in Type-II double SSG 2.5 P11’ are given below:'*:

1. z4 = 1, 3 indicate strong 3D TIs protected by T symmetry.

2. For z4 = 0,2, 22,; = 1 indicates a weak TI phase that can be deformed into a stack of 2D TIs whose normal
vectors point in the i-direction [e.g., the double SIs (24, z2uw.1; Z2w,2, Z2w,3) P11y = (2110) p11+ indicate a weak TI
that is equivalent to a stack of 2D TIs oriented in the x + y-direction].

3. For zoy,1 = 22uw,2 = %2uw,3 = 0, 24 = 2 indicates a non-axionic helical HOTT protected by Z and 7 symmetries
with a sample-encircling helical hinge mode (see Supplementary Note 5 in Ref. 14).

t.  Double SIs in Type-II Double SG 85.44 P4/m1’

The double SSG 83.44 P4/ml’ is generated by {E|100}, {E|010}, {E|001}, {Z|0}, {C4.|0}, and {T|0}.
The double SSG 83.44 P4/m1’ has the SI group Zg X Z4 X Zs. In the physical basis, the Zg double ST has the SI

formula:

3 3 1 1
28 = ing’Jr - in%’* - in%’Jr + in%’* mod 8, (F131)
; ; 1
i S U S (F132)
K=T,M,Z,A K=X,R

where njll’(i (K =T,M,Z,A) are the number of states at the momentum K with parity (Z) eigenvalue +1 and

{C4.|0} eigenvalue angular momentum j (modulo 4), and nif (K = X, R) are the number of states at the mo-
mentum K with parity eigenvalue £1 and angular momentum j (modulo 2). The Z4 SI subduces to the weak
TCI invariant zj,, . in double MSG 83.43 P4/m [Eq. (F74)], and the Z SI subduces to the weak TI invariant

Zow,1 in double SSG 2.5 P11’ [Eq. (F60)]. We note that in Ref. 14, z,,  is instead labeled z4m . As a set, the
three double SIs (28, 24, 7 22w,1) P4/m1’ in double SSG 83.44 P4/m1’ have the same SI formulas as the double SIs
(28, Z4m 7 #2w,1) P4/mmm 0 double MSG 123.339 P4/mmm, which we previously analyzed in Appendix I'4k.
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The physical interpretations of the double SIs in Type-II double SSG 83.44 P4/m1’ are given below!*
1. z24,1 = 1 indicates the presence of nontrivial weak TT indices in the &, , = 7 planes.

2. Nonzero values of zj, . indicate nontrivial mirror sector Chern numbers in the k., = 7 plane: =z, . =
Cr.—r mod 4 = —C,jz:ﬂ mod 4 [see Eq. (F74) and the surrounding text].

3. zg # 0,4 indicate nontrivial mirror sector Chern numbers in the k, = 0,7 planes: C _; — C,jzzﬂ mod 4 = zg
[see Appendix F 4 h for the subduction relations between (23) p4/m1- in double SSG 83.44 P4/m1’ and the double
SIs in double MSG 83.43 P4/m]. zg mod 2 = 1 specifically indicates strong 3D TI phases.

4. For 2241 = 24, » = 0, 25 = 4 either indicates a mirror TCI phase with C,,, mod 8 = 4, or a non-axionic fourfold

rotation-anomaly HOTI phase with Cy,- and T-symmetry-protected bulk topology and 4 + 8n (n € {Z*,0})
T-protected helical hinge modes (see Supplementary Note 5 in Ref. 14).

u. Double SIs in Type-II Double SG 87.76 14/m1’

The double SSG 87.76 I4/m1’ is generated by {E\%%%}, {E|%%%}, {E|%%%}, {Z|0}, {C4,|0}, and {T10}.
The double SSG 87.76 I4/m1’ has the SI group Zg X Zs. In the physical basis, the Zg double SI subduces to
(28) pa/m1/ in double SSG 83.44 P4/m1’ (see Appendix F4t):

3 3 1 . 1 .
28 = En%’Jr - in%’* - §n5’+ + ini’* mod 8, (F133)
in which n/** are given by:
= > af+ > nE —I-Zn (F134)
K=T',M K=X,N

where né’(i (K = T',M) are the number of states at the momentum K with parity eigenvalue £1 and {C,.|0}
eigenvalue angular momentum j (modulo 4), n (K X, N) are the number of states at the momentum K with
parity eigenvalue £1 and angular momentum j (modulo 2), and nli)J are the number of states at the momentum P

with {S4.]0} eigenvalue e¥**F7. The Zj; SI subduces to the weak TI invariant zg,, ; in double SSG 2.5 P11’ [Eq. (F60)].
The physical interpretations of the double SIs in Type-IT double SSG 87.76 I4/m1’ are closely related to the physical
interpretations of the double SIs in double SSG 83.44 P4/m1’ previously determined in Appendix F 4t and Ref. 14:

1. 29,1 = 1 indicates the presence of nontrivial weak TT indices in the k; , = 7 planes in the primitive-cell BZ.

2. 23 # 0,4 indicate nontrivial mirror sector Chern numbers in the k, = 0 plane: ', _; mod 4 = —C’,j _pmod 4=
zg (noting that the k, = 0, 7 planes are related by reciprocal lattice vectors, because the Bravais lattice of SSG
87.76 I4/ml’ is body—centered tetragonal'!). zg mod 2 = 1 specifically indicates strong 3D TI phases.

3. For 29,1 = 0, 28 = 4 either indicates a mirror TCI phase with C,,, mod 8 = 4, or a non-axionic fourfold
rotation-anomaly HOTI phase with Cy.- and T-symmetry-protected bulk topology and 4 + 8n (n € {Z*,0})
T-protected helical hinge modes (see Supplementary Note 5 in Ref. 14).

v.  Double SIs in Type-II Double SG 175.138 P6/m1’

The double SSG 175.138 P6/m1’ is generated by {F|100}, {E|010}, {E|001}, {Z]|0}, {Cs.|0}, and {T|0}.
The double SSG 175.138 P6/m1’ has the SI group Z12 X Zg. In the physical basis, the SI formula of the Z;5 SI can
be expressed in terms of previously established double SIs'4

212 = S6m + 3[(d6m — 24) mod 4] mod 12, (F135)

where dg,,, is computed by subduction onto double MSG 175.137 P6/m [Eq. (F119)], and z4 is computed by subduction
onto double SSG 2.5 P11’ [see Appendix I 4s]. Additionally, in the physical basis, the Zg SI is the weak TCI invariant
zérmﬂ for the mirror Chern number (modulo 6) in the k, = 7 plane, and can also be computed by subduction
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onto double MSG 175.137 P6/m [Eq. (F120)]. We note that in Ref. 14, z§,, _ is instead labeled Zgn,». As a set,
the two double Sls (zlg,zgrm,ﬂ)%/ml/ in double SSG 175.138 P6/m1’ have the same SI formulas as the double SIs

(212, Zérm,ﬂ)Pﬁ/mmm in double MSG 191.233 P6/mmm, which we previously analyzed in Appendix F 4r.
The physical interpretations of the double SIs in double SSG 175.138 P6/m1’ are given below!:

1. Nonzero values of zérmm indicate nontrivial mirror sector Chern numbers in the k£, = = plane: zgmm =
C’,j;:ﬂ mod 6 = —C;___ mod 6 [see Eq. (F120) and the surrounding text].

2. z12 # 0,6 indicate nontrivial mirror sector Chern numbers in the k, = 0, 7 planes: C’,’C’;:ﬂ — C’k_z:O mod 6 = 219

[see Appendix F4p for the subduction relations between (z12) pg/m1/ in double SSG 175.138 P6/m1’" and the
double SIs in double MSG 175.137 P6/m]. z12 mod 2 = 1 specifically indicates strong 3D TI phases.

3. For zgm’w = 0, z12 = 6 either indicates a mirror TCI phase with C,,_. mod 12 = 6, or a non-axionic sixfold

rotation-anomaly HOTI phase with Cg,- and T-symmetry-protected bulk topology and 6 + 12n (n € {Z*,0})
T-protected helical hinge modes (see Supplementary Note 5 in Ref. 14).

w. Double SIs in Type-II Double SG 176.144 P63/m1’

The double SSG 176.144 P63/m1’ is generated by {E£|100}, {E£[010}, {E£[001}, {Z|0}, {C6.|001}, and {T|0}.
The double SSG 176.144 P63/m1’ has the SI group Zi5. In the physical basis, the SI formula of the Z5 SI can be
expressed in terms of previously established double SIs'*:

219 = ng,o + 3[(z§m’0 — 24) mod 4] mod 12, (F136)

where ng,o is computed by subduction onto double MSG 176.143 P63/m [Eq. (F124)], and z4 is computed by
subduction onto double SSG 2.5 P11’ [see Appendix F 4s]. We note that, unlike previously in double SSG 175.138
P6/m1’ (Appendix F 4v), the mirror sector Chern numbers in the k, = 7 plane individually vanish C’,;i _,. = 0 for any
group of bands in double SSG 176.144 P63/m1’. This can be seen by first recognizing that the matrix representatives
of {TC6.1001} and {m.|00%} anticommute in any small corep of any little group in the k., = 7 plane that contains
both {7Cg.[003} and {m.|005}. Hence, if [¢) is a Bloch eigenstate of {m.|003} at a k point in the k. = 7 plane
with the {m.|003} eigenvalue 4, then {7 Cs.|003}|¢)) is also an eigenstate of {m.|001} with the same eigenvalue (i).
Consequently, there is an effective time-reversal symmetry ({TC’GZ|00%}) within each mirror sector, which enforces
that the mirror sector Chern numbers in the k., = 7 plane individually vanish.
The physical interpretations of the double SIs in double SSG 176.144 P63/m1’ are given below!'?:

1. 215 # 0,6 indicate nontrivial mirror sector Chern numbers in the k, = 0 plane: Ot:o mod 6 = —C _, mod 6 =
215 [see Appendix F'4q for the subduction relations between (z1,) pg, /m1’ in double SSG 176.144 P63/m1’ and
the double SIs in double MSG 176.143 P63/m]. 2}, mod 2 = 1 specifically indicates strong 3D TI phases.

2. 215 = 6 either indicates a mirror TCI phase with Cy,. mod 12 = 6, or a non-axionic sixfold rotation-anomaly
HOTI phase with 63-screw- and T-symmetry-protected bulk topology and 6 + 12n (n € {Z*,0}) T-protected
helical hinge modes (see Supplementary Note 5 in Ref. 14).

x.  Double SIs in Type-III Double MSG 27.81 Pc'c'2

Finally, beginning here with double MSG 27.81 Pc¢'¢’2 and continuing below, we will introduce the physical-basis
SI formulas and the physical interpretations of the double SIs in the 11 minimal Type-IIT double MSGs (see Ap-
pendix Fld) To begin, the double MSG 27.81 Pc'c’2 is generated by {E|100}, {E|010}, {E]|001}, {C2,]|0}, and
{Tm|005}.

ST — lele double MSG 27.81 Pc'c¢’2 has the SI group Zs. As we will shortly demonstrate, in the physical basis, the
double ST 24, indicates the even-valued Chern number in the k, = 7 plane (modulo 4): Cy, - mod 4 = 22} ,. Hence,
insulators with 2}, = 1 are 3D QAH states with C, mod 4 = 2.

We will first demonstrate that Bloch states at the {Cs,|0}-invariant momenta in the k, = « plane in double MSG
27.81 Pc'¢'2 form doubly-degenerate pairs with the same {C5.|0} eigenvalues. To begin, in the k, = 7 plane, the
matrix representative of {’Tmm|00%} squares to minus the identity in all double-valued small coreps. Hence, all of the
irreducible small coreps in the k, = 7 plane along the {me|00%}—invarian‘c lines k, = 0,7 must be at least twofold
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degenerate (and in fact are exactly twofold degenerate in double MSG 27.81 Pc’¢’2). Next, the matrix representatives
of {Tm,|003} and {C>.|0} anticommute in all small coreps at the {C.|0}-invariant points k,, = 0,7 in the k, =7
plane. This implies that, if |¢) is a Bloch state at k, , = 0,7 in the k, = 7 plane for which {C5,|0}|¢) = i|¢), then:

{0} (Tmal 00} ) = —(Tmal003 } {Cor O} ) = i{Tmal003 } o). (F137)

Eq. (F137) implies that both Bloch states in each {7m;|004} doublet at k,, = 0,7, k. = 7 must have the same
{C5,|0} eigenvalues. We therefore define the Zo SI as the parity of the number of doublets with {C5.|0} eigenvalue
—i in the k, = 7 plane:

1 1 Cr.—n
Zhp = Z inf( mod 2 = % mod 2, (F138)
K=Z,T,U,R

1 1
where n} is the number of states with {C5.|0} eigenvalue —i, such that $n? is the number of doublets in which both
Bloch states have the {C2,|0} eigenvalues —i.

Layer constructions — To diagnose the topology associated to z, = 1, we employ the layer construction method.
We begin by placing a z-normal Chern layer with C, = 1 in the z = 0 plane. Due to the {me|()O%} symmetry in

double MSG 27.81 Pc’c’2, there must be another Chern layer with C, = 1 in the z = % plane, such that the total
Chern number per cell is C, = 2, and the Chern number of the occupied bands in the k, = 7 plane is Cy = = 2.
Hence, in this layer construction of a 3D QAH state with C, = 2, the Zy SI is nontrivial 25, = 1.

Relationship with the SIs in other double SSGs — We next compute the subduction relations between the Sls in
double MSG 27.81 Pc’¢’2 and the SIs in the maximal unitary subgroup double MSG 3.1 P2 (see Appendix F4Db):

(zhg)Perer2 — (22r) P2 = (0) po. (F139)

Egs. (F138) and (F139) imply that symmetry-indicated 3D QAH states with 25, = 1 in double MSG 27.81 Pc'c¢’2
necessarily subduce to non-symmetry-indicated 3D QAH states with (za5)p2 = 0 in double MSG 3.1 P2, in agreement
with the physical-basis double SI relations Cy_ =r mod 4 = 225, and Cy,— mod 2 = 2z [taking the twofold axis in
double MSG 3.1 P2 to be oriented in the z-direction, see Eq. (F53) and the surrounding text].

Lastly, if we impose 7 symmetry, then the position-space Chern numbers must vanish, which enforces 25, to be
zero. Correspondingly, in double SSG 27.79 Pcc21’ — the SSG generated by adding {770} to double MSG 27.81 Pc'¢'2
— the double SI group is trivial.

y. Double SIs in Type-III Double MSG 41.215 Ab'a’2

The double MSG 41.215 Aba'2 is generated by {E[100}, {E[0LL}, {E[0L1}, {Cs.|0}, and {Tm,|30}. The
primitive lattice vectors are:

11 1 1
aj ( 70a0)a as <072a2)a as (072a 2)7 ( 0)
and the reciprocal lattice vectors of the primitive cell are:
b; = 27(1,0,0), bs = 27(0,1,1), b; = 27(0,1,—1). (F141)
In the conventional (super)cell, the lattice vectors are:
aj = (1,0,0), a, =ay +a3=(0,1,0), aj =ap —az = (0,0,1). (F142)
and the reciprocal lattice vectors of the conventional cell are:
b} = 2n(1,0,0), b, = 27(0,1,0), b; = 27(0,0,1). (F143)

In the analysis below of the double SIs in double MSG 41.215 Ab’a’2, we will refer to coordinates in the basis of the
conventional cell for consistency with the convention employed in the BCS applications implemented for MTQC.
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SI — The double MSG 41.215 Ab'a’2 has the SI group Z,. In the physical basis, the Zo SI has the SI formula:
23k = nZ mod 2, (F144)

where né is the number of occupied states with {Cs,|0} eigenvalues —i at I'. Below, we will demonstrate that
zop = C, mod 2 where C. is the total position-space Chern number in the primitive cell (or equivalently zor indicates
the even-valued Chern number C, in the conventional cell modulo 4), such that insulators in double MSG 41.215
Ab'a’2 with zor = 1 are 3D QAH states.

Layer constructions — To diagnose the topology associated to zor = 1, we employ the layer construction method.
We begin by placing a z-normal Chern insulator with C, = 1 in the z = 0 plane. In the conventional cell, the
system has {Tm,|130} and {C>.|0} symmetries, as well as the conventional-cell translation symmetries {£|100} and
{E|010}. Because a minimal Chern insulator has one occupied band'%®, then, in the conventional supercell — which
is twice as large as the primitive cell — the system has two occupied bands. Below, we will demonstrate that a set of
occupied bands compatible with this layer construction exhibits zop = 1.

