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For over 100 years, the group-theoretic characterization of crystalline solids has provided the
foundational language for diverse problems in physics and chemistry. However, the group theory of
crystals with commensurate magnetic order has remained incomplete for the past 70 years, due to the
complicated symmetries of magnetic crystals. In this work, we complete the 100-year-old problem
of crystalline group theory by deriving the small corepresentations, momentum stars, compatibility
relations, and magnetic elementary band corepresentations of the 1,421 magnetic space groups
(MSGs), which we have made freely accessible through tools on the Bilbao Crystallographic Server.
We extend Topological Quantum Chemistry to the MSGs to form a complete, real-space theory
of band topology in magnetic and nonmagnetic crystalline solids – Magnetic Topological Quantum
Chemistry (MTQC). Using MTQC, we derive the complete set of symmetry-based indicators of
electronic band topology, for which we identify symmetry-respecting bulk and anomalous surface
and hinge states.

Introduction

A crystal is defined by its discrete translation symme-
try. Over the past 140 years1,2, a tremendous number
of physical phenomena have been shown to arise from
the complicated mathematical structures implied by this
otherwise simple definition of a crystal. For example,
the symmetry and group theory of crystalline solids have
been used to characterize phase transitions3, identify bi-
ological structures like the DNA double helix4, and, most
recently, to elucidate the position-space origin of topolog-
ical bands through the theories of Topological Quantum
Chemistry (TQC)5,6 and equivalent works7–9.

In time-reversal- (T -) symmetric, periodic systems –
which most familiarly include nonmagnetic crystalline
solids – the energy (Bloch) eigenstates respect the sym-
metries of the nonmagnetic (Type-II) Shubnikov space
group (SSGs)10–12 [see Fig. 1 and Supplementary Ap-
pendix (SA) B]. Though there are 230 Type-II SSGs,
including SSGs with complicated combinations of glide
and screw symmetries, the group theory of nonmag-
netic crystalline solids has been largely solved for over 40
years11. In particular, the enumeration of the irreducible
momentum-space [small] corepresentations [coreps, see
SA D 2], and a partial enumeration of the space group (el-
ementary band) coreps [EBRs, see SA E] of the Type-II
SSGs were completed prior to the advent of personal and
distributed computing11,21–24. In recent years, the group
theory of Type-II SSGs has facilitated a revolution in
the search for topological insulators (TIs)25–30 and topo-
logical crystalline insulators (TCIs)17,18,31,32, including

the recent discovery of higher-order TCIs (HOTIs)33–35

through TQC and related methods13–15,19,36.

However, the 230 Type-II SSGs represent only a frac-
tion of the 1,651 (magnetic and nonmagnetic) SSGs
(MSGs and SGs, respectively, see Fig. 1 and SA B).
Specifically, while Type-II SGs contain unitary symme-
tries and T about any point ({T |0}), there are also Type-
I MSGs with only unitary symmetries, Type-III MSGs
that contain combinations of T and rotation or reflec-
tion (e.g. {C2z × T |0}, in which Cni is a rotation by
2π/n about the i axis), and Type-IV MSGs that contain
the combination of T and fractional lattice translation
({T |a/2}, in which a is an odd-integer linear combina-
tion of lattice vectors). The small (co)reps and magnetic
EBRs [MEBRs] of the MSGs are necessary for a wide
range of physical applications, including characterizing
magnetic topological semimetals (SMs)37–40, TIs41,42,
and TCIs43,44. Beyond topological materials, the mag-
netic small (co)reps are also required to construct the-
ories of magnetic phase transitions with nonzero q vec-
tors from magnetic structure data obtained through neu-
tron diffraction experiments45,46, and to characterize T -
breaking superconducting phases47 with nonzero Cooper-
pair momenta, such as Fulde-Ferrell-Larkin-Ovchinnikov
states48–51. Nevertheless, due to the relative complexity
of the MSGs, and despite a number of significant partial
tabulations16,52, progress towards completing the group
theory of magnetic crystals has largely stalled for the past
70 years10,11.