We next determine the constraints imposed by symmetry on the occupied {C5,|0} eigenvalues at the momenta
r'(0,0,0), Z(x,0,0), (0,7,0), and (7,7, 0) [where we note that (0,7,0) and (7, 7,0) are not high-symmetry points in
MSG 41.215 Ab'a’2, see MKVEC (Appendix D 1)]. Because {Tm,|430}? = {£|010}, then the matrix representative
of {Tmm%%O} squares to minus the identity in all small coreps in the k, = 7 plane, and states in the k, = 7 plane
must be at least [and are in fact exactly] twofold degenerate, whereas states in the k, = 0 plane are not required
by {Tmm%%O} to be doubly degenerate [and are in fact singly degenerate at I'(0,0,0)]. We then consider a Bloch
eigenstate |1(ky, m,0)) (ks € {0,7}) with {Cs,|0} eigenvalue & € {i, —i}, and compute the {C4,|0} eigenvalue of the
state {Tmg|550} | (ky, 7, 0)):

[CaulOHTma |5 SOMb e, ,0)) = —{BITIOH T, |2 20Kl m,0)) = e 526" (T 3 S0}k m,0)). - (F145)

Eq. (F145) implies that doublets at (m,m,0) consist of Bloch states with the same {C5,|0} eigenvalues, but that
the two states in each doublet at (0,7, 0) have oppositely-signed {C5,|0} eigenvalues. Next, we consider there to
be a state |[¢(k;,0,0)) (kg € {0,7}) with {C5,|0} eigenvalue & € {i,—i}, and compute the {C2,|0} eigenvalue of
{Tma| 330 (kz, 0,0)):

{CoulOH{Tme | SOH (ks 0,0)) = —{E|TI0} (T | 0}elub(ke,0,0)) = —e~ =€ (Tma |5 0} i(ks, 0,0). (F146)

Eq. (F146) implies that Bloch states at Z(m,0,0) are doubly degenerate with complex-conjugate pairs of {C5.|0}
eigenvalues {7, —i}.

We have thus determined that Bloch states at I'(0, 0, 0) are singly degenerate, Bloch states at Z(w,0,0) and (0, 7, 0)
are doubly degenerate and have opposite {C2,|0} eigenvalues, and that Bloch states at (m, 7, 0) are doubly degenerate
and have the same {C5,]|0} eigenvalues. Thus, one possible set of occupied {C3,|0} eigenvalues that satisfy the above
constraints and the compatibility relations are (—i,+4), (—i,+i), (—4,+4), (+4,+1¢) at I'(0,0,0), Z(m,0,0), (0,=,0),
(m,m,0), respectively. Next, we consider the {C5.|0} eigenvalues at the remaining two high-symmetry k points:
Y (0,27,0) and T'(m, 27, 0). Because ky — bs = (0,0, 27), then the occupied states at Y must have the same {C5,|0}
rotation eigenvalues as the occupied states at I'(0,0,0) for bands that satisfy the compatibility relations. Next,
because kp — by = (7,0, 27), then the occupied states at T' must have the same {C5.|0} rotation eigenvalues as the
occupied states at Z(m,0,0) for bands that satisfy the compatibility relations. In summary, the {Co,|0} eigenvalues
of the occupied bands at the high-symmetry k points are given by:

7(000)| Z(700) | Y (0, 27, 0) | T(x, 27, 0)
{CoslO}| —i,+i| —i,+i| —i+i | —i,+

. (F147)

Using Eq. (F144), we determine that the occupied bands have z3r = 1. Next, using the established formula for
the parity of the Chern numbers in the k., = 0,7 planes in terms of {C5.|0} rotation eigenvalues!?®2%% [which is
equivalent to Eq. (F53)], we conclude that Cj, —o » mod 2 = 1, which is compatible with the layer construction for
zop = 1 introduced in the text preceding Eq. (F145). Thus, we conclude that insulators with zor = 1 are 3D QAH
states with C, mod 2 = 1 in the primitive cell.

Lastly, if we impose 7 symmetry, then the position-space Chern numbers must vanish, which enforces 2 to be
zero. Correspondingly, in double SSG 41.212 Aba21’ — the SSG generated by adding {770} to double MSG 41.215
Ab'a’2 — the double SI group is trivial.
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2. Double SIs in Type-III Double MSG 54.342 Pc'ca

The double MSG 54.342 Pc’c’a is generated by {£[100}, {E£[010}, {E|001}, {Z|0}, {C2.|300}, and {Tm,[003}.

SIs — The double MSG 54.342 Pc'c’a has the SI group Zs X Zy. In the physical basis, the double SIs of double
MSG 54.342 Pc'c'a (nh;, 25 ) individually subduce to previously introduced double SIs. First, the Z AXI index 75,
subduces to the non-minimal index (n};) p7 in double MSG 2.4 P1 (see Appendix F 4a). Next, the even Chern number
SI 22}, = Cj.=» mod 4 subduces to the same SI (2};)peer2 in double MSG 27.81 Pc'c’2 [see Eq. (F138) and the
surrounding text]. Hence, as we will show below, an insulator with (n};,255) = (10) in double MSG 54.342 Pc'c'a
is an Z-protected AXI if the non-symmetry-indicated Chern numbers vanish, and an insulator with 24, =1 is a 3D
QAH state with C, mod 4 = 2.

Layer constructions — We find that all of the double SIs in double MSG 54.342 Pc’c’a can be realized by layer
constructions. The layer constructions for the double SIs (15, 255) in double MSG 54.342 Pc'c’a are given by:

1. A z-normal Chern layer with C, = 1 at the z = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a C, = 1 Chern layer in the z = 1 plane implied by the {7m,|003} symmetry operation. This
layer construction is a 3D QAH state with Cj_ = 2 in all BZ planes of constant k,.

2. An x-normal Chern layer with C,, = 1 at the = 0 plane has the SIs (10). We emphasize that, in this layer
construction, there is also a C, = —1 Chern layer in the z = 3 plane implied by the {C5.|200} symmetry.
Because this layer construction consists of layers with alternating odd Chern numbers occupying Z centers, then
this layer construction is an Z-protected AXI (see Appendix F'4a and Refs. 19,20,29,68,103-121).

Relationship with the SIs in other double SSGs — The SIs in double MSG 54.342 Pc'c’a are related to the Sls in
double MSG 2.4 P1 through the subduction relations:

(nélv ZIQR)PC’C’G — (77417 2211, 221,2722173)P1 = (277/217 000)Pi~ (F148)

Lastly, we study the effects of imposing 7 symmetry. The double SSG 54.338 Pccal’ — the SSG generated by
adding {70} symmetry to double MSG 54.342 Pc’c’a — has the SI group Z4 x Zy'*. The SIs in double SSG 54.338
Pccal’ are related to the SIs in double MSG 54.342 Pc/c’a through the subduction relations:

(Z4a ZZw,2)Pcca1’ — (77/217 ZéR)Pc’c’a - (24 mod 27 O)Pc’c’a~ (F149)

aa. Double SIs in Type-III Double MSG 56.369 Pc'c'n

The double MSG 56.369 Pc’c'n is generated by {E|100}, {E[010}, {E|001}, {Z|0}, {C.|4 30}, and {Tm,[051}.

SIs — The double MSG 56.369 Pc’'c’n has the SI group Zs X Zs. In the physical basis, the double SIs of double
MSG 56.369 Pc'c'n (ny;, #br) individually subduce to previously introduced double SIs. First, the Z AXI index 75;
subduces to the non-minimal index (n};) p; in double MSG 2.4 P1 (see Appendix F 4 a). Next, the even Chern number
SI 22 = Cj.=r mod 4 subduces to the same SI (z5)peere in double MSG 27.81 Pc/c’2 [see Eq. (F138) and the
surrounding text]. Hence, as we will show below, an insulator with (15, z5z) = (10) in double MSG 56.369 Pc’'c'n
is an Z-protected AXI if the non-symmetry-indicated Chern numbers vanish, and an insulator with 25, =1 is a 3D
QAH state with C, mod 4 = 2.

Layer constructions — We find that all of the double SIs in double MSG 56.369 Pc'c¢'n can be realized by layer
constructions. The layer constructions for the double SIs (1}, z55) in double MSG 56.369 Pc’c’'n are given by:

1. A z-normal Chern layer with C, = 1 at the z = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a C, = 1 Chern layer in the z = % plane implied by the {7m,|011} symmetry operation. This
layer construction is a 3D QAH state with C, = 2 in all BZ planes of constant k,.

2. An %x-normal Chern layer with C, = 1 at the = 0 plane has the SIs (10). We emphasize that, in this layer

construction, there is also a C;; = —1 Chern layer in the x = % plane implied by the {sz%%()} symmetry.
Because this layer construction consists of layers with alternating odd Chern numbers occupying Z centers, then

this layer construction is an Z-protected AXI (see Appendix F 4 a and Refs. 19,20,29,68,103-121).

Relationship with the Sls in other double SSGs — The Sls in double MSG 56.369 Pc’c'n are related to the Sls in
double MSG 2.4 P1 through the subduction relations:

(Mars 25R) Perern — (Mar, 221,1, 2212, 221,3) p1 = (2157, 000) p1. (F150)
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Lastly, we study the effects of imposing 7 symmetry. The double SSG 56.366 Pccnl’ — the SSG generated by
adding {770} symmetry to double MSG 56.369 Pc’c'n — has the SI group Z4'*. The SIs in double SSG 56.366 Pccnl’
are related to the SIs in double MSG 56.369 Pc’c¢'n through the subduction relations:

(254)Pccn1’ — (néIaZéR)Pc’c’n = (Z4 mod QaO)Pc’c’n~ (F151)

bb. Double SIs in Type-III Double MSG 60.424 Pb cn’

The double MSG 60.424 PVcn’ is generated by {E|100}, {E[010}, {E[001}, {Z|0}, {C5,|003}, and {Tm,|310}.

SIs — The double MSG 60.424 Pb’cn’ has the SI group Zs X Zo. In the physical basis, the double SIs of double
MSG 60.424 PV'cn’ are (nh;, 255). As previously in double MSGs 54.342 Pc’c’a and 56.369 Pc’'¢'n (Appendices F 4z
and F 4 aa, respectively), 75, is the Z AXI index, and subduces to the non-minimal index (75,)pi in double MSG 2.4
P1.

However, unlike previously in double MSGs 54.342 Pc'c’a and 56.369 Pc'c'n, 255 does not subduce to a previously
introduced minimal double SI. Nevertheless, we will shortly use layer constructions to demonstrate that like in double
MSGs 54.342 Pc'c’a and 56.369 Pc'c'n, z,p indicates the value of a Chern number — here the position-space Chern
number C, — modulo 4. Hence, an insulator with (74, 25z) = (10) in double MSG 60.424 PV’ cn’ is an Z-protected
AXT if the non-symmetry-indicated Chern numbers vanish, and an insulator with 25, = 1 is a 3D QAH state with
Cy mod 4 = 2. Using the Smith normal form of the EBR matrix [see Appendix F 2] and the definition of the Zy AXI
parity index n}; obtained by subduction onto double MSG 2.4 P1 [see the text surrounding Eq. (F49)], we define the
second Zs SI in double MSG 60.424 Pb'cn’ to be:

2hn = nh; +m(T'3) mod 2, (F152)

where m(k;) is the multiplicity of the small corep k; of the little group Gy in the symmetry data vector of the occupied
bands [where the symmetry data vector of a group of bands is defined in the text following Eq. (D65)].

Layer constructions — We find that all of the double SIs in double MSG 60.424 Pb’cn’ can be realized by layer
constructions. The layer constructions for the double SIs (1}, z) in double MSG 60.424 Pb'cn’ are given by:

1. A y-normal Chern layer with C,, = 1 at the y = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a )y = 1 Chern layer in the y = % plane implied by the {Tmz|%%0} symmetry operation. This
layer construction is a 3D QAH state with Cy, = 2 in all BZ planes of constant k.

2. An z-normal Chern layer with C, = 1 at the z = 0 plane has the SIs (10). We emphasize that, in this layer
construction, there is also a C, = —1 Chern layer in the z = 1 plane implied by the {C5,|003} symmetry.
Because this layer construction consists of layers with alternating odd Chern numbers occupying Z centers, then
this layer construction is an Z-protected AXI (see Appendix F 4 a and Refs. 19,20,29,68,103-121).

Relationship with the Sls in other double SSGs — The Sls in double MSG 60.424 Pb'cn’ are related to the SlIs in
double MSG 2.4 P1 through the subduction relations:

(né]; ZéR)Pb’cn’ — (77417 221,15 221,25 Z2I,3)Pi = (277/217 OOO)Pi (F153)

Lastly, we study the effects of imposing 7 symmetry. The double SSG 60.418 Pbcnl’ — the SSG generated by
adding {770} symmetry to double MSG 60.424 PV cn’ — has the SI group Z4'*. The SIs in double SSG 60.418 Pbcnl’
are related to the SIs in double MSG 60.424 Pb/'cn’ through the subduction relations:

(24)Pbcn1’ — (77/21a zéR)Pb’cn' = (Z4 mod 2; O)Pb’cn’- (F154)

cc. Double SIs in Type-III Double MSG 83.45 P4’ /m

The double MSG 83.45 P4'/m is generated by {E|100}, {E|010}, {E|001}, {Z|0}, and {7 C4.|0}. We note that
double MSG 83.45 P4’ /m additionally contains a mirror symmetry operation: {m|0} = {Z|0}{7C4.|0}2.

SIs — The double MSG 83.45 P4’/m has the SI group Z4 X Zs. In double-valued small coreps of the little groups
at the Z- and T Cy,-invariant k points T [kr = (000)], M [kys = (770)], Z [kz = (007)], and A [ka = (w77)], the
matrix representatives of {Z|0}, {7C4.|0}, and {m,|0} commute. Hence, Bloch states |¢) at the I', M, Z, and A
points may be simultaneously labeled with both parity ({Z|0}) and mirror eigenvalues. Taking |¢)) to be a state at
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an Z- and T Cy,-invariant k point with {m|0} eigenvalue i, and parity eigenvalue £ € {—1, 1}, we next compute the
{m,|0} eigenvalues of the state {7 Cy.|0}|¢)):

{mz|0{T Cuz|0}[¢)) = {TC4z|0}{m.|0}¢) = —i{T Csz[0} 1)), (F155)
and the {Z|0} eigenvalues of {7 Cy,|0}|):
{ZI0}{T Cu2[0}|1h) = {T Cuz|0H{Z|0} ) = E{T Cuz[0}|1)). (F156)

Egs. (F155) and (F156) imply that the Bloch states at ', M, Z, and A form doublets with complex-conjugate {m.|0}
eigenvalues and the same parity eigenvalues. At the Z-invariant k points X [kx = (070)], XA [kxa = (700)], R
kg = (077)], and RA [kra = (7w0m)] at which {7 C4.|0} is not an element of the little group Gy, Bloch states
are instead singly degenerate (see the output of the Corepresentations tool introduced in this work for the double-
valued small coreps of double MSG 83.45 P4’/m, where Corepresentations is detailed in Appendix D 2). However,
the insulating compatibility relations require that there is always an even number of singly-degenerate occupied Bloch
states at X, XA, R, and RA, which are required to subdivide into pairs of states (at different energies) with complex-
conjugate {m.|0} eigenvalues and the same parity eigenvalues (see the output of the MCOMPREL tool introduced
in this work for the double-valued small coreps of double MSG 83.45 P4’'/m, where MCOMPREL is detailed in
Appendix D 3).

Therefore, like in other centrosymmetric SSGs in which insulators with nontrivial SIs have even numbers of occupied
bands that subdivide at each Z-invariant k point into doublets with the same parity eigenvalues [e.g. double MSG
47.249 Pmmm and double SSG 2.5 P11/, see Appendices F 4d and F 4 s, respectively], the double SIs of MSG 83.45
P4’ /m in the physical basis (24, 22,3) have the respective SI formulas:

1 _ Ny — n}
z4 = Z SNk = Z v mod 4, (F157)
K K
1 - _ 7t
Zow,3 = Z in} = % mod 2, (F158)
K,Ks=7 K,Ks=7

where K runs over the eight Z-invariant momenta in the first BZ, and n[i( are the number of Bloch states with +1 parity
eigenvalues at K in the group of bands under consideration. Like in double MSG 47.249 Pmmm (see Appendix F 4d),
insulators with z4 mod 2 = 1 are TCIs with 8 = 7 (specifically AXIs with the same C,, x T-symmetric configuration
of chiral hinge states as the magnetic HOTIs introduced in Ref. 34), zg,, 3 indicates the mirror Chern number in the
k., = m plane modulo 2 (22,3 = C,jz:ﬁ mod 2 = C;__ mod 2), and the double SIs (z4, 200,3) = (20) indicate a helical
(non-axionic) magnetic mirror TCI with C),, mod 4 = 2.