In this work, we use a combination of computational
and analytic methods to derive the small (co)reps and
MEBRs of the MSGs, completing the 100-year-old prob-
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SSGs Type-I Type-II Type-III Type-IV

(Co)reps ✓ ✓ ✓ ✓

Compatibility rel. ✓ ✓ ✓ ✓

EBRs ✓ ✓ ✓ ✓

SI group ✓ ✓ ✓ ✓

SI formulas ✓ ✓ ✓ ✓

 Fragile criteria ✓

Stable invariants ✓

Boundary states ✓

SI → invariants ✓ ✓ ✓ ✓

MSGs SGs MSGs MSGs

* * *

* * *

(1651)(1651)
(230) (230) (674) (517)

Enforced SMs ✓✓ ✓ ✓

FIG. 1: Summary of results. In this work, we have de-
rived the complete sets of trivial bands [elementary band
(co)representations (EBRs), see SA E] and symmetry-
indicated, spinful, stable topological bands in the 1,651 Shub-
nikov space groups [SSGs]. The EBRs subdivide into the
physical EBRs of the 230 Type-II nonmagnetic space groups
[SGs] and the magnetic EBRs [MEBRs] of the 1,421 Type-
I, III, and IV magnetic SGs [MSGs, see SA B]10–12. We
have additionally performed the first complete calculation of
the small (co)representations [(co)reps] and compatibility re-
lations [see SA D] for all 1,651 single and double SSGs, which
we have made accessible through the tools listed in Table I.
These results comprise the theories of Magnetic Topologi-
cal Quantum Chemistry (MTQC) and fermionic symmetry-
based indicators (double SIs)7,13–16, which apply to all pos-
sible 3D magnetic and nonmagnetic crystals with mean-field
Hamiltonians. We have also determined the physical bases
of all double (spinful) symmetry-based indicators (SIs), and
symmetry-indicated topological bulk and anomalous bound-
ary states for all 1,651 double SSGs (SA F). Lastly, the ME-
BRs of the Type-III and Type-IV MSGs computed in this
work also facilitate the complete enumeration of symmetry-
enforced magnetic topological semimetals (SMs) – examples
are provided in Fig. 4(c) and in SA D 2 b. In this figure, we
have used red checks to indicate areas of magnetic topologi-
cal band theory completed in this work, and we have used red
stars to indicate areas in which we have solved complete sub-
areas (such as the double SIs of the 1,651 double SSGs), but in
which there remain topological features outside of the scope
of this work, such as non-symmetry-indicated stable topolog-
ical bands17–20 and bosonic (spinless) topological crystalline
insulators (TCIs).

lem of crystalline group theory. Using the small (co)reps
and MEBRs, we construct a complete position-space the-
ory of mean-field band topology in the 1,651 single (spin-
less) and double (spinful) SSGs – Magnetic Topological
Quantum Chemistry (MTQC) – that subsumes the ear-
lier theory of TQC5,6 [see Fig. 2]. The completeness of
MTQC stems from the completeness of our tabulation of

BCS Applications Implemented for MTQC

Application Contents Description

MKVEC Momentum stars SA D 1

of the MSGs

Corepresentations Small and full SA D 2

magnetic (co)reps

MCOMPREL Compatibility relations SA D 3

in the MSGs

CorepresentationsPG Magnetic site-symmetry SA E 1

group (co)reps

MSITESYM Magnetic small SA E 2

(co)reps at one k point

induced from a site q

MBANDREP MEBRs of the MSGs SA E 3

TABLE I: Applications on the Bilbao Crystallographic Server
implemented for MTQC. For this work, we have implemented
the Bilbao Crystallographic Server (BCS) programs listed in
this table to access group-theoretic properties of the MSGs
that we have computed to complete the theory of MTQC. In
order, this table contains the name of the program, the data
accessible through the program, and the section of the SA
in which the program is detailed. In addition to the proper-
ties of the MSGs listed in this table, each tool contains the
analogous properties of the 230 Type-II (nonmagnetic) SGs.
Therefore, as respectively detailed in each listed SA section,
each program in this table subsumes the content of an existing
program on the BCS.