Layer constructions — To diagnose the topology associated to each nontrivial value of the double Sls, we employ the
layer construction method. In the layer constructions below, C* = —C~ due to the net-zero Chern numbers enforced
by the symmetries {7Cy,|0} and {m.|0}. Hence, we will omit C'~ in further discussions of the topology in double
MSG 83.45 P4’ /m. The layer constructions for the double SIs (z4, 224,,3) of MSG 83.45 P4’/m are given by:

1. A z-normal mirror Chern layer with C} = 1 in the z = 0 plane has the mirror sector Chern numbers
(C’,jz:O,th:ﬁ) = (11) and the SIs (21).

plane has the mirror sector Chern numbers

N[

2. A z-normal mirror Chern layer with CF = 1 in the z =
(C,Z:O,C,jz:ﬂ) = (1,—1) and the SIs (01).

Azion insulators — We find that states with odd z4 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z4. First, as we will show below, (10) and (30) subduce to (2000)p; in MSG 2.4 P1. Hence, if the (10) and (30)
phases in double MSG 83.45 P4'/m are insulating, then the bulk insulator must either be an AXI or a 3D QAH
state. Because the net Chern numbers C; , , = 0 must vanish if the bulk is gapped, due to the symmetries {7 C4.|0}
and {m|0} of double MSG 83.45 P4’/m, then the (10) and (30) states must be AXIs. As we will show below, this
result can also be understood by subducing from a 7-symmetric SSG. Specifically, because z4 mod 2 = 1, 29,3 =0
states in MSG 83.45 P4’/m can respectively be subduced from insulators with zg mod 2 = 1, 25, . = 22,1 = 0 in
Type-IT double SG 83.44 P4/m1’, which correspond to T-symmetric 3D TIs with § = 7 (see Appendix F4t and
Refs. 7,14,15,98), then (10) and (30) are compatible with bulk-gapped states in double MSG 83.45 P4’/m. Hence,
we conclude that 3D insulators with (10) and (30) in double MSG 83.45 P4’/m are AXIs, without ambiguity. We
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conjecture that the (10) and (30) AXIs in double MSG 83.45 P4’/m can be constructed using the topological crystal
method??”, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TClIs.

Relationship with the SIs in other double SSGs — The SIs in double MSG 83.45 P4’/m are related to the SIs in
double MSG 2.4 P1 through the subduction relations:

(24, 22w,3) parym — (Mar, 221,1, 221,2, 221,3) p1 = (2(24 mod 2),000) p7. (F159)

Lastly, we study the effects of imposing 7 symmetry. The double SSG 83.44 P4/1m1’ — the SSG generated by
adding {770} symmetry to double MSG 83.45 P4’/m — has the SI group Zg x Z4 X Zy (see Appendix F4t and
Refs. 7,14,15,98). The SIs in double SSG 83.44 P4/1m1’ are related to the SIs in double MSG 83.45 P4'/m through
the subduction relations:

(285 Zapmm> 22w,1) Pa/m1 — (%4, 220,3) Parjm = (28 mod 4, 25, mod 2) pys /- (F160)

dd. Double SIs in Type-III Double MSG 103.199 P4c'c

The double MSG 103.199 P4c’c’ is generated by {£[100}, {E£[010}, {E£[001}, {C4.|0}, and {Tm,|001}.

SI — The double MSG 103.199 P4c'c’ has the SI group Z4. As we will shortly demonstrate, in the physical basis,
the double SI 2} indicates the even-valued Chern number in the k., = 7 plane (modulo 8): Cj,—r mod 8 = 2z} .
Hence, insulators with nontrivial values of 2 are 3D QAH states.

We first emphasize that Bloch states at the {C4.|0}-invariant momenta in the k, = 7 plane in double MSG
103.199 P4c'¢’ form doubly-degenerate pairs with the same {C}4.|0} eigenvalues. Specifically, in the k, = 7 plane, the
matrix representative of {Tmy\OO%} squares to minus the identity in all double-valued small coreps. Furthermore,
using the Corepresentations tool introduced in this work (detailed in Appendix D 2), we determine that, in all of
{Tm,|003}-paired doublets at the {Cy.|0}-invariant k points k, = k, = 0,7 in the k. = 7 plane, both states have
the same {C4,|0} (and {C5.]|0}) eigenvalues. Additionally, using the output of Corepresentations for the double-
valued small coreps of double MSG 103.199 P4c/¢’, we find that, at the {C4.|0}-invariant k points (k,, ky) = (0Om)
and (70), both of the Bloch states within each doublet have the same {C5.|0} eigenvalues.

We therefore define the Z4 SI to be half of the even-valued Chern number (modulo 4) of the occupied bands in the
k., = 7 plane:

1+ 1 -2 3 3 3 _3 1 12 1 _1 Ch.—n
iR = Z (4nf<+4nK2 4n§(+4an)+2n§2nR2 mod4:%mod 4. (F161)
K=2,A

)

3
2

3
—= i _453m 3T
2 7 7 157

are the number of occupied states with {Cy.|0} eigenvalues e~'%, e'%, e~ e

=

1
3~ :
where nz’ 4 , respectively,

and n;%’_% are the number of occupied states with {C5.|0} eigenvalues e %%, €%, respectively.

Layer constructions — To diagnose the topology associated to nontrivial values of z} 5, we employ the layer construc-
tion method. We begin by placing a z-normal Chern layer with C, = 1 in the z = 0 plane. Due to the {T'm,|003}
symmetry in double MSG 103.199 P4c'¢/, there must be another Chern layer with C, = 1 in the 2z = % plane, such
that the total Chern number per cell is C, = 2, and the Chern number of the occupied bands in the k. = 7 plane is
Cl.=r = 2. Hence, in this layer construction of a 3D QAH state, C, = 2 and 2}, = 1.

Relationship with the Sls in other double SSGs — We next compute the subduction relations between the Sls in
double MSG 103.199 P4c'¢’ and the SIs in the maximal unitary subgroup double MSG 75.1 P4 (see Appendix F 4e):

(ZAILR)P4C/C/ — (Z4R)p4 = (Q(ZQR mod 2))]34. (F162)

Eq. (F162) implies that symmetry-indicated 3D QAH states with 2}z mod 2 = 1 in double MSG 103.199 P4c'c
subduce to symmetry-indicated 3D QAH states with (24z)ps = 2 in double MSG 75.1 P4, whereas symmetry-
indicated 3D QAH states with 2}, = 2 in double MSG 103.199 P4¢/¢’ necessarily subduce to non-symmetry-indicated
3D QAH states with (z4r)ps = 0 in double MSG 75.1 P4, in agreement with the physical-basis double SI relations
Ch.=r mod 8 = 2z and Cy,—r mod 4 = zyp [see Eq. (F63) and the surrounding text].

Lastly, if we impose 7 symmetry, then the position-space Chern numbers must vanish, which enforces 2, to be
zero. Correspondingly, in double SSG 103.196 P4ccl’ — the SSG generated by adding {770} to double MSG 103.199
P4c'c’ — the double SI group is trivial.
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ee. Double SIs in Type-III Double MSG 110.249 I4:c'd’

The double MSG 110.249 I4,¢'d’ is generated by {E|311}, {E|111}, {E|L11}, {C4.1011}, and {Tm,|i10}. The
Bravais lattice of double MSG 110.249 I4,c¢'d’ is body-centered. Correspondingly, in the primitive cell, the lattice

vectors are:

111 1 11 11 1
ai ( 27272)7 a2 (27 272), a3 (2? ) 2)’ ( 63)
and the reciprocal lattice vectors are:
b; =27(0,1,1), by =2x(1,0,1), bz =2x(1,1,0). (F164)

We additionally note that {Cy.|053}? = {Co.|313} = {E|$13}{C5.|0}, where {E|311} is a primitive translation
symmetry. Hence, the 4; screw symmetry operation {C’4Z|O%%} only contains a half lattice translation in the z
direction in the primitive cell, such that double MSG 110.249 I4,c¢'d’ also contains the rotation symmetry {Cs,|0}.

SI — The double MSG 110.249 I4,c’d’ has the SI group Z,. In the physical basis, the Zs SI has the SI formula:

Ck.=0

2 =m(Tg) mod 2 = mod 2, (F165)

where m(Tg) is the multiplicity of the double-valued small corep I's in the symmetry data ¢¢ corresponding to the
occupied states at ' [kp = (0,0, 0)], where the symmetry data at a k point is defined in the text following Eq. (D65),
and where the {Cy.[011} and {C5.|0} characters of the irreducible small coreps & at I are given by:

Iy | Tg | 7 |Ts
37 3w | -

X6 ({Caz|05 5} |77 [e7"T [e77 % |e'h . (F166)
X5 ({C2:|0}) | —¢ | —i 7 i

Hence, as we will show below, insulators in double MSG 110.249 I4,c'd" with 25, = 1 are 3D QAH states with
C, mod 4 = 2 per primitive cell.

Layer constructions — To diagnose the topology associated to 25, = 1, we employ the layer construction method. We
begin by placing a z-normal Chern insulator with C, = 1 in the z = 0 plane. Due to the {C’4Z|O%%} screw symmetry
in double MSG 110.249 I4,c'd’, there must be a second z-normal Chern insulator with C, = 1 in the z = i plane.
Using the established formula for the parity of the Chern number in terms of {Cs.|0} rotation eigenvalues'®®2%% and
the constraints imposed by the compatibility relations on the eigenvalues of the 4; screw symmetry {C4Z|O%%} in an
insulating state (see the output of the MCOMPREL tool introduced in this work for the double-valued small coreps of
double MSG 110.249 I4,¢'d’, where MCOMPREL is detailed in Appendix D 3), we find that a set of symmetry data
compatible with this layer construction is given by ¢ = T's + g + I'7 + I's. Hence, 24 » = 1 in this layer construction
of a 3D QAH state, in agreement with the net position-space Chern number C, = 2 per primitive cell.

Lastly, if we impose 7 symmetry, then the position-space Chern numbers must vanish, which enforces 2}, to be
zero. Correspondingly, in double SSG 110.246 I4;cdl’ — the SSG generated by adding {770} to double MSG 110.249
I141c'd’" — the double SI group is trivial.

- Double SIs in Type-III Double MSG 130.429 P4/nc'c

The double MSG 130.429 P4/nc’c’ is generated by { E|100}, {E[010}, {E|001}, {C4:|200}, {Z|0}, and {Tm,;1,/003}.

SIs — The double MSG 130.429 P4/nc'c’ has the SI group Z4 X Zs. In the physical basis, the double SIs of double
MSG 130.429 P4/nc'c (24, %) individually subduce to previously introduced double SIs. First, the even Chern
number SI 22}, = Ci_—» mod 8 subduces to the same SI (2}5)pace in double MSG 103.199 P4c'¢’ [see Eq. (F161)
and the surrounding text]. Next, the Z AXI index n}; subduces to the non-minimal index (n5;)p7 in double MSG 2.4
P1 (see Appendix F 4a). Hence, as we will show below, an insulator with (2}, 75;) = (01) in double MSG 130.429
P4/nc'c’ is an Z-protected AXI if the non-symmetry-indicated Chern numbers vanish, and insulators with 2z, # 0
are 3D QAH states.

Layer constructions — We find that in double MSG 130.429 P4/nc¢’, the 3D QAH states — but not the AXT states —
can be realized by layer constructions. The double SIs (2}, 75;) of the symmetry-indicated 3D QAH states in double
MSG 130.429 P4/nc'c¢’ are spanned by superpositions of the following layer construction:
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1. A z-normal Chern layer with C,, = 1 at the z = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a C, = 1 Chern layer in the z = § plane implied by the {7m;10|003} symmetry operation. This
layer construction is a 3D QAH state with Cj_ = 2 in all BZ planes of constant k..

Agzion insulators and 3D QAH states — We find that states with the double SIs (25, 75;) = (01) in double MSG
130.429 P4/nc’¢’ cannot be constructed from layers of 2D stable topological phases. However, we may still use
subduction relations to determine the bulk topology of insulators with the double SIs (01). First, as we will show
below, (01) subduces to (2000) p7 in MSG 2.4 P1. Hence, if a (01) state in double MSG 130.429 P4/nc’c’ is insulating,
then the bulk insulator must either be an AXI or a 3D QAH state, and will specifically be an AXI if the non-symmetry-
indicated Chern numbers vanish. As we will show below, this result can also be understood by subducing from a
T-symmetric SSG. Specifically, because (01) states in double MSG 130.429 P4/nc'c’ can be subduced from insulators
with (24) p4/necir mod 2 = 1 in Type-II double SG 130.424 P4/nccl’, which correspond to 7T-symmetric 3D TIs with
§ = w4, then the double Sls (01) are compatible with a bulk-gapped state in double MSG 130.429 P4/nc'c’. This
provides further evidence that 3D insulators with (01) and net-zero position-space Chern numbers in double MSG
130.429 P4/nc’'c’ are AXIs. We conjecture that (01) AXIs in double MSG 130.429 P4/nc’¢’ can be constructed using
the topological crystal method??”, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and
TCIs.

Relationship with the SIs in other double SSGs — The SIs in double MSG 130.429 P4/ncc’ are related to the SIs
in double MSG 2.4 P1 through the subduction relations:

(Zz/;Ra 77/2])134/nc’c’ = (Mar, 221,15 221,2,221,3)131 = (277/217 000) p1- (F167)

Lastly, we study the effects of imposing 7 symmetry. The double SSG 130.424 P4/nccl’ — the SSG generated by
adding {70} symmetry to double MSG 130.429 P4/nc'c’ — has the SI group Z4'*. The Sls in double SSG 130.424
P4/ncel’ are related to the SIs in double MSG 130.429 P4/nc'¢’ through the subduction relations:

(24)P4/ncc1’ — (ZZLRanéI)Pél/nc’c’ = (Oa z4 mod 2)P4/m:’c’- (F168)

gg9. Double SIs in Type-III Double MSG 155.487 P4y /mbc

The double MSG 135.487 P4} /mbc’ is generated by {E[100}, {E|010}, {E£[001}, {Z|0}, {m.|0}, {C2,|330}, and
{TC421005}.

SI — The double MSG 135.487 P4/, /mbc’ has the SI group Z4. At the Z-invariant momenta, the double-valued
irreducible small coreps are either two- or four-dimensional. An expression for the SI formula of the Z4 double SI
computed from the Smith normal form of the EBR matrix (see Appendix F 2) is given by:

2y = 2m(Ts) — m(Ts) — m(Ms) 4+ 2m(X3), (F169)

where m(k;) is the multiplicity of the small corep k; of the little group Gy in the symmetry data vector of the occupied
bands [where the symmetry data vector of a group of bands is defined in the text following Eq. (D65)]. As we will
shortly show below through layer constructions, like in double MSGs 47.249 Pmmm and 83.45 P4’/m, insulators
with zj mod 2 = 1 are TCIs with § = 7 (i.e. AXIs), and zj = 2 indicates a helical (non-axionic) magnetic mirror
TCI with Cp,, mod 4 = 2.

Layer constructions — We find that in double MSG 135.487 P45 /mbc’, the non-axionic magnetic TCI phases —
but not the AXI phases — can be realized by layer constructions. The double SI 2z} = 2 of a symmetry-indicated
non-axionic TCI phase in P4}, /mbc’ with C,,_ = 2 is realized by the following layer construction:

1. A z-normal mirror Chern layer with C;t = —C, = 1 in the z = 0 plane has the double SI z; = 2. We emphasize
that, in this layer construction, there is also a z-normal mirror Chern layer with Cf = —C; = 1in the z = 1

2
plane implied by the {7°Cy.[001} symmetry operation.

Azion insulators — We find that states with odd zj SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of zj. First, as we will show below, the double SIs z} = 1,3 in double MSG 135.487 P4/, /mbc’ subduce to (2000) p1
in MSG 2.4 P1. Hence, if the 2} mod 2 = 1 phases in double MSG 135.487 P4),/mbc’ are insulating, then the bulk
insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers C, ,, . = 0 must vanish if the bulk
is gapped, due to the symmetries {m.|0} and {C5,|320} of double MSG 135.487 P4, /mbc’, then the 2} = 1,3 states
must be AXIs. As we will show below, this result can also be understood by subducing from a 7-symmetric SSG.
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Specifically, because zj mod 2 = 1 states in MSG 135.487 P4, /mbc’ can respectively be subduced from insulators
with z4 = 1,3 in Type IT double SG 135.484 P45 /mbcl’, which correspond to 7-symmetric 3D TIs with § = 74,
then the double Sls zj = 1,3 are compatible with bulk-gapped states in double MSG 135.487 P4, /mbc’. Hence, we
conclude that 3D 1nsulators with 2} mod 2 = 1 in double MSG 135.487 P4, /mbc’ are AXIs, without ambiguity. We
conjecture that the zj = 1,3 AXIs in double MSG 135.487 P4, /mbc’ can be constructed using the topological crystal
method?°”, which addltlonally incorporates cell complexes of 2D Chern insulators, T1Is, and TCIs.