the MEBRs. Specifically, even in MSGs in which trivial
and topological states cannot be distinguished by sym-
metry eigenvalue labels, the MEBRs provide a complete
basis for constructing and analyzing all possible lattice
models of trivial, gapless, and stable and fragile topo-
logical insulating phases (for specific examples of non-
symmetry-indicated topological phases analyzed using
EBRs, see Refs. 19,20,55,58,60). To access the data gen-
erated for this work, we have implemented several pro-
grams on the Bilbao Crystallographic Server (BCS)61,62,
which are listed in Table I. Each of the programs listed in
Table I contains data for both the magnetic and nonmag-
netic SSGs, and therefore replaces an existing tool on the
BCS. In the Results section below, we will first describe
the underlying machinery of MTQC through which band
(co)reps in momentum space are induced from magnetic
atomic (Wannier) orbitals in position space. Next, we
will detail the topological information that can be in-
ferred from the MEBRs, which include lattice models for
magnetic exceptions to fermion doubling theorems18,63,
and symmetry-based indicators (SIs)7,13–16 for magnetic
SMs, TIs, and TCIs (see SA F). In particular in this work,
going beyond the earlier tabulation of the magnetic SI
groups in Ref. 16, we have for the first time generated
the complete double SI formulas, as well as symmetry-
respecting topological bulk and boundary states for all
1,651 double SSGs, which characterize spinful electronic

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/msitesym
http://www.cryst.ehu.es/cryst/mbandrep


3

Sym. indicated
stable topology

Sym. indicated
fragile topology

Fractional Difference

SI formulas

Fragile invariants

SI groups Affine monoids

Stable invariantStable invariants

K-theory
Wilson loop
Homology

Wilson loop
Euler class
Homotopy

Split or band inversion

Non-indicated
stable topology

Non-indicated
fragile topology

Compatibility-relation allowed bands(Co)reps

Mapping

This work:
for all SSGs

This work: for all SSGs

 Fragile criteria

Boundary states

Twisted
boundary
condition

Surface
states

Corner
states

Layer
construction

Hinge
states

Spectral
flows

Dirac theory
Topological crystal

Mapping

Atomic limits Obstructed atomic limitsEBRs

Compatibility-relation forbidden bands

Enforced semimetals

This work: for all SSGs

FIG. 2: Magnetic Topological Quantum Chemistry in the scheme of topological band theory. The complete scheme of topological
band theory for 3D crystals, following the framework and notation established in Refs. 5,6,14,53,54. Through crystal symmetry
eigenvalues [small (co)reps] in momentum space (SA D 2), the compatibility relations (SA D 3) indicate whether a set of bands
is allowed by symmetry to be energetically isolated from other bands in the energy spectrum. If the bands are energetically
isolated, then there exist a wide range of methods for diagnosing whether the bands exhibit the stable topology of topological
insulators (TIs) and TCIs13–15,17–19,25–28,31–36,55, fragile topology20,53–58, or the polarization-nontrivial topology of obstructed
atomic limits5,55,59. For example, as detailed in Refs. 7,13–16,53,54, the small (co)reps of a set of isolated bands comprise
momentum-space symmetry data that can be mapped to position-space topology and boundary states through stable and
fragile SIs and real-space invariants. If the bands are instead required by symmetry to cross, then the bands characterize a
topological SM, which may exhibit surface40 or hinge19,55 states. In this figure, the pink boxes indicate areas of topological
band theory completed in this work.

states in solid-state materials. Through this calculation,
we have obtained the complete set of symmetry-indicated
3D spinful (fermionic) topological phases.

We find that many of the symmetry-indicated spin-
ful magnetic topological phases consist of familiar Weyl
SMs with surface Fermi arcs64–66, 3D quantum anoma-
lous Hall (QAH) phases constructed from layered in-
teger quantum Hall states (2D Chern insulators)41,67,
and axion insulators (AXIs), which are equivalent to
3D TIs with magnetically gapped surface states on par-
ticular crystal facets20,29,68. However, we also in this
work discover the existence of previously unidentified
non-axionic magnetic HOTIs with mirror-protected he-
lical hinge states (see SA F 6). We conclude by briefly
discussing future directions in magnetic group theory,
including the prediction of spinless (bosonic) TCIs, and
applications of magnetic crystal symmetry beyond mean-
field theory. We have also included an extensive set of
Supplementary Appendices and Tables containing addi-
tional details of our methodology, historical commentary,
references, documentation for the BCS programs intro-
duced in this work, and data for the EBRs and double
SIs (see SA A and G).

Results

MEBRs from magnetic atomic orbitals – To construct
the theory of MTQC, we first tabulate the EBRs of the
1,651 SSGs, which include the MEBRs of the MSGs
[Fig. 3(b) and SA E]. In each SSG, the EBRs correspond
to the independent topologically trivial bands. Specifi-
cally, each EBR corresponds to a (set of) band(s) that
can be inverse-Fourier-transformed into exponentially lo-
calized, symmetric Wannier orbitals, and the set of EBRs
in each SSG forms the basis for all energetically isolated
sets of trivial bands (i.e. bands without stable or fragile
topology)5–9,13–15,19,20,23,24,36,53–58,60.

We begin by considering a nonmagnetic crystal that is
furnished with atomic orbitals that are sufficiently weakly
coupled as to not invert bands at any k point in the
Brillouin zone (BZ). Each atomic orbital occupies a site
in a Wyckoff position of a Type-II SG. Crucially, the
atomic orbitals on each site transform in direct sums of
the irreducible coreps of the site-symmetry group (SA C
and E 1), which is necessarily isomorphic to one of the 32
nonmagnetic point groups (PGs, see SA C 1).

We next consider the case in which the crystal under-
goes a transition into a phase with lattice-commensurate
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FIG. 3: Magnetic band (co)reps from magnetic atomic orbitals. (a) A crystal with lattice-commensurate magnetic order. In
the mean-field, the basis states of the electronic Hamiltonian of the crystal in (a) are magnetic atomic orbitals (SA E 1). When
weakly coupled, the magnetic atomic orbitals in (a) continue to form a set of exponentially localized, symmetric Wannier
orbitals5,23,24,60 that transform in the (co)reps of magnetic site-symmetry groups [SA C]. (b) The magnetic site-symmetry
(co)reps in (a) induce a band (co)rep in momentum [k] space. (c) Correspondingly, the Bloch eigenstates of the Fourier-
transformed electronic Hamiltonian of the magnetic crystal in (a) transform in the band (co)rep in (b) [see SA E 2].

magnetic order [Fig. 3(a)]. The onset of magnetism low-
ers the crystal symmetry from a Type-II SG into either a
Type-I, III, or IV MSG (see Refs. 10–12 and SA B 1, B 3,
and B 4, respectively). Specifically, in the limit in which
the magnetic moments are taken to be decoupled from
the underlying lattice, the crystal of moments may ap-
pear to exhibit additional symmetries, such global and
local spin rotation. However, when coupling between the
spins and the underlying lattice is not ignored, the mag-
netic phase transition strictly lowers the system symme-
try to that of a magnetic Shubnikov subgroup M of the
Type-II SG G of the parent nonmagnetic crystal11.

Hence, the magnetic order also lowers the symmetry at
each site in the crystal. This can be seen by recognizing
that {T |0} is an element of every site-symmetry group in
a nonmagnetic crystal, but cannot be an element of any
site-symmetry group in a magnetic crystal (SA C 2). For
example, in a solid-state material with magnetic atoms,
the orbitals of nonmagnetic atoms elsewhere in the unit
cell are necessarily subject to a background magnetic po-
tential (see SA C 2 a). While the energy scale of the mag-
netic potential is detail-dependent, the magnetic poten-
tial on the atoms considered to be nonmagnetic is only
exactly zero in a fine-tuned limit. This statement re-
mains valid whether individual atoms in the magnetic
crystal are taken to host localized magnetic dipole mo-
ments, or whether the magnetic crystal is taken to con-
sist of multi-atom clusters with higher magnetic multi-
pole moments69,70. Consequently, independent of the
phenomenological microscopic treatment of the magnetic
order, each site-symmetry group in the magnetic crystal
is isomorphic to one of the 90 crystallographic magnetic
point groups (MPGs, see SA C 1). In a solid-state ma-
terial in which the effects of magnetism can be approxi-
mated through mean-field theory, the atomic orbitals of
the original crystal [e.g. s and px,y] split into magnetic
atomic orbitals [e.g. s and px ± ipy] that transform in

(co)reps of the MPGs [see SA E 1 a, E 1 b, and E 1 c].
For this work, we have implemented the Corepre-
sentationsPG tool (http://www.cryst.ehu.es/cryst/
corepresentationsPG, detailed in SA E 1), through
which users can access the (co)reps of all 122 single and
double PGs and MPGs.