Relationship with the SIs in other double SSGs — The SIs in double MSG 135.487 P4, /mbc’ are related to the SIs
in double MSG 2.4 P1 through the subduction relations:

(24) Pag jmber — (Mar, 221,15 2212, 221,3) p1 = (2(24 mod 2),000) p7. (F170)

Lastly, we study the effects of imposing 7" symmetry. The double SSG 135.484 P45/mbcl’ — the SSG generated by
adding {70} symmetry to double MSG 135.487 P4}, /mbc’ — has the SI group Z4'*. The Sls in double SSG 135.484
P45 /mbcl’ are in one-to-one correspondence with the SIs in double MSG 135.487 P45 /mbc’:

(24) P4y fmberr — (ZAIL)P4’2/mbc' = (24) P4y ymbe’ - (F171)

Nevertheless, because the EBRs in Type-II double SSG 135.484 P45/mbcl’ and the MEBRs in Type-III double
MSG 135. 487 P45, /mbc’ are not in one-to-one correspondence, then we will continue throughout this work to employ
separate labels (z4 and z) respectively) for the double SIs in double SSGs 135.484 P45 /mbel’ and 135.487 P4L /mbc’.

hh. Double SIs in Type-III Double MSG 184.195 P6c'c

The double MSG 184.195 P6c’¢’ is generated by {E[100}, {E|010}, {E£[001}, {C6.|0} and {Tm,|003}, where
the angle between the {F|100} and {F]010} translations is chosen to be 27/3 for consistency with the {C5,|0} =
({C6.]0})? rotation symmetry.

SI — The double MSG 184.195 P6c'c’ has the SI group Zg. As we will shortly demonstrate, in the physical basis,
the double SI 2§ indicates the even-valued Chern number in the k, = 7 plane (modulo 12): Cy, =, mod 12 = 2z}
Hence, insulators with nontrivial values of z}, are 3D QAH states.

First, using the Corepresentations tool introduced in this work (detailed in Appendix D 2), we determine that
Bloch states at the {C,,.|0}-invariant (n = 2,3,6) k points in the k, = 7 plane in double MSG 184.195 P6¢'¢’ form
doubly-degenerate pairs with the same {C),.|0} rotation symmetry eigenvalues. We therefore define the Zg SI to be
half of the even-valued Chern number (modulo 6) of the occupied bands in the k, = 7 plane:

leo

1 1+ 1 1 3 3 3 5 35 5 _s 1 _1 31 3 -1
%R = <_nA+2nA2 3 fx+2”,42 5”34-571,42 —nf{—l—nHZ—&-?qu—i-nf—nLZ) mod 6

2 2 2 2

= % mod 6, (F172)

where the superscripts n’ A represent the {CGZ|O} eigenvalues e —i%7 at A, nf 4 is the number of occupled states with
{C5.]0} eigenvalue e~*%7 at H, and where n} is the number of states with {CQZ|0} eigenvalue e %37 at L.

Layer constructions — To diagnose the topology associated to nontrivial values of 2§, we employ the layer construc-
tion method. We begin by placing a z-normal Chern layer with C, = 1 in the z = 0 plane. Due to the {7m,|005}
symmetry in double MSG 184.195 P6c'¢/, there must be another Chern layer with C, = 1 in the 2z = % plane, such
that the total Chern number per cell is C, = 2, and the Chern number of the occupied bands in the k, = 7 plane is
Cl.=r = 2. Hence, in this layer construction of a 3D QAH state, C, = 2 and z§p = 1.

Relationship with the SIs in other double SSGs — We next compute the subduction relations between the SIs in double
MSG 184.195 P6¢/¢’ and the SIs in the maximal unitary subgroup double MSG 168.109 P6 (see Appendix F 4n):

(ZéR)P6c’c’ — (Z6R)P6 = (Q(ZéR mod 3))P6~ (F173)

Eq. (F173) implies that symmetry-indicated 3D QAH states with z{; mod 3 # 0 in double MSG 184.195 P6c/'¢
subduce to symmetry-indicated 3D QAH states with even values of (zgr)ps in double MSG 168.109 P6, whereas
symmetry-indicated 3D QAH states with 2§z mod 3 = 0 in double MSG 184.195 P6¢c’ necessarily subduce to non-
symmetry-indicated 3D QAH states with (26z) p¢ = 0 in double MSG 168.109 P6, in agreement with the physical-basis
double SI relations Cj,— mod 12 = 2z} and Cj_—» mod 6 = zsr [see Eq. (F114) and the surrounding text].
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Lastly, if we impose 7 symmetry, then the position-space Chern numbers must vanish, which enforces 2§, to be
zero. Correspondingly, in double SSG 184.192 P6ccl’ — the SSG generated by adding {770} to double MSG 184.195
P6c'¢ — the double SI group is trivial.

5. Summary of the Double SIs in the Minimal Double SSGs

In this section, we will summarize and review the results of the minimal double SI calculations performed in
Appendix F'4. In Table XIII, we present a summary of the complete, independent, minimal double SIs of spinful
band topology in the 1,651 SSGs. All symmetry-indicated spinful SISM [specifically symmetry-indicated WSM, see
the text following Eq. (F36)], TI, and TCI phases in crystalline solids necessarily exhibit nontrivial values of at least
one of the double SIs listed in Table XIII.

We note that, in Table XIII, some minimal double SSGs G are associated to a smaller set of SIs than the SI group
ZC%. This occurs because, in some cases, some — but not all — of the double SIs in G have already been established in
subgroups M of G (i.e., the double SIs in G are not dependent on the double SIs in M, even though some of the double
SIs in G are the same as the double SIs in M, see Appendix F 3 for the definition of dependent SIs). For example,
the indicator group of double MSG 147.13 P3 is Zis X Zs, whereas double MSG 147.13 P3 is only associated in
Table XIII to the Zs-valued index z3g. In the minimal double MSG 147.13 P3 [Appendix F 4 m], the double SIs (147,
23R, #21,3) are not dependent on the double SIs in any individual lower-symmetry double MSG. However, the double
SIs nar and z27 3 also appear in the minimal double MSG 2.4 P1, where the definitions of 14y and 227 3 [the product
of the parity eigenvalues of a set of bands at all of the Z-invariant k points and in the k3 = 7 plane, respectively, see
Eq. (F35)] is the same in both double MSG 147.13 P3 and double MSG 2.4 P1. Correspondingly, when the spinful
SI topological bands of double MSG 147.13 P3 are subduced onto the subgroup double MSG 2.4 P1, the values of
(nar)p3 and (2273)ps for the spinful SI topological bands of double MSG 147.13 P3 are the same as the values of
(nar)p1 and (z2r,3)p1 for the SI topological bands subduced onto double MSG 2.4 P1. Hence, double MSG 147.13
P3 is not associated to 747 or zo7,3 in Table XIII, even though the double SIs (147, 23R, 221,3) of double MSG 147.13
P3 include n4; and zo7 3.

Additionally, in Table XIII, some double Sls are associated to more than one minimal double SSG. This occurs
when minimal double SIs that indicate the same bulk topology arise in two minimal double SSGs G and M for which
neither G ¢ M nor M ¢ G. For example, z4 in Table XIII is associated to both double SG 2.5 P11’ and double
MSG 47.249 Pmmm. In both double SG 2.5 P11’ and double MSG 47.249 Pmmm, z4 = 2 indicates a non-axionic
HOTT phase with helical hinge states through the Z4-valued parity eigenvalue formula introduced in Refs. 7,14,15
[reproduced in Eq. (F59)]. We will further analyze the zy = 2 non-axionic magnetic HOTT phase protected by the
symmetries of double MSG 47.249 Pmmm in Appendix F 6.
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Independent Minimal Double SIs of Spinful Band Topology in the 1,651 Magnetic and Nonmagnetic Double SSGs

SI Bulk Topology Minimal Double SSG(s) [Double SI Formula(s)]
Nar WSM/QAH/AXI 2.4 P1 [Eq. (F35)]

Z21,i QAH: Cr,=x mod 2 2.4 P1 [Eq. (F36)]

nh; AXI 2.4 P1 [Eq. (F49)]

ZaR QAH: Cy mod 2 3.1 P2 [Eq. (F53)], 41.215 Ab'a’2 [Eq. (F144)]
Sam | QAH/AXI/TCI: c;y:,r — Cpy—o mod 2 10.42 P2/m [Eq. (F54)]

23 « | QAH/weak TI/weak TCI: C;ry:ﬂ mod 2 10.42 P2/m [Eq. (F55)]
Z3m,x | QAH/weak TI/weak TCL C; _ . mod 2 10.42 P2/m [Eq. (F56)]

24 AXI/TCI/HOTI 2.5 P11, 47.249 Pmmm, 83.45 P4’ /m [Eq. (F59)]
Z2w,i weak TI/weak TCI: C;Ti:ﬁ mod 2 2.5 P11’, 47.249 Pmmm, 83.45 P4’ /m [Eq. (F60)] (1)
ZAR QAH: C, mod 4 75.1 P4 [Eq. (F63)]

25R, 25R QAH: Cy,./2 mod 2 77.13 P45 [Eq. (F64)], 27.81 Pc’'c’2 [Eq. (F138)], 54.342 Pc'c’a [Eq. (F138)],
56.369 Pc’c'n [Eq. (F138)], 60.424 Pb'cn’ [Eq. (F152)], 110.249 I4;c'd’ [Eq. (F165)] ()

Zas QAH: C, mod 4 81.33 P4 [Eq. (F66)]

Jas WSM 81.33 P4 [Eq. (F69)]

22 AXI 81.33 P4 [Eq. (F70)]

Sam QAH/AXI: Cf _ - C; _, mod 4 83.43 P4/m [Eq. (F72)]

2 weak TI/weak TCL: C} __ mod 4 83.43 P4/m [Eq. (F73)]
L weak TI/weak TCL: C __ mod 4 83.43 P4/m [Eq. (F74)]
2l 0 | QAH/weak TI/weak TCIL: C;f _; mod 4 84.51 P4y/m [Eq. (F78)]

28 AXI/TCI/HOTI 83.44 P4/m1’, 123.339 P4/mmm [Eq. (F105)]
23R QAH: C, mod 3 147.13 P3 [Eq. (F110)]
26R QAH: C, mod 6 168.109 P6 [Eq. (F114)]

S3m |QAH/AXI/TCL Cf _ —Cp __mod3 174.133 P6 [Eq. (F115)]

23 weak TI/weak TCIL: C{ __ mod 3 174.133 P6 [Eq. (F116)]
230 weak TI/weak TCIL: C,_ __ mod 3 174.133 P6 [Eq. (F117)]

S6m | QAH/AXI/TCIL: C; __ —C, _,_ mod 6 175.137 P6/m [Eq. (F119)]
- weak TI/weak TCI: C} __ mod 6 175.137 P6/m [Eq. (F120)]
Z6m,m weak TI/weak TCL: C __ mod 6 175.137 P6/m [Eq. (F121)]
2¢n 0 | QAH/weak TI/weak TCI: C; _, mod 6 176.143 P63/m [Eq. (F124)]

Z12 AXI/TCI/HOTI 175.138 P6/m1’, 191.233 P6/mmm [Eq. (F127)]
219 AXI/TCI/HOTI 176.144 P63/m1’ [Eq. (F136)]

Zig QAH: C. /2 mod 4 103.199 P4c'c’ [Eq. (F161)]

2 AXI/TCI 135.487 P4, /mbc’ [Eq. (F169)]
2R QAH: C./2 mod 6 184.195 P6c’c’ [Eq. (F172)]

TABLE XIII: The independent minimal double SIs of spinful band topology in all 1,651 double SSGs. In order, this table
contains the symbol of each double SI, the bulk topological phase(s) associated to nontrivial values of the double SI including —
where applicable — the momentum- or position-space Chern numbers indicated by the double SI, and the minimal double SSG(s)
associated to the double SI [i.e. the lowest-symmetry SSG(s) in which the double SI predicts nontrivial band topology, see
Appendices F 3 and G 3], as well as the equation in Appendix F 4 containing the explicit double SI formula in terms of crystal
symmetry eigenvalues. All symmetry-indicated spinful SISM [specifically symmetry-indicated WSM, see the text following
Eq. (F36)], TI, and TCI phases in crystalline solids necessarily exhibit nontrivial values of at least one of the double SIs listed
in this table. We note that, in this table, the symbol “AXI” refers to both magnetic AXIs and T-symmetric 3D TIs, because AXI
and 3D TI phases are both defined by the nontrivial bulk axion angle § = 719:20:27-29,68,103-121 = A qdjtionally, the symbols “TCI”
and “HOTI” respectively indicate helical (i.e. non-axionic) mirror Chern insulators and HOTTs"!4:15:17719,32,34-36,98,202,203
which include the magnetic HOTIs introduced in this work (see Appendix F 6). We have placed a { symbol after MSG 83.45
P4'/m in the row for z2,,; to emphasize that, of the three 22, ;, only z2,,3 is a minimal double SI in MSG 83.45 P4’/m
(where minimal double SIs are defined in Appendix F 3). We have placed a i symbol after MSG 110.249 I4:c'd’ in the row
for the indices 2z and 25y to emphasize that the position-space Chern number C. (modulo 2) is indicated by 25y only in
the primitive cell of a crystal in MSG 110.249 I4:c'd’ — in the conventional cell, the position-space Chern number is given by
C. mod 8 = 423 [see the text surrounding Eq. (F165)].
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6. Non-Axionic Spinful Magnetic HOTIs

In the sections below, we will further analyze the spinful helical magnetic HOTI phases discovered in this work. As
discussed in the main text and in Appendices F4 and F 5, we have discovered helical magnetic (i.e. {7|0}-broken)
HOTI phases indicated by z4 = 2 in double MSG 47.249 Pmmm, zs = 4 in double MSG 123.339 P4/mmm, and z12 = 6
in double MSG 191.233 P6/mmm, as well as trivial values for all other independent minimal double SIs in Table XIII.
In this work, we refer to the helical magnetic HOTIs that will be analyzed in this section as non-axionic, because
the helical HOTTs exhibit trivial axion angles # mod 27w = 0 [see Refs. 19,20,27-29,68,103-121 for further discussions
of chiral HOTIs (i.e. AXIs), which conversely exhibit nontrivial axion angles § = 7). When terminated in nanorod
geometries, the helical magnetic HOTIs generically exhibit even numbers of massive or massless twofold surface Dirac
cones, and domain walls between surfaces with oppositely-signed masses bind mirror-protected helical hinge states. As
we will show in Appendix F 6 b, the helical magnetic HOTTs discovered in this work can be connected to nonmagnetic
“rotation-anomaly” TCIs?*?% without closing a bulk or surface gap or gapping the anomalous surface or hinge states.
First, in Appendix F 6a, we will introduce the symmetry-enhanced fermion doubling theorems'®3%:63.74 for twofold
Dirac fermions in the surface wallpaper groups of the helical magnetic HOTIs, which we will then use to diagnose
the 2D surface states as anomalous. Unlike in Ref. 35, the twofold Dirac fermion doubling theorems introduced in
Appendix F 6a do not require {7]0} to be enforced, and are instead only enforced by the spinful unitary magnetic
symmetries of Type-I magnetic double wallpaper groups. Lastly, in Appendix F 6 b, we will introduce tight-binding
models for the helical magnetic HOTI phases, which we will use to explicitly demonstrate the presence of anomalous,
mirror-protected 2D surface and 1D hinge states.

a. Symmetry-Enhanced Fermion Doubling Theorems for Non-Azionic Magnetic HOTIs

In this section, we will derive 2D symmetry-enhanced fermion doubling theorems!8-3%:63:7 for the surface wallpaper
groups'31:132 of spinful, helical magnetic HOTIs. Through the doubling theorems established in this section, we will
demonstrate that the 2D, twofold Dirac surface states of helical magnetic HOTIs are anomalous (see Appendix F6b
for tight-binding models and surface- and hinge-state calculations for helical magnetic HOTIs).

To begin, in each BZ of a 2D crystal, the parity anomaly excludes the presence of a single (i.e. unpaired) twofold-
degenerate, linearly dispersing, ({7]0}}- or magnetic-) symmetry-stabilized Dirac fermion!®:67-219-221 " However, on
the 2D surfaces of 3D T1s2728:222:223 (and some AXIs, see Refs. 19,20,29,68,103-121), unpaired twofold Dirac fermions
are anomalously stabilized by the combination of surface wallpaper group symmetries and spectral (Wannier) flow.
As shown in Refs. 18,35, for 3D crystals whose surface wallpaper groups contain additional rotation and reflection
symmetries, there also exist symmetry-enhanced fermion doubling theorems that may similarly be evaded through a
combination of wallpaper group symmetry and spectral flow.

In Ref. 35, the authors specifically defined the fermion multiplication theorem for twofold Dirac fermions in non-
magnetic [Type-II, see Appendix B 2] double wallpaper groups [which we will in this section take to be z-normal]
that contain the symmetries {7]0} and {C5.|0}, as well as, optionally, {C4.|0} or {Cs.|0}. To derive the fermion
multiplication for nonmagnetic double wallpaper groups, we begin by exploiting the formulas derived in Ref. 203 for
Berry phase in 2D crystals with rotation symmetries. Specifically, in Ref. 203, it was shown that the Berry phase ©9
in one half of the BZ of a 2D crystal with {Cs,|0} symmetry [Fig. 27(a)] is given by:

e'® = (=1)Neer ] Gn(@)6n(X)Gn (V)G (M), (F174)
meoce
that the Berry phase ©4 in one quarter of the BZ of a 2D crystal with {C4,]|0} symmetry [Fig. 27(b)] is given by:
0t = (c)ore T &n(E)n ()G (), (F175)
meoce
and that the Berry phase ©g in one sixth of the BZ of a 2D crystal with {Cs,|0} symmetry [Fig. 27(c)] is given by:
% = (=1)Neee TT 11 (D)0 (K )G (M), (F176)

meocc

where (n(K), &n(K), 1m(K), 0, (K) respectively refer to the Co., Cy., Cs., and C3, eigenvalues of the m'" Bloch
state at K, and where N, is the number of Bloch states at each high-symmetry k point in a given energy range.
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FIG. 27: The 2D BZs of wallpaper groups with even-fold rotation symmetries. (a) The 2D BZ of Type-I magnetic wallpaper
group pmm [isomorphic to Type-I MSG 25.57 Pmm2 modulo out-of-plane lattice translations] or Type-II nonmagnetic wallpa-
per group pmm1’ [isomorphic to Type-II SG 25.58 Pmm21’ modulo out-of-plane lattice translations]. (b) The 2D BZ of Type-I
magnetic wallpaper group p4m [isomorphic to Type-I MSG 99.163 P4mm modulo out-of-plane lattice translations] or Type-II
nonmagnetic wallpaper group p4m1’ [isomorphic to Type-IT SG 99.164 P4mm1’ modulo out-of-plane lattice translations]. (c)
The 2D BZ of Type-I magnetic wallpaper group p6m [isomorphic to Type-I MSG 183.185 P6mm modulo out-of-plane lattice
translations] or Type-II nonmagnetic wallpaper group p6m1’ [isomorphic to Type-IT SG 183.186 P6mm1’ modulo out-of-plane
lattice translations]. The dashed lines in (a-c) indicate mirror lines. The blue patches in (a-c) respectively indicate patches of
the 2D BZ whose area is one half, one quarter, and one sixth of the first 2D BZ; the boundaries of the blue patches are explicitly
chosen to avoid coinciding with the mirror lines. Egs. (F174), (F175), and (F176) respectively indicate the combinations of
rotation symmetry eigenvalues that correspond to the quantized Berry phases ©2 4,6 = 0,7 in the blue patches in (a-c).

In Ref. 203, it was shown that O34 = 7w in Egs. (F174), (F175), and (F176) respectively indicates a nontrivial
bulk Chern number. However, in the presence of {70} or in-plane mirror symmetries, the Chern number is required
to vanish?0,27-29,35,68,108,196,210 " Ty wallpaper groups with Cs,, Cy., or Cg, rotation symmetry and either {70} or
in-plane mirror lines, the disagreement between ©3 46 = 7 and the symmetry restriction that the Chern number
vanish can be resolved by recognizing that a twofold Dirac fermion respectively placed in each half, quarter, and
sixth of the 2D BZ also provides a source of = Berry phase indicated by O 4 = 7!827:28:67:219°223 ' Tpy nonmagnetic
(Type-II) wallpaper groups with Cs,, Cy,, or Cg, rotation symmetry, or in Type-I magnetic wallpaper groups with
mirror and Cs;, Cy4,, or Cg, rotation symmetry, O 46 therefore respectively indicate the number of twofold Dirac
cones in each BZ modulo 4, 8, and 12. Specifically, if ©3 46 = 7 (02,46 = 0), there must be an odd (even) number of
twofold Dirac cones in the blue BZ patches in Fig. 27(a-c), respectively implying the presence of 2 + 4a (4a), 4 + 8a
(8a), or 6+ 12a (12a) twofold Dirac fermions in each BZ [where a € {Z",0}]. In nonmagnetic wallpaper groups with
Cs., Cy, or Cg, totation symmetry, the Dirac fermions are stabilized by {Ca, x 7|0} symmetry?%35:196.210 “anq in
the magnetic wallpaper groups in Fig. 27(a-c), the Dirac fermions are stabilized by mirror symmetry.

However, in Ref. 203, it was shown that ©4 46 = 0 for all 2D spinful lattice models with {770} symmetry, due to
the constraints imposed by 7 symmetry on the eigenvalues of spinful rotation symmetries. Below, we will show that
O246 = 0 is also required in all 2D spinful lattice models that respect the symmetries of Type-I magnetic double
wallpaper groups containing {m,|0} and {m,|0} and Cs., Cy., or Cg. rotation symmetries (i.e. Type-I magnetic
double wallpaper groups pmm, p4m, and p6m, respectively!8:3%:63:131.132) " We note that throughout this work, the
symbols of wallpaper groups — which are also sometimes termed plane groups — are given in the short notation
previously employed in Refs. 18,55,131; in the long notation of the Get Plane Gen tool on the BCS®!:52 magnetic
wallpaper groups pmm, pdm, and p6m are respectively labeled by the symbols p2mm, pdmm, and p6mm. For each
Cy.-symmetric wallpaper group in Fig. 27(a-c), we will choose a patch of the 2D BZ whose boundary intersects the
rotation-invariant k points in Eqs. (F174), (F175), and (F176), respectively, while avoiding the mirror lines, which
may host mirror-symmetry-stabilized Dirac fermions.

First, in double magnetic wallpaper group pmm [isomorphic to Type-I MSG 25.57 Pmm2 modulo out-of-plane
lattice translations]|, the matrix representatives of {C5.|0} and {m,|0} anticommute at each of the four Cy,-invariant
k points in Fig. 27(a) and Eq. (F174) [this result can be obtained by applying the Corepresentations tool detailed in
Appendix D 2 to MSG 25.57 Pmm2]. Consequently, in 2D lattice models constructed from MEBRs, all of the small
irreps o at the four Cy.-invariant k points are two-dimensional, and exhibit net-zero Cs, eigenvalues: x,({C2.|0}) = 0.
For any set of energetically isolated multiplets of Bloch states at the four Cs.-invariant points in Fig. 27(a) and
Eq. (F174), this implies that 3 mod 27 = 0. Consequently, spinful lattice models in double magnetic wallpaper
group pmm must exhibit even numbers of twofold Dirac fermions in each half of the 2D BZ in Fig. 27(a).

Similarly, for double magnetic wallpaper groups p4m [isomorphic to Type-I MSG 99.163 P4mm modulo out-of-plane
lattice translations] and p6m [isomorphic to Type-I MSG 183.185 P6mm modulo out-of-plane lattice translations],
it can be shown through the Corepresentations tool (see Appendix D 2) that the spinful rotation eigenvalues of
energetically isolated multiplets of Bloch states must also appear in complex-conjugate pairs. This respectively implies
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that, for spinful lattice models in double magnetic wallpaper groups p4m and p6m, ©46 mod 27 = 0. Consequently,
spinful lattice models in double magnetic wallpaper group pdm [p6m]| must exhibit even numbers of twofold Dirac
fermions in each quarter [sixth] of the 2D BZ in Fig. 27(b) [Fig. 27(c)].

As we will shortly see in Appendix F 6 b, the surfaces of the helical magnetic HOTTs discovered in this work exhibit
odd numbers of twofold Dirac cones in the blue regions of the 2D BZs shown in Fig. 27(a-c), representing anomalous
exceptions to the magnetic fermion multiplication theorem derived in this section.

b. Tight-Binding Models and Boundary States for Non-Azionic Magnetic HOTIs

Through the double SIs computed in Appendix F 4, we have discovered three novel variants of spinful, helical
magnetic HOTIs with trivial axion angles # mod 27 = 0. In this section, we will provide tight-binding models and
surface- and hinge-state calculations for the three non-axionic magnetic HOTI phases discovered in this work. For each
phase, we will also demonstrate how the top (z-normal) surface states circumvent a magnetic fermion multiplication
theorem (see Appendix F'6a). We will leave the development of bulk (nested) Wilson loop invariants!”20:33 for the
helical magnetic HOTI phases for future works. However, we note that, like the fourfold-rotation-anomaly HOTI
phase in SnTe32:3498.202 i the helical magnetic HOTIs modeled in this section, the occupied bands in half of the
bulk mirror planes that project to the z-normal surface (e.g. {mz+,|0}) exhibit mirror Chern numbers C,,, mod 4 = 2,
whereas the other half (e.g. {mg,|0}) exhibit C,, mod 4 = 0 (see Fig. 26).

Dy, HOTI in double MSG 47.249 Pmmm — We will here analyze the helical magnetic TCI phase protected by
the symmetries of double MPG mmm 8.1.24 [Ds;] (see Appendices C1 and E 1 and Refs. 12,24,61,62,87-94), which
we term the Doy, HOTI (as previously in Appendices C1 and E 1, we will continue to label MPGs in this section
employing the notation of the MPOINT tool on the BCS?' 94 in which an MPG is labeled by its number, followed by
its symbol). As discussed in Appendix F4d, the double SIs (24, 22,1, 22w,2, #2w,3) = (2000) in double MSG 47.249
Pmmm indicate a mirror TCI for which the mirror Chern numbers Cy,, mod 2 = C,, mod 2 = Cy,, mod 2 =
0, Cm, + Cp, + Cpy, mod 4 = 2. Nevertheless, in this work, we refer to the (2000) phase in double MSG 47.249
Pmmm as a helical HOTI for two reasons. First, as discussed in Appendix F4d, the (2000) phase of double MSG
47.249 can be connected to a (24, 220,15 22w,2; 22w,3) Pmmm1’ = (2000) pymm1 mirror TCI phase in the 7-symmetric
supergroup Type-II double SG 47.250 Pmmm]1’ without closing a bulk or surface gap. In turn, the (2000) pymm1s TCI
phase subduces to an Z- and T-protected (24, Zow,1, 22w.2, 22w,3) p11- = (2000) p11/ helical HOTT in Type-II double SG
2.5 P11’ [see Appendix F4s and Refs. 7,14,15,19]. Second, in each of the momentum-space mirror planes in double
MSG 47.249 Pmmm, a nontrivial mirror Chern number cannot be identified by the 2D symmetry-based mirror Chern
indices implied by the Chern number SI formulas in Ref. 203. Specifically, each momentum-space mirror plane in
double MSG 47.249 Pmmm has only mirror, twofold rotation, and inversion symmetries, which can only indicate the
mirror Chern number modulo 2. For example, in the k, = 7 plane of the bulk BZ in double MSG 47.249 Pmmm,
the only SI of stable 2D topology is 22,3, which only indicates C,,, (k, = 7) mod 2 (see Appendix F 4d). Hence, the
nontrivial even mirror Chern numbers of the (2000) phase in double MSG 47.249 Pmmm can only be inferred from
the 3D double SIs (24, 221,1, Z2w,2; 22w,3), and cannot be inferred from symmetry-indicated momentum-space mirror
Chern numbers evaluated in BZ planes. As we will show in this section, and as discussed in previous works!415:34,
TCI surface states may in general be interpreted as HOTI hinge modes if a finite sample is cut into a geometry in
which the bulk mirror planes project to 1D hinges, as opposed to flat 2D surfaces.

To model the Dy, HOTI phase in double MSG 47.249 Pmmm, we begin by introducing the Bernevig-Hughes-Zhang
Hamiltonian for a 3D TI?6729:

HTI(k)TZ(Q > cosk‘i>+ > rotsink;, (F177)
1=,Y,% 1=2,Y,%

where 7¢ and o7 are each 2 x 2 Pauli matrices, and where we have employed a notation in which 7%¢?7 = 7* ® 07 and
factors of the 2 x 2 identity matrices 79 and o are suppressed. Eq. (F177) respects Z and spinful 7 symmetries,
which are represented through the symmetry action:

IHTI(k)I_l = TZHTI(—k)TZ, THTI(k)T_l = O'yHr;I(—k)O'y. (F178)

We next construct the helical Da;, HOTI phase by first superposing two copies of the 3D TI phase of Eq. (F177), and
then introducing perturbative couplings to break 7 symmetry:

HEgmm (k) = 1 Hrr(k) + Aop? 7Y sinky, + A [ (77 4+ 7°) + (77 + 7°)0 % sin k, sin &, ], (F179)
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Bands |I'(000)| X (700)|Y (070)| Z(007)|S (770) | T (0n7) |U(n0x) | R(mmm)
Energy| -1 -1.6 -1.6 -1.6 -3.6 -3.6 -3.6 -5.6
1-2 g fﬁ Yg, ?5 75 ?5 T5 U5 §5
AL (T) | —¢€° ¢° &° ¢° ¢ ¢ ¢° ¢°
Energy| -1 -0.4 -0.4 -0.4 -2.4 -2.4 -2.4 -4.4
3-4 g fg Y5 ?5 75 ?5 T5 U5 §5
A (T)| —¢€° £° ¢° ¢° ¢ ¢ £° ¢°
TABLE XIV: The double-valued small irreps corresponding to the four occupied bulk bands of the helical Dap magnetic HOTI
phase of Eq. (F179) [Fig. 28(b)]. At each of the eight Z-invariant k points in MSG 47.249 Pmmm [given in the notation
k(kykyk.) and obtained through MKVEC, see Appendix D1 and Fig. 28(a)], we list the occupied band index and energy,

the label of the double-valued small irrep o that corresponds to each pair of occupied Bloch states at k in the notation of
the Corepresentations tool [see Appendix D 2], and the matrix representative A, (Z) in the basis of the 2 x 2 Pauli matrices £".

in which ¢ is a 2 x 2 Pauli matrix that indexes the two coupled 3D TI models, and where we have employed a notation
in which p'r70% = ' @ 77 @ 0 and factors of the 2 x 2 identity matrices u°, 7°, 0¥ are suppressed in terms other than
pP Hri(k) when the identity matrices are not summed with other Pauli matrices. H 5™ (k) in Eq. (F179) respects
the symmetries of double MPG mmm 8.1.24 [Dsp], whose generating elements are represented through the action:

THESH"(K)I™ = 7 Hygii™ (—k)r,
Con HiGii™ (k)Cs, = 0" HEGT™ (Cack)o®,
Coy HEGH™ (K)Cy, = p*o? HEGH™ (Coyk)uo?. (F180)

Because HE{Zm™ (k) in Eq. (F179) also respects the group of 3D orthogonal lattice translations, then Eq. (F180)
implies that H{Z™ (k) respects the symmetries of double MSG 47.249 Pmmm. In Eq. (F179), the Ag and A; terms
break 7 symmetry. The A¢ term vanishes at the eight Z-invariant k points k, , . = 0,7 [Fig. 28(a)], whereas the A4
term is generically nonzero at all values of k.

To realize the helical Do, HOTI phase of Hi5#™ (k), we choose Ag = 1, Ay = 0.3 in Eq. (F179). We have chosen
a relatively small value of Ay to ensure that the band ordering remains the same as in the 7-symmetric limit in
which Ag; vanish. Specifically, as discussed in Appendix F 4 d and earlier in this section, in the 7-symmetric limit,
HEmmm (k) realizes a twofold-rotation-anomaly, helical, nonmagnetic HOTI phase with a nontrivial bulk mirror
Chern number”1415:19:35,36 indicated by the double SIS (24, 2211, 22,2, 22w.3) = (2000) in the Type-II double SG
47.250 Pmmm1’. In Fig. 28(b), we plot the bulk band structure of Eq. (F179); we emphasize that Eq. (F179)
contains additional, extraneous (artificial) symmetries beyond those of double MSG 47.249 Pmmm. Hence, the band
structure in Fig. 28(b) exhibits additional degeneracies away from the Fermi level — such as the occupied fourfold
degeneracy at I' — that are not robust to symmetry-preserving perturbations.