Next, the magnetic site-symmetry (co)reps in each
Wyckoff position in the crystal induce a band (co)rep
into M [Fig. 3(b)]. The set of all possible band (co)reps
in each MSG is spanned by the MEBRs of M . In this
work, we have for the first time computed the 22,611
MEBRs of all 1,191 single and double Type-III and Type-
IV MSGs, which – along with the 5,641 MEBRs of the
230 Type-I MSGs and the 4,757 EBRs of the 230 Type-
II SGs previously calculated for TQC5,23,24,60 [Fig. 1]
– can be accessed through the MBANDREP tool on
the BCS (http://www.cryst.ehu.es/cryst/mbandrep,
further detailed in SA E 3). To enumerate the MEBRs
of each MSG M , we begin by inducing band (co)reps
from each irreducible (co)rep of one site-symmetry group
within each of the highest-symmetry [i.e. maximal, see
SA C 2] Wyckoff positions in M . We next exclude the
exceptional cases in which the induced band (co)reps are
equivalent to direct sums of other band (co)reps [SA E 3 a
and G 1]. The remaining band (co)reps are defined as el-
ementary [i.e. MEBRs]; statistics and further details for
the MEBRs are provided in SA E 3 b and G 2.

Importantly, just as each MEBR is the Fourier-
transformed description of a crystal of site-symmetry
(co)reps, the Wannierizable bands that transform in
each MEBR are the Bloch eigenstates of the Fourier-
transformed electronic Hamiltonian of weakly coupled
magnetic atomic orbitals [Fig. 3(c) and SA E 2]. Con-
sequently, in each momentum star of each MSG – which
are accessible through the MKVEC tool (http://www.
cryst.ehu.es/cryst/mkvec, see SA D 1) – each MEBR
contains a set of full (co)reps that is specified by the

http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/mbandrep
http://www.cryst.ehu.es/cryst/mbandrep
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
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Wyckoff position from which the MEBR is induced. Each
full (co)rep can be reduced through subduction to a set
of irreducible small (co)reps at each k point that are
known as the symmetry data [Fig. 3(b)]. The complete
set of small and full (co)reps of each MSG and direct
dependencies between the site-symmetry (co)reps at q
and the induced symmetry data at k are respectively
accessible through the Corepresentations (http://www.
cryst.ehu.es/cryst/corepresentations, detailed in
SA D 2) and MSITESYM (http://www.cryst.ehu.es/
cryst/msitesym, detailed in SA E 2) tools. Lastly, to de-
termine whether the bands that transform in the induced
symmetry data are required by symmetry to be degen-
erate or cross along high-symmetry paths in the BZ, we
have computed the magnetic small (co)rep compatibility
relations, which are accessible through the MCOMPREL
tool introduced in this work (https://www.cryst.ehu.
es/cryst/mcomprel, detailed in SA D 3).

Before discussing topological applications of the ME-
BRs and the small and full (co)reps of each MSG, we
will first briefly discuss the advances made in this work
in the context of previous studies of magnetic symmetry
and group theory. First, in the 1960’s, Miller and Love
in Ref. 52 performed the largest tabulation of magnetic
small (co)reps prior to this work. Specifically, in Ref. 52,
Miller and Love computed the single- and double-valued
irreducible small (co)reps of the little groups of each MSG
at high-symmetry points and along high-symmetry lines,
but not along high-symmetry planes or in the BZ interior,
which are required to complete the insulating compati-
bility relations for each MSG (SA D 3) and to compute
the MEBRs (SA E). Additionally, the magnetic small
(co)reps computed in Ref. 52 are displayed in difficult-to-
read tables outputted directly from computer code, and
are hence difficult to verify. For this work, we have imple-
mented the Corepresentations tool on the BCS [SA D 2],
which represents the first complete and publicly avail-
able online tabulation of the magnetic small (co)reps.
Through Corepresentations, users may obtain the matrix
representatives in each magnetic small (co)rep of the gen-
erating symmetries of the magnetic little group at each k
point in each MSG in an accessible format readily suited
towards analyzing the output of tight-binding and first-
principles calculations [see SA D 2 a and D 2 b for repre-
sentative examples of the output of Corepresentations].
We additionally note that prior to this work, Evarestov
Smirnov, and Egorov in Ref. 24 introduced a method for
obtaining the MEBRs of the MSGs and computed rep-
resentative examples, but did not perform a large-scale
tabulation of MEBRs or establish a connection to mag-
netic band topology. In this work, we have employed a
method equivalent to the procedure in Ref. 24 to perform
the first complete tabulation of the single- and double-
valued MEBRs of the 1,421 MSGs (see SA E 3), which
we have additionally made publicly accessible through
the MBANDREP tool on the BCS.