To diagnose the topology of Eq. (F179), we will perform two sets of calculations. First, we will calculate the double
SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and hinge states when
Eq. (F179) is terminated in a finite, Daj-symmetric nanorod geometry [Fig. 28(c)]. To begin, in Table XIV, we list
the double-valued small irreps that correspond to the four occupied spinful Bloch eigenstates at each of the eight
Z-invariant k points in MSG 47.249 Pmmm [Fig. 28(a)]. The matrix representative A, (Z) of each two-dimensional
small irrep o in Table XIV is diagonal, indicating that each pair of Bloch states at each Z-invariant k point has two
parity eigenvalues with the same sign. From Table XIV, we obtain the occupied parity eigenvalue multiplicities:

np =4, nlf =0, ng :0,71}2 =4for K=X,Y,Z,5T,U, R. (F181)

Substituting Eq. (F181) into the double SI formulas in Type-I double MSG 47.249 Pmmm [Egs. (F59) and (F60)],
we find that:

1 ~ —nt 4 — 28
2422571;{ mod2zz% mod 4 = 1 mod 4 = 2, (F182)
K K
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FIG. 28: Surface and hinge states of the helical magnetic Dy, HOTI phase in double MSG 47.249 Pmmm. (a) The bulk BZ.
(b) The bulk band structure obtained from Eq. (F179) with Ag = 1 and A; = 0.3. We note that Eq. (F179) contains additional,
extraneous symmetries beyond those of double MSG 47.249 Pmmm, such that the band structure in (b) exhibits additional
degeneracies away from the Fermi level — such as the occupied fourfold degeneracy at I' — that are not robust to symmetry-
preserving perturbations. (c¢) Schematic of the top (z-normal) surface states and nanorod hinge states. The top surface of the
rectangular nanorod in (c) respects the symmetries of Type-I double magnetic wallpaper group pmm, and the hinges respect the
symmetries of frieze groups that contain either {m.|0} or {m,|0} (see Appendices F 4 and F 6 a and Refs. 18,34,63,131,132). (d)
The top surface spectrum plotted along k,, obtained from surface Green’s functions calculated for the model in (b) terminated
in a z-directed slab geometry. In (d), the surface bands exhibit mirror Chern C,,, = 2 spectral flow. We have verified through
surface-state calculations that the slab surface spectrum along k; does not exhibit spectral flow, and that C,,, = 0. Together,
this implies that the top surface exhibits two twofold Dirac cones, circumventing the fermion multiplication theorem for double
magnetic wallpaper group pmm derived in Appendix F 6 a, and implies that the bulk is a Dap, HOTL. (e) The spectrum of an
infinite, z-directed, ms y-symmetric nanorod of the model in (b) features two pairs of hinge-localized helical modes (four total
hinge states), demonstrating that the model in (b) exhibits higher-order spectral flow.

and:
1 _
Zow,1 = Z inK mod 2 =0,
K=X,5,U,R
1
Zow2 = Z 571;( mod 2 =0,
K=Y,S,T\R
1
Zws = Y 57 mod 2 =0, (F183)
K=ZT,U,R

such that the occupied bands of Eq. (F179) shown in Fig. 28(b) exhibit the double SIs (z4, 22,1, 22w,2, 22w,3) = (2000).

Previously, in Appendix F 4 d, we showed that the double SIs (24, 22,1, 22w,2, 22w,3) = (2000) in double MSG 47.249
Pmmm indicate a mirror TCI phase that we designate in this work to be a helical Dy, HOTI. To demonstrate that
Eq. (F179), with the parameters used to obtain Fig. 28(b), exhibits the anomalous surface and hinge states of a Dap
HOTI, we have performed two boundary state calculations. First, as shown in Fig. 28(d), we have calculated the top
(z-normal) surface spectrum of Hgglgfm(k) terminated in a z-directed slab geometry. The top surface of a crystal in
MSG 47.249 Pmmm respects the symmetries of Type-I magnetic wallpaper group pmm (see Appendices F 4 and F 6 a
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and Refs. 18,34,63,131,132). The slab surface spectrum in Fig. 28(d) exhibits mirror Chern C,,, = 2 spectral flow,
and we have additionally verified through surface-state calculations that C,,, = 0. Together, this implies that the
top surface exhibits two twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic
wallpaper group pmm derived in Appendix I 6a. We next calculate the spectrum of an infinite, z-directed, mg .-
symmetric nanorod of HE5mm™ (k) [Fig. 28(e)]. We observe two pairs of hinge-localized helical modes in the nanorod
spectrum in Fig. 28(e), confirming that HL3#™ (k) exhibits the higher-order spectral flow of a Dy, HOTL

Dy, HOTI in double MSG 123.339 P4/mmm — We will next analyze the helical magnetic HOTI phase protected
by the symmetries of double MPG 15.1.53 4/mmm [Dyy] (see Appendices C 1 and E 1 and Refs. 12,24,61,62,87-94),
which we term the Dy, HOTI As discussed in Appendix F'4k, the double Sls (zs, 24, > 22w,1) = (400) in double
MSG 123.339 P4/mmm either indicate a mirror TCI with mirror Chern number C,,. mod 8 = 4, or indicate a
helical Dy, HOTI phase in which half of the z-projecting mirror planes (e.g. the {mg+,|0}-invariant planes) exhibit
Cr, mod 4 = 2, the other half (e.g. the {mg,|0}-invariant planes) exhibit C,, mod 4 = 0, and C,,, = 0 [see
Fig. 26(b)]. To construct the helical D4, HOTI phase, we first superpose two copies of the 3D TI phase of Eq. (F177),
but crucially, in a manner in which the two 3D TIs are formed from different orbital hybridization [e.g. s — p, and
5 — fayz). As we will see, this implies that the two superposed 3D TIs exhibit different valence Cy, eigenvalues (see
Ref. 55 for closely related discussions of orbital hybridization and anomalous corner modes in 2D TIs and 3D Dirac
semimetals). We next add perturbative couplings to break 7 symmetry, resulting in the 3D Hamiltonian:

Hgé/ﬁlmm(k) = P Hri(k) + Ao (u® + p¥)(27Y — 0% sink, ) (cos ky, — cosky) + Aqp?, (F184)

P4/mmm

employing the notation detailed in the text following Eq. (F179). Hyopp (k) respects the symmetries of double
MPG 15.1.53 4/mmm [Dy4y], whose generating elements are represented through the action:

P4/mmm - z_z rpP4/mmm z, 2

IHHO{I‘I (k)T ! wT HHO(TI (k)p*r7,
P4/mmm — 2 —iZg? P4/ mmm 2 iZo?
C4ZHHO/TI (K)C! = pie'd HHO/TI (Cok)pe" 57,

)
P4/mmm — z rrP4/mmm T
Cow HEM ™™ (K)ot = o HE ™™ (Couk)o®. (F185)

Because Hgé/ﬂlmm(k) in Eq. (F184) also respects the group of 3D tetragonal lattice translations, then Eq. (F185)

implies that Hgé/TTmm(k) respects the symmetries of double MSG 123.339 P4/mmm. In Eq. (F184), the Ag term
breaks 7 symmetry, and the A; term breaks the extraneous exchange symmetry represented by pu® + p¥ between the
two superposed 3D TIs at all k points.

To realize the helical Dy, HOTI phase of Hgééﬁmm(k), we choose Ag = 0.5 and A; = 0.2 in Eq. (F184).
We have chosen a relatively small value of A; to ensure that the band ordering remains the same as in the 7-

symmetric limit in which A vanishes. Specifically, as discussed in Appendix F4k, in the 7-symmetric limit,
HP4/mmm

notr (k) realizes the same fourfold-rotation-anomaly, helical, nonmagnetic HOTI phase indicated by the dou-
ble SIs in (zs, 24, 1> 22w,1) = (400) in the Type-II double SG 123.340 P4/mmm1’ as a tetragonal supercell of the
well-studied TCI SnTel*15:32,34,35,98,202 Ty Fig. 29(b), we plot the bulk band structure of Eq. (F184).

To diagnose the topology of Eq. (F184), we will perform two sets of calculations. First, we will calculate the double
SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and hinge states when
Eq. (F184) is terminated in a finite, Dyj-symmetric nanorod geometry [Fig. 29(c)]. To begin, in Table XV, we list the
double-valued small irreps that correspond to the four occupied spinful Bloch eigenstates at the six high-symmetry k
points shown in Fig. 29(a). From the matrix representative A, (h) of each two-dimensional small irrep for each of the
representative unitary symmetries h of the little group Gy [e.g. C4. and Z, see Eq. (D28) and the surrounding text],
we may infer the symmetry eigenvalues of the four occupied bands. Using the matrix representatives in Table XV,
we then compute the auxiliary variables [see Eq. (F106) and the surrounding text]:

3
D D D D R b
K=T,M,Z,A K=X,R
3 _
ndT o= 3 np 4+ Y T =3+4=7,
K=I'M,Z,A K=X,R
1
nTt = Z nz" + Z nrt =144=-5,
K=T,M,Z,A K=X,R
1 _
N3 — Z nZ” + Z nTT =3+4+4="7, (F186)

K=T,M,Z,A K=X,R
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FIG. 29: Surface and hinge states of the helical magnetic D4;, HOTI phase in double MSG 123.339 P4/mmm. (a) The bulk
BZ. (b) The bulk band structure obtained from Eq. (F184) with Ag = 0.5 and A; = 0.2. (¢) Schematic of the top (z-normal)
surface states and nanorod hinge states. The top surface of the square nanorod in (c) respects the symmetries of Type-I double
magnetic wallpaper group pdm, and the hinges respect the symmetries of frieze groups that contain either {ms+,|0} (see
Appendices F4 and F 6 a and Refs. 18,34,63,131,132). (d) The top surface spectrum plotted along k;—, obtained from surface
Green’s functions calculated for the model in (b) terminated in a z-directed slab geometry. In (d), the surface bands exhibit
mirror Chern C,,, by =2 spectral flow. We have verified through surface-state calculations that the Cl4.-related slab surface
spectrum along ks, also exhibits C,,_, = 2 spectral flow, that the surface spectrum along k,, exhibits trivial Cy,, , =0
spectral flow, and that C,,, = 0. Together, this implies that the top surface exhibits four twofold Dirac cones, circumventing
the fermion multiplication theorem for double magnetic wallpaper group p4m derived in Appendix F 6 a, and implies that the
bulk is a Dyp, HOTI. (e) The spectrum of an infinite, Cy.- and mg+y-symmetric nanorod of the model in (b) features four pairs
of hinge-localized helical modes (eight total hinge states), demonstrating that the model in (b) exhibits higher-order spectral
flow.

where n}’f is the number of occupied states with the Cy, eigenvalues e~*37 and the parity (Z) eigenvalues +1 at
K [which is only well-defined at the four Cy,-invariant momenta K = I', M, Z, A, see Fig. 29(a)]. Additionally, in
Eq. (F186), n?(’i is the number of occupied states with the Cs, eigenvalues —i and the parity eigenvalues £1 at the
points K = X, R. Substituting Eq. (F186) into the double SI formula for zg in Type-I double MSG 123.339 P4/mmm
[Eq. (F105)], we obtain:

3

3(n2t —n27) — (n2t —n27) mod 8 — 3IxB-7-06-7)
2 2

mod 8 = 4. (F187)

zZ8 =

To complete the double SI calculation, we must also determine the values of zy,, . and 22,1 (see Appendix F4k).

To compute zg, . and 24,1, we first use Table XV to calculate the number of Cy, eigenvalues at Z and A in each
mirror sector:

1 ) -
=0,n7 =1,n,* =0,
3 g 3 _,

=1,n,7""=0, (F188)

1
3= _ —3, _ 3=
nj =1, ny =0, nj
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Bands '(000) | Z(007) | M (7m0) | A(wmrmr) Bands X (0m0) | R(07rmr)
Energy | -1.2 -1.2 -3.2 -5.2 Energy | -3.07 | -4.27

g fﬁ 78 Mg Zg (o YG EG

1-2 AU(I) 50 _50 _50 _50 1-2 AU(I) _50 _50
Aa’(c4z) efi?%gz e*i?’fﬁz e*i%’gz e*i?’%gz AU(OQZ) —ifz —i£?

Ag(my)| i€ | —ie* | —igm | —ig® Ag(m.)| i€ | i€
Energy | -0.8 -0.8 -2.8 -4.8 Energy | -2.94 | -3.98

g fg 77 M7 27 g Y5 §5

I A@ |~ | 0 | e | e IPYam| e | e
Ay (Cyz)| e 15 | 7156 | o156 | =136 || A (Cy.)| —ie" | —it?
Ag(my)| i€ | —ig® | —ig® | —ig? Ag(my)| —ig® | —ie?

TABLE XV: The double-valued small irreps corresponding to the four occupied bulk bands of the helical D4, magnetic HOTI
phase of Eq. (F184) [Fig. 29(b)]. At one k point in each of the six maximal momentum stars in MSG 123.339 P4/mmm [given
in the notation k(k,kyk.) and obtained through MKVEC, see Appendix D 1 and Fig. 29(a)], we list the occupied band index
and energy, the label of the double-valued small irrep o that corresponds to each pair of occupied Bloch states at k in the
notation of the Corepresentations tool [see Appendix D 2], and the matrix representatives Aq(h) of the representative unitary
symmetries h of the little group G [see Eq. (D28) and the surrounding text] in the basis of the 2 x 2 Pauli matrices £°.

as well as the number of C5, eigenvalues at R in each mirror sector:

1 . 1 .
— —5,—1

—np? =1 (F189)
From Egs. (F'188) and (F189), we then compute z,,, . [Eq. (F74)]:

11,1' 1,1,2' 32,1' 3,&,1' 1 _, 1 _5
— _ 2 2 2 3 3 35
Zgm,w = g (—an +§nK —§nK +§nK +ng  —ng mod 4
K=2,A

1 1
:—5(1+1)+§(0—|—0)—%(14—1)4—%(04—0)—1—1—1mod4:O. (F190)

Lastly, using Eqs. (F186), (F188), and (F189), we compute 22,1 [Eq. (F70)]:

1 1
Zwa =Y 57 mod 2= 2(2+2+2+2) mod 2 =0, (F191)
K=X',R',M,A

where X’ = C;' X and R’ = C' R. Eq. (F191) implies that the occupied bands of Eq. (F184) shown in Fig. 29(b)
exhibit the double Sls (zg, 24, ., 22w,1) = (400).

Previously, in Appendix I'4k, we showed that the double SIs (2s, 2y, ., 22w,1) = (400) in double MSG 123.339
P4/mmm either indicate a mirror TCI with mirror Chern number C,,. mod 8 = 4, or indicate a helical Dy, HOTI
phase in which half of the z-projecting mirror planes (e.g. the {my1,|0}-invariant planes) exhibit C,, mod 4 = 2, the
other half (e.g. the {m, ,|0}-invariant planes) exhibit C,, mod 4 = 0, and C,,,, = 0 [see Fig. 26(b)]. To demonstrate
that Eq. (F184), with the parameters used to obtain Fig. 29(b), is a D4, HOTI, we have performed two boundary state

calculations. First, as shown in Fig. 29(d), we have calculated the top (z-normal) surface spectrum of Hgé/ﬂlmm(k)
terminated in a z-directed slab geometry. The top surface of a crystal in double MSG 123.339 P4/mmm respects
the symmetries of Type-I magnetic wallpaper group pdm (see Appendices F 4 and F 6a and Refs. 18,34,63,131,132).
The slab surface spectrum in Fig. 29(d) exhibits four twofold Dirac cones, circumventing the fermion multiplication

theorem for double magnetic wallpaper group pdm derived in Appendix F 6 a. We next calculate the spectrum of an

infinite, z-directed, Cy,- and my4,-symmetric nanorod of Hgé/TTmm(k) [Fig. 29(e)]. We observe four pairs of hinge-

localized helical modes in the nanorod spectrum in Fig. 29(e), confirming that HI{IDé/TTmm(k) exhibits the higher-order

spectral flow of a Dy, HOTI.

Dgp, HOTI in double MSG 191.233 P6/mmm — Finally, we will now analyze the helical magnetic HOTI phase
protected by the symmetries of double MPG 27.100 6/mmm [Degy| (see Appendices C1 and E1 and Refs. 12,24,
61,62,87-94), which we term the Dg, HOTI As discussed in Appendix F4r, the double SIs (212,25, ) = (60)

6m,m

in double MSG 191.233 P6/mmm either indicate a mirror TCI with mirror Chern number C,,. mod 12 = 6, or
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indicate a helical Dg, HOTI in which half of the z-projecting mirror planes (e.g. the {m,|0}-, {Cs.m,C;.'|0}-,
and {C;.'m,Cs,|0}-invariant planes) exhibit C,, mod 4 = 2, the other half (e.g. the {m,|0}-, {Cs.m,C;,"|0}-, and
{Cg.'m,Ce.|0}-invariant planes) exhibit C,, mod 4 = 0, and C,,. = 0 [see Fig. 26(c)].

To construct the helical Dg;, HOTI phase, we begin by introducing the hexagonal lattice vectors:

t1 = (0,—1,0), to = (v/3/2,1/2,0), ts = (0,0,1), (F192)
and reciprocal lattice vectors:
b, = (V3/3,—1,0), by = (2v/3/3,0,0), bs = (0,0, 1). (F193)

We define the first BZ to consist of the points k =3, 5 5 kiby, k; € [—7,7) [see Fig. 30(a)].
Next, we introduce a model for a 3D TI with hexagonal lattice vectors:

Hi? ™™™ (k) = 7 M (k) + 75" sin(2k; + ky) + 7762 sin(ky — k1) + 7767 sin(ky + 2kz) + 7507 sin(ks),  (F194)
where we have employed the notation detailed in the text following Eq. (F177), and where:

Mk)=3- Z cos(k;) — cos(ky + k2). (F195)
i=1,2,3

In Eq. (F194), we have employed a canonical Pauli matrix transformation given by:

3 . 1 3 1
5l = gal - 50" i=0Y 5= ga’” + 50" (F196)

Eq. (F194) respects Z and spinful 7 symmetries, which are represented through the symmetry action:
THESmmmY (07t = g RS () ez RS/ ()Tt = gy RS Y (g, (F197)

As was done for the Dy, HOTT earlier in this section, we next superpose two copies of the 3D TI phase of Eq. (F194),
but again in a manner in which the two 3D TTs are formed from different orbital hybridization, such that the occupied
bands of the two 3D TIs exhibit different Cg, and Cjs, eigenvalues [see Ref. 55 and the text preceding Eq. (F184)].
We then add perturbative couplings to break 7 symmetry, resulting in the 3D Hamiltonian:

mmm mmm ! T b 1 zZ 2 z z
Hgory ™" () = p® Hag ™" (k) + (07 4 1) [(77 + 7) + 507 sin(ks)]f (&) + Apr* (7 +7), (F198)
where we have employed the notation detailed in the text following Eq. (F179), and where:

f(k) = Ao[SiH(kJQ — /451) + Sin(2/€1 + /{2) — Sin(kl + 2]€2)] (Flgg)

Hgg/ﬂlmm(k) respects the symmetries of double MPG 27.1.100 6/mmm [Dgy,], whose generating elements are repre-

sented through the action:
P6/mmm — z 17 P6/mmm z
IHHO/TI (k)T =1 HHO/TI (k)7%,
CoxHigomi ™" (K)C.! = pre™ 87" Hyoii ™ (Coskpe' 87,
P6/mmm _ z _x ryP6/mmm z
C2yHHo/TI (k)C21 = Ko HHO/TI (Coyk)p*o™. (F200)
P6/mmm

Because Hy o (k) in Eq. (F199) also respects the group of 3D hexagonal lattice translations, then Eq. (F200)

implies that Hjo/m™™ (k) respects the symmetries of double MSG 191.233 P6/mmm. In Eqs. (F198) and (F199),
the Ag term breaks 7 symmetry, and the A; term breaks the extraneous exchange symmetry represented by p* + p¥

between the two superposed hexagonal 3D TIs in the 77 = %[TZ + 79] subspace at all k points.

To realize the helical Dg, HOTI phase of Hggé:?mm(k), we choose Ag = 2 and Ay = 0.4 in Egs. (F198) and (F199).
We have chosen a relatively small value of A to ensure that the band ordering remains the same as in the 7-symmetric
limit in which A vanishes. Specifically, as discussed in Appendix F 41, in the 7-symmetric limit, H gg/ﬁmm(k) realizes

a sixfold-rotation-anomaly, helical, nonmagnetic HOTI phase!%1°3 indicated by the double SIs (212, zgrmm) = (60)
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FIG. 30: Surface and hinge states of the helical magnetic Dg;, HOTT phase in double MSG 191.233 P6/mmm. (a) The bulk
BZ. (b) The bulk band structure obtained from Eqgs. (F198) and (F199) with Ag = 2 and A; = 0.4. We note that Eq. (F198)
contains additional symmetries beyond those of double MSG 191.233 P6/mmm, such that the band structure in (b) exhibits
additional degeneracies away from the Fermi level — such as the unoccupied fourfold degeneracy at I' — that are not robust
to symmetry-preserving perturbations. (c) Schematic of the top (z-normal) surface states and nanorod hinge states. The top
surface of the hexagonal nanorod in (c) respects the symmetries of Type-I double magnetic wallpaper group p6m, and the
hinges respect the symmetries of frieze groups with mirror lines parallel to the hinge translation direction (see Appendices F 4
and F 6 a and Refs. 18,34,63,131,132). (d) The top surface spectrum plotted along k, = 0 [see Egs. (F192) and (F193)] obtained
from surface Green’s functions calculated for the model in (b) terminated in a z- (t3-) normal slab geometry. In (d), the surface
bands exhibit mirror Chern C,,, = 2 spectral flow. We have verified through surface-state calculations that the Cs.-related slab
surface spectrum along the Cem,Cy '- and Cg 'm,Cs-invariant surface mirror lines in p6m [see Fig. 27(c)] also exhibits mirror
Chern C,, = 2 spectral flow, that the surface spectrum along the other three surface mirror lines [i.e. the my-, Cﬁmngl-, and
Cs 1myC’6—invariant lines| exhibits trivial C,, = 0 spectral flow, and that C,,, = 0. Together, this implies that the top surface
exhibits six twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p6m
derived in Appendix F6a, and implies that the bulk is a Dg, HOTI. (e) Unlike in Figs. 28(e) and 29(e), it is numerically
simpler to implement a hinge-state calculation in which the bulk insulator in (b) is cut into a z-directed nanorod that preserves
Z and myg,, symmetries, but does not preserve C3. and Cs. rotation symmetries [see the inset panel in (e)]. In (e), we show
the spectrum of a z-directed, my ,-symmetric nanorod of the model in (b); the nanorod in (e) features two pairs of helical
hinge states along the mg-invariant hinges (four total hinge states), and does not exhibit any other states crossing the gap.
The nanorod spectrum in (e) implies that a Dep,-symmetric nanorod of the model in (b) [i.e. a nanorod with m., Cs.m.Cg.,
and C’gzl m«Cs> symmetries], would feature six pairs of hinge-localized helical modes [twelve total hinge states], demonstrating
that the model in (b) exhibits the higher-order spectral flow of a Dg), helical magnetic HOTT.

in the Type-IT double SG 191.234 P6/mmm1’. In Fig. 30(b), we plot the bulk band structure of Eqs. (F198)
and (F199); we emphasize that Egs. (F198) and (F199) contain additional, extraneous (artificial) symmetries beyond
those of double MSG 191.233 P6/mmm. Hence, the band structure in Fig. 30(b) exhibits additional degeneracies away
from the Fermi level — such as the unoccupied fourfold degeneracy at I' — that are not robust to symmetry-preserving
perturbations.

To diagnose the topology of Egs. (F198) and (F199), we will perform two sets of calculations. First, we will
calculate the double SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and
hinge states when Eqs. (F198) and (F199) are terminated in a finite, Dgp-symmetric nanorod geometry [Fig. 30(c)].
To begin, in Table XVI, we list the double-valued small irreps that correspond to the four occupied spinful Bloch
eigenstates at the six high-symmetry k points shown in Fig. 30(a). From the matrix representative A, (h) of each
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Bands | I'(000) | A(007)
Energy | -1.8 -1 Bands |K(3270)|H(3 2 ) Bands | M (700)|L(70m)
o T An Energy -3.5 -5.5 Energy | -3 -5
L20A @) | e | —¢ o Ks Hs o Me | Ie
By (Cox) e FE e FEN 2N (Cy)| 756 | e |2 A (1) | g0 | ¢
Ag(my)| —ig* | i€ Do(m.)| —ies | —ie Ap(m.)| i | i€
Energy | -0.2 -1 Energy -3.5 -5.5 Energy -3 -5
o Ty A o Ky Hy o Mg Lg
3-4 Ay (T) €0 g0 3-4 Ay (Cy)|  €5E EIS 3-4 Ag(T) | —€° —£0
Ay (Ce)| e 188 | e188 Ay(my)| —ig? —i&* A,(my)| €7 i&*
Ay (ms)| —i€* | i&®

TABLE XVI: The double-valued small irreps corresponding to the four occupied bulk bands of the helical Dgp magnetic HOTI
phase of Eq. (F198) [Fig. 30(b)]. At one k point in each of the six maximal momentum stars in MSG 191.233 P6/mmm [given
in the notation k(k1kzks) and obtained through MKVEC, see Appendix D 1 and Fig. 30(a)], we list the occupied band index
and energy, the label of the double-valued small irrep o that corresponds to each pair of occupied Bloch states at k in the
notation of the Corepresentations tool [see Appendix D 2], and the matrix representatives Aq(h) of the representative unitary
symmetries h of the little group G [see Eq. (D28) and the surrounding text] in the basis of the 2 x 2 Pauli matrices £°.

two-dimensional small irrep for each of the representative unitary symmetries h of the little group Gy [e.g. Cs., Cs.,
and Z, see Eq. (D28) and the surrounding text], we may infer the symmetry eigenvalues of the four occupied bands.

In Appendix F4r, we previously expressed the double SI z15 in terms of other double SIs in double MSGs with
lower symmetry than double MSG 191.233 P6/mmm [Eq. (F127)]:

212 = O6m + 3[(0gm — 24) mod 4] mod 12, (F201)

where z4 and dg,, are respectively defined in Egs. (F59) and (F119). Using the matrix representatives in Table X VI,
we first determine the parity eigenvalue multiplicities:

ng =0, nf =4, ny =4, n§ =0, ny, =4, nj, =0, n, =4, nj =0. (F202)

In MSG 191.233 P6/mmm, the M and L points lie within multiplicity-3 momentum stars (see Appendix D1
and MKVEC); therefore, the eight Z-invariant momenta in MSG 191.233 P6/mmm are given by:

kr = {r, A, M, (Cs.)M, (Cs.)*M, L, (Cs.) L, (CGZ)2L}. (F203)
Egs. (F202) and (F203) imply that:

- +
Ng —n
24 = g %modll

KeKz
- + - + - + - +
Np —Np | Ny — Ny Ny — Ny np —ng
= d 4
1 + 1 +3 1 +3 1 mo
= —14+1+3+3mod4=2. (F204)

Next, to compute dg,,,, we use Table XVI to obtain the rotation eigenvalues in each mirror sector:

550 — 3 3. —3. 5 3
ny =1, n,?" =0, nj =0, ny? =0, nj" =1, ny*> =0,
1 1, 3 1 1
ng =1, ng® =1, ngf =0, nj” =2, n;?" =0,
Ea— —L i 3 i -2, ) - -
ng =1, np?» =0, ng’ =0, np? =0, ng” =1, np* =0,
b —3-i 3, b — i
ny =1, ng =1, n} =0, n}; =0, ny = 2. (F205)
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Using Egs. (F119) and (F205), we then compute dg,,:

1 t4 1 14y 3 3 44 3 —34i 5 34y b 54
dem = —§nf4’+ +§nA2’+ —§nj’+ t3 A2’+ —§n2’+ t3 A2’+
14 L4 34 3 i 3 14
= gt 3y S = Sy
1 1 1 1.5 3 34 3 _3_4; 5 5_4; 5 _5_;
+§n13 —inrz +§I% —5 F2 +§nfi —§nF2
1y 1y 3 . 3 1_; 3 _i_;
+ ny  —ng? —3ng —571]2\/] —|—§nM2’ mod 6
1 5 1 5
= (551143 +(G+ 5 +1-1+3) mod6=0. (F206)
From Egs. (F201), (F204), and (F206), we next compute z1o:
212 = O6m + 3[(0gm — 2z4) mod 4] mod 12 =0+ 3 x 2 mod 12 = 6. (F207)

Lastly, to complete the calculation of the double SIs in MSG 191.233 P6/mmm, we compute zg'mm [Eq. (F120)]:

Lodwi 1 —34i 3 24i 3 -3+ 5 S4i 5 -S4
e = mgnal Hgnat mgma gt = gnd T o
1 . 1 . 3 . 3 1 1 3 -1 )
g g By inf’ﬂ T " mod 6
1 5
—— 55— 1+1+3mod6=0. (F208)

From Egs. (F207) and (F208), we determine that the occupied bands of Eqgs. (F198) and (F199) shown in Fig. 30(b)
exhibit the double SIs (212, zd,, ) = (60).

Previously, in Appendix F 41, we showed that the double SIs (z12, zg,, ) = (60) in double MSG 191.233 P6/mmm
either indicate a mirror TCI with mirror Chern number C),, mod 12 = 6 or indicate a helical Dg, HOTI phase in
which half of the z-projecting mirror planes [e.g. the {m,|0}-, {Cs,m.C;.'|0}-, and {C;.'m,Cs.|0}-invariant planes]
exhibit C,, mod 4 = 2, the other half [e.g. the {m,|0}-, {Cs,m,Cg,"|0}-, and {C;.'m,Cs.|0}-invariant planes] exhibit
Cp mod 4 =0, and C,,, = 0 [see Fig. 26(c)]. To demonstrate that Eq. (F198), with the parameters used to obtain

Fig. 30(b), is a Dgp, HOTI, we have performed two boundary state calculations. First, as shown in Fig. 30(d), we have

calculated the top surface spectrum of Hgg/TTmm (k) terminated in a 2- (t3-) normal slab geometry. The top surface

of a crystal in double MSG 191.233 P6/mmm respects the symmetries of Type-I magnetic wallpaper group p6m (see
Appendices F4 and F6a and Refs. 18,34,63,131,132). The slab surface spectrum in Fig. 30(d) exhibits six twofold
Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p6m derived in
Appendix F 6a. We then calculate the spectrum of an infinite, z-directed, m; ,-symmetric nanorod of Hgg{ﬁmm(k),
which we find to exhibit the higher-order spectral flow of a Dgp, HOTT [Fig. 30(e)].
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Appendix G: Supplementary Tables

In the sections below, we will provide further supplementary tables containing additional data generated for this
work. First, in Appendix G 1, we will provide a complete tabulation of the exceptional composite band (co)reps of
the 1,651 single and double SSGs [see Appendix E3a]. Then, in Appendix G 2, we will tabulate the minimum and
maximum EBR dimension in each single and double SSG. Finally, in Appendix G 3, we will list the minimal double
SSG with the minimal double SIs on which the double SIs in each double SSGs are dependent (see Appendix F 3).

1. Exceptional Composite Band Coreps Induced from Maximal Site-Symmetry Groups

In this section, we provide a complete tabulation of the exceptional cases [defined in detail in Appendix E 3a] in
the 1,651 single and double SSGs in which an irreducible (co)rep of a site-symmetry group of a site in a maximal
Wyckoff position does not induce an elementary band (co)rep [EBR]. For the Type-I MSGs and Type-II SGs analyzed
in TQC?°7:58,60,85,86 ' the exceptional cases listed in the tables below agree with the previous tabulations performed
in Refs. 5,60. Among the tables provided in this section, there is no table of exceptional cases in the Type-II double
SGs, because, as previously shown in Refs. 5,60 and in Table XI, there are no exceptional composite band coreps in
the Type-II double SGs.

a. FExceptional Composite Band Reps in the Type-I Single MSGs

TABLE XVII: Exceptional composite band reps induced from site-
symmetry irreps in the Type-I single MSGs (Appendix B 1). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the single-valued irrep of the site-symmetry group Ggq,
the symbol of the MPG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS?'™®* and
the number of the MPG isomorphic to G4 in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group G4/, the symbol and number of the MPG isomor-
phic to the intersection group Gq, = Gq N Gy, and the dimension d
of the exceptional composite band rep. See Appendix E 3 a for further
information regarding exceptional composite band reps.

MSG Irrep Gq Gy Gq, d
124.351 P4/mcc | a,/ | 422 12.1.40] 4/m 11.1.35| 4 9.1.29 |4
124.351 P4/mcc | ¢,E | 422 12.1.40| 4/m 11.1.35| 4 9.1.29 | 4
131.435 P4y/mmec| e,E |42m 14.1.48] mmm  8.1.24 \mm2 7.1.20 | 4
131.435 P4z/mmc| £,E |42m 14.1.48| mmm  8.1.24 |mm?2 7.1.20 | 4
132.447 P43/mem| b,E 42m 14.1.48| mmm  8.1.24 \mm2 7.1.20 | 4
132.447 P42 /mem| d,E [42m 14.1.48| mmm  8.1.24 |mm2 7.1.20 | 4
139.531 I4/mmm | d,F |42m 14.1.48] mmm  8.1.24 \mm2 7.1.20 | 4
140.541 I4/mem | a,E | 422 12.1.40| 4/m  11.1.35| 4 9.1.29 | 4
140.541 I4/mem | b,E |42m 14.1.48| mmm  8.1.24 |mm?2 7.1.20 | 4
163.79  P3lc |a,EB | 32 18.1.65 3 17.1.62| 3 16.1.60| 4
165.91 P3cl a,F | 32 18.1.65 3 17.1.62 | 3 16.1.60| 4
167.103  R3c a, Bl | 32 18.1.65 3 17.1.62 | 3 16.1.60| 4
188.215  P6c2 a,F | 32 18.1.65 6 22.1.79 | 3 16.1.60| 4
188.215  P6c2 c,E | 32 18.1.65 6 22.1.79 | 3 16.1.60| 4
188.215  P6c2 e,/ | 32 18.1.65 6 22.1.79 1 3 16.1.60| 4
190.227 P62c | a,F | 32 18.1.65 6 22.1.79 | 3 16.1.60| 4
192.243 P6/mcc |a,E2| 622 24.1.87| 6/m  23.1.82 | 6 21.1.76| 4
192.243 P6/mcc |a,Ey | 622 24.1.87| 6/m  23.1.82| 6 21.1.76|4
192.243 P6/mcc | ¢,E | 32 18.1.65 6 22.1.79| 3 16.1.60| 8
193.253 P6s/mem| d,E | 32 18.1.65 6 22.1.79 | 3 16.1.60| 8
207.40  P432 ¢, | 422 12.1.40| 432 30.1.112| 4 9.1.29|6
207.40  P432 |d,E 422 12.1.40| 432 30.1.112| 4 9.1.29 |6
208.44  P4.32 |b,E | 32 18.1.65| 23  28.1.107| 3 16.1.60|8
208.44 P4:32 |c,E | 32 18.1.65| 23  28.1.107| 3 16.1.60|8
210.52  F4:32 |c,E | 32 181.65| 23  28.1.107| 3 16.1.60|8
210.52  F4:32 |d,E| 32 18.1.65| 23  28.1.107| 3 16.1.60|8
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211.56 1432 b,E | 422 12.1.40] 432 30.1.112| 4 9.1.29 |6
211.56 1432 c,F | 32 18.1.65| 432 30.1.112| 3 16.1.60| 8
215.70  P43m | c,E |42m 14.1.48| 43m 31.1.115\mm2 7.1.20 | 6
215.70  P43m |d,E |42m 14.1.48| 43m 31.1.115|mm2 7.1.20 | 6
217.78 143m b,E |42m 14.1.48| 43m  31.1.115|mm2 7.1.20 | 6
22298 Pn3n | b,E|422 12.1.40| 432 30.1.112] 4 9.1.29 |12
223.104 Pm3n | c,E |42m 14.1.48| mmm  8.1.24 \mm?2 7.1.20 |12
223.104 Pm3n |d,E |42m 14.1.48| mmm  8.1.24 /mm2 7.1.20 |12
223.104 Pm3n |eE | 32 18.1.65| m3 29.1.109| 3 16.1.60|16
224110 Pn3m | d,E |42m 14.1.48| 43m 31.1.115\mm2 7.1.20 |12
226.122  Fm3c | c,E |42m 14.1.48) m3  29.1.109mm2 7.1.20 |12
228.134  Fd3c b,E | 32 18.1.65 23 28.1.107| 3 16.1.60|16

_ _32 18.1.65 3 17.1.62 | 3 16.1.60|16
229.140 Im3m | d,E |42m 14.1.48|4/mmm 15.1.53 |mm2 7.1.20 |12
230.145  Ia3d b,E | 32 18.1.65 3 17162 | 3 16.1.60]/16

b. Exceptional Composite Band Reps in the Type-I Double MSGs

TABLE XVIII: Exceptional composite band reps induced from site-
symmetry irreps in the Type-I double MSGs (Appendix B1). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the double-valued irrep of the site-symmetry group Ggq,
the symbol of the MPG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS*1™* and
the number of the MPG isomorphic to G4 in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group G/, the symbol and number of the MPG isomor-
phic to the intersection group Gq, = Gq N Gy, and the dimension d
of the exceptional composite band rep. See Appendix E 3 a for further
information regarding exceptional composite band reps.

S5G Trrep Gq Gy Gq, d
49.265 Pcem |eE | 222 6.1.17 |2/m 5.1.12 | 2 3.1.6 |4
49.265  Pccm fF | 222 6.1.17 |2/m 5.1.12 | 2 3.1.6 |4
49.265 Pcem | gE | 222 6.1.17 |2/m 5112 | 2 3.16 |4
49.265 Pcem | h,E| 222 6.1.17 |2/m 5112 | 2 3.1.6 |4
51.289 Pmma | e,E lmm2 7.1.20 |2/m 5112 |m 4.1.9 |4
51.280 Pmma | f,E lmm2 7.1.20 [2/m 5.1.12 |m 4.1.9 |4
63.457 Cmem | c¢,E [mm2 7.1.20 |2/m 5.1.12 |m 4.1.9 |4
66.491 Cecem |a,E | 222 6.1.17 |2/m 5112 | 2 3.1.6 |4
66.491 Ccem b7E 222 6.1.17 |2/m 5.1.12 | 2 3.16 |4
67.501 Cmma |a,B | 222 6.1.17 [2/m 5112 | 2 3.1.6 |4
67.501 Cmma |b,E|222 6.1.17 |2/m 5112 |2 3.1.6 |4
67.501 Cmma | gE |mm2 7.1.20 |2/m 5112 |m 4.1.9 |4
69.521 Fmmm | fE | 222 6.1.17 |2/m 5.1.12 | 2 3.1.6 |4
72.539  Ibam a,F | 222 6.1.17 |2/m 5.1.12 | 2 3.1.6 |4
72.539  Ibam |b,E| 222 6.1.17 |2/m 5.1.12 | 2 3.1.6 |4
74.554  Imma |e,FE |mm2 7.120 [2/m 5.1.12 |m 4.1.9 |4
89.87 P422 e, B | 222 6.1.17 | 422 12.140| 2 3.1.6 |4
89.87 P422 fF | 222 6.1.17 | 422 12.1.40| 2 3.1.6 |4
97.151 1422 c,FE | 222 6.1.17 | 422 12.140| 2 3.1.6 |4
99.163 P4dmm | c,E |mm2 7.1.20 |4mm 13.1.44 |m 4.1.9 |4
107.227 I4mm | b,E |mm2 7.1.20 |4mm 13.1.44 |m 4.1.9 |4
111.251  P42m | eE | 222 6.1.17 |42m 14.148| 2 3.1.6 |4
111.251 P42m | f,E | 222 6.1.17 [42m 14.1.48 |2 3.1.6 |4
112.259  P42c a, B | 222 6.1.17 4 101322 316 |4
112.259  P42c c,E | 222 6.1.17 4 101.32|2 3.16 |4
115.283 P4m2 | gE |mm2 7.1.20 |42m 14.1.48 |m 4.1.9 |4
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211.56 1432 |b,E;| 422 12.1.40 | 432 30.1.112| 4 9.1.29 |6
211.56 1432 |c,Ei| 32 18.1.65 | 432 30.1.112| 3 16.1.60| 8
211.56 1432 |d,E | 222 6.1.17 | 422 12.1.40| 2 3.1.6 |12
1222 6117 | 32 181.65| 2 316 |12

214.67 14,32 |c,E | 222 6.1.17 | 32 18.1.65|2 3.1.6 |12
214.67 14,32 |d,E|222 6.1.17 | 32 18.1.65| 2 3.1.6 |12
218.81 P43n |b,E | 222 6.1.17 | 23 28.1.107| 2 3.1.6 |12
B | 222 6117 | 4 10.1.32|2 3.1.6 |12

222.98  Pn3n |bE,| 422 12.1.40 | 432 30.1.112| 4 9.1.29 |12
222.98  Pn3n |bE;| 422 12.1.40 | 432 30.1.112| 4 9.1.29 |12
223.104 Pm3n |e,E;| 32 18.1.65 | m3 29.1.109| 3 16.1.60|16
224.110 Pn3m | a,F |43m 31.1.115|3m1 20.1.71 |3m 19.1.68| 8
224.110 Pn3m | £,E | 222 6.1.17 |3ml 20.1.71| 2 3.1.6 |24
B _ 222 6.1.17 |42m 14.148 | 2 3.1.6 |24

225.116 Fm3m | ¢,F |43m 31.1.115|/m3m 32.1.118|3m 19.1.68| 8
227.128 Fd3m |a,F |43m 31.1.115|3m1 20.1.71 |3m 19.1.68| 8
227.128 Fd3m | b,F |43m 31.1.115|3m1 20.1.71 |3m 19.1.68| 8
228.134 Fd3c |b,Ei| 32 18.1.65| 23 28.1.107| 3 16.1.60|16
B _ | 32 18165| 3 17.1.62| 3 16.1.60|16

230.145  Ia3d |b,E,| 32 18.1.65| 3 17.1.62| 3 16.1.60|16
230.145 Ia3d |c,F | 222 6.1.17 | 32 18.1.65| 2 3.1.6 |24
222 6117 | 4 1013212 316 [24

c.  FExceptional Composite Band Coreps in the Type-1I Single SGs

TABLE XIX: Exceptional composite band coreps induced from site-
symmetry coreps in the Type-II single SGs (Appendix B2). In order,
the columns in this table list the number of the SG in the BNS setting
and the symbol of the SG, the letter of the maximal Wyckoff position
containing q and the single-valued corep of the site-symmetry group Ggq,
the symbol of the SPG isomorphic to the site-symmetry group G4 in the
Hermann-Mauguin notation of the MPOINT tool on the BCS?'™2* and
the number of the SPG isomorphic to G in the convention established
by Litvin in Ref. 12, the symbol and number of the SPG isomorphic
to the reducing group G4, the symbol and number of the SPG isomor-
phic to the intersection group Gq, = Gq N G4/, and the dimension d of
the exceptional composite band corep. See Appendix E3a for further

information regarding exceptional composite band coreps.

SG Corep Gq Gy Gy d
84.52  Pdy/ml’ |e,'EZE| 41" 10.2.33] 2/ml” 5213 | 21" 32.7[4
84.52  Pdy/ml’ |f,'E2E| 41" 10.2.33| 2/ml’ 5213 | 21" 3.2.7 |4
87.76  I4/ml’ |d,'E?E| 41" 10.2.33| 2/ml’ 5.213 | 21’ 3274
112.260  P42cl’ |e,*E2F| 41" 10.2.33| 2221  6.2.18 | 21" 3.2.7 |4
112.260  P42c1’ |f,'E2E| 41" 10.2.33| 2221 6.2.18 | 21" 3.2.7 |4
116.292  Pic2l’ |c,'E*FE| 41" 10.2.33| 2221  6.2.18 | 21" 3.2.7 |4
116.292  Pic2l’ |d,'E?E| 41" 10.2.33| 2221 6.2.18 | 21" 3.2.7 |4
120.322  I4c21’  |b,'E2E| 417 10.2.33| 2221  6.2.18 | 21" 3.2.7 |4
120.322  I4c21' |c,*E%F| 417 10.2.33| 2221  6.2.18 | 21" 3.2.7 |4
121.328 I142ml’ |d,'E*E| 41" 10.2.33| 2221  6.218 | 21’ 3274
126.376 P4/nncl’ |d,'E*E| 41’ 10.2.33| 2221 6.2.18 | 21’ 3278
130.424  P4/nccl’ |b,'E?E| 41" 10.2.33| 2221  6.2.18 | 21" 3278
131.436 P4z/mmel’| e,E |42m1’ 14.2.49| mmm1’  8.2.25 |mm21’ 7.2.21| 4
131.436 P4o/mmel’| £E |42m1’ 14.2.49| mmm1’  8.2.25 |mm21’ 7.2.21| 4
132.448 P4z/meml’| bE  |42m1’ 14.2.49| mmml’  8.2.25 |mm21’ 7.2.21| 4
132.448 Pdy/meml’| d,E  |42ml’ 14.2.49| mmml’  8.2.25 |mm21’ 7.2.21| 4
133.460 P4o/nbcl’ |d,'E*E| 41" 10.2.33| 2221  6.2.18 | 21’ 3278
135.484 P4o/mbcl’ |b,'E?E| 41’ 10.2.33| 2/ml’ 5213 | 21’ 3278
136.496 P4s/mnm1’|d,*EE| 41" 10.2.33| 2/ml’ 5213 | 21" 3278
138.520 P4s/neml’ |b,'E?E| 41" 10.2.33| 2221  6.2.18 | 21’ 3278
139.532 I4/mmml’ | d,E |42m1’ 14.2.49| mmml’ 8.2.25 |mm21’ 7.2.21|4
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215
215

218
218
219
219
222

140.542 I4/meml’ | DbE  |42ml’ 14.2.49] mmml’ 8.2.25 |mm21’ 7.2.21
142.562 T41/acdl’ |a,'E?F| 41" 10.2.33] 2221  6.2.18 | 21’ 3.2.7
71 P43ml’ c,E  |42ml’ 14.2.49| 43m’  31.2.116|mm21’ 7.2.21
71 P43ml’ d,E  |42m1’ 14.2.49| 43m’  31.2.116|mm21’ 7.2.21
217.79  I43m1’ b,E |42m1’ 14.2.49| 43m’  31.2.116/mm21’ 7.2.21
217.79  I43m1’ |d,'EZE| 41’ 10.2.33| 42ml’  14.249| 21’ 3.2.7
82 Pi3nl’ |c¢,'E’E| 41 10.2.33| 2221' 6.218 | 21" 3.2.7
82 Pi3nl’ |d,'E’E| 41’ 10.2.33| 2221' 6.218 | 21" 3.2.7
86  F43cl’ |c,'E*E| 41’ 10.2.33| 231 28.2.108| 21' 3.2.7
86  F43cl’ |d,'E?E| 41’ 10.2.33| 231  28.2.108] 21’ 3.2.7
99  Pn3nl’ |d,'E2E| 41’ 10.2.33| 4221’ 12.241| 21’ 327
223.105 Pm3nl’ c¢,E  |42ml’ 14.2.49| mmml’  8.2.25 |mm21’ 7.2.21
223.105 Pm3nl’ d,E  |42m1’ 14.2.49] mmml’  8.2.25 |mm21’ 7.2.21
224.111  Pn3m1’ d,E  |42m1’ 14.2.49| 43m’  31.2.116|mm21’ 7.2.21
226.123  Fm3cl’ c,E  |42m1’' 14.2.49] m31"  29.2.110|mm21’ 7.2.21
228.135  Fd3cl’ |d,'E?E| 41" 10.2.33] 231’ 28.2.108| 21° 3.2.7
229.141  Im3ml’ d,E  |42m1’ 14.2.49|4/mmml’ 15.2.54 |mm21’ 7.2.21
230.146  Ia3dl’ |d,'E’E| 41’ 10.2.33] 2221" 6218 | 21’ 3.2.7

D = N = = = = N e b
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d. Ezceptional Composite Band Coreps in the Type-III Single MSGs

TABLE XX: Exceptional composite band coreps induced from site-
symmetry coreps in the Type-III single MSGs (Appendix B 3). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the single-valued corep of the site-symmetry group Gq,
the symbol of the MSG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS** ?* and
the number of the MSG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group G4/, the symbol and number of the MPG isomor-
phic to the intersection group Gq, = Gq N G4/, and the dimension d of
the exceptional composite band corep. See Appendix E 3a for further
information regarding exceptional composite band coreps.

MSG Corep Gy Gy Gao d
84.53 P45 [m e,BB Y 10.3.34] 2/m 51.12 | 2 316 |4
84.53 P45 /m f,BB & 10.3.34|  2/m 5112 | 2 3.16 |4
84.54  Pdy/m’ e,BB q 10.3.34| 2/m’ 5415 | 2 3.1.6 |4
84.54  Pdy/m’ f,BB y 10.3.34| 2/m’ 5415 | 2 3.16 |4
87.77 14 /m d,BB 4 10.3.34| 2/m 5112 | 2 3.1.6 |4
87.78 I4/m’ d,BB y 10.3.34| 2/m/ 5415 | 2 3.1.6 |4
112.261  P4'2'c e,BB g 10.3.34| 22’2 6.319 | 2 3.1.6 |4
112.261  P4'2'c f,BB 4 10.3.34| 22’2 6.319 | 2 3.1.6 |4
112.262  P4'2¢ e,BB 4 10.3.34| 222 6.1.17 | 2 3.1.6 |4
112.262  P4'2¢ f,BB 4 10.3.34| 222 6.1.17 | 2 3.1.6 |4
116.203  P4'¢'2 ¢,BB 4 10.3.34| 222 6.1.17 | 2 316 |4
116.203  P4'¢'2 d,BB 4 10.3.34| 222 6.1.17 | 2 3.16 |4
116.204  P4'¢2’ ¢,BB 4 10.3.34| 222 6319 | 2 316 |4
116.204  P4'¢2’ d,BB 4 10.3.34| 222 6319 | 2 316 |4
120.323  I4'¢'2 b,BB 4 10.3.34| 222 6.1.17 | 2 3.16 |4
120.323 14’2 ¢,BB 4’ 10.3.34| 222 6117 | 2 3.16 |4
120.324  T4'¢2 b,BB 4’ 10.3.34| 222 6319 | 2 316 |4
120.324  I4'¢2 ¢,BB 4’ 10.3.34| 222 6319 | 2 316 |4
121.329 I4'2'm d,BB 4’ 10.3.34| 222 6319 | 2 316 |4
121.330  I4'2m’ d,BB 4’ 10.3.34| 222 6.1.17 