Having computed the MEBRs of the single and double
MSGs and established the theory of MTQC, we will next

describe two applications of the MEBRs and MTQC to
the discovery and characterization of novel topological
phases of matter: elucidating the relationship between
topological SMs and TCIs through symmetry-enhanced
fermion doubling theorems, and extending the SIs of sta-
ble band topology7,13–15,19 to the MSGs.

Symmetry-enhanced fermion doubling theorems – The
surface states of each d-dimensional [d-D] TI and TCI
are termed anomalous because the surface states cannot
be stabilized in a (d − 1)-D lattice model with the sym-
metries of the TI or TCI surface. In 3D TIs, AXIs, and
Chern (QAH) insulators, the boundary anomaly and bulk
response can be understood from the perspective of well-
known high-energy field theories29,67,68. For example, the
bulk of a 3D TI is characterized by a quantized axionic
magnetoelectric response governed by a Lagrangian den-
sity LEM ∝ θE ·B in which the axion angle θ is pinned
to the nontrivial value θ mod 2π = π by {T |0} sym-
metry29,68. As a consequence of the bulk axionic topol-
ogy, each surface of a 3D TI exhibits an odd number
of twofold-degenerate Dirac cones, representing an ex-
ception to the 2D parity anomaly – a fermion doubling
theorem that mandates the existence of an even number
of symmetry-stabilized twofold Dirac cones in any 2D
system with a lattice (-regularized) description18,27–29,68.
However in other gapped topological phases, such as 3D
helical TCIs and HOTIs, the boundary anomalies and
bulk response theories have not yet been elucidated in the
language of high-energy field theory15,18–20,34,35. Never-
theless, as shown in Refs. 15,18,35, the anomalous surface
states of d-D TIs and TCIs may be classified through a
comparison to the complete set of (d−1)-D lattice models
of symmetry-stabilized topological SMs.

It is possible to evade a fermion doubling theorem by
either stabilizing the anomalous nodal point[s] on the
(d− 1)-D boundary of a d-D topological [crystalline] in-
sulator [i.e. through spectral flow], or by modifying one
of the system symmetries so that the symmetry is rep-
resented differently at low and high energies. For ex-
ample, the matrix representatives of {T |0} and {T |a/2}
are the same near k = 0, but differ at larger k (see
SA D 2 b). In effect, systems with {T |0} symmetry and
integer lattice translations are nonmagnetic (see SA B 2)
and constrained by fermion doubling theorems that de-
rive from {T |0} symmetry18, whereas systems generated
by {T |a/2} and integer lattice translations are antiferro-
magnetic (see SA B 4), and are not constrained by the
same doubling theorems63. As discussed in Ref. 71, it
is desirable to identify lattice-regularizable systems that
circumvent fermion doubling theorems, because correla-
tion effects in these systems can be modeled without also
incorporating complicated and numerically intensive bulk
degrees of freedom. Many of the symmetry-enhanced
fermion doubling theorems exceptions discovered to date
rely on emergent unitary particle-hole symmetries that
act nonlocally71,72, and relate to the anomalous surface
states of particle-hole-symmetric TCIs in Class AIII in
the nomenclature of Ref. 73. However, emergent unitary

http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/msitesym
http://www.cryst.ehu.es/cryst/msitesym
http://www.cryst.ehu.es/cryst/msitesym
https://www.cryst.ehu.es/cryst/mcomprel
https://www.cryst.ehu.es/cryst/mcomprel
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/mbandrep
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particle-hole is typically only a valid symmetry in a hand-
ful of solid-state materials, and only then at low energies.
As we will discuss below, by considering nodal degenera-
cies stabilized by MSG symmetries – which are conversely
valid in solid-state magnetic materials at all energies
without fine tuning – it is possible to systematically enu-
merate symmetry-enhanced, single-particle fermion dou-
bling theorems, as well as materials-relevant models that
circumvent symmetry-enhanced fermion doubling.

The elucidation of a (symmetry-enhanced) fermion
doubling theorem and an example of its evasion has his-
torically required a significant theoretical effort. For ex-
ample, in Ref. 74, it was shown that unpaired fourfold-
degenerate Dirac fermions cannot be stabilized in lattice
models of 2D, T -symmetric SMs. Through an exhaus-
tive analysis of the symmetry-enforced spectral flow in
3D crystals, a 3D T -symmetric TCI with an unpaired
(anomalous), symmetry-stabilized, fourfold surface Dirac
fermion was identified in Ref. 18. Crucially, using the
fourfold Dirac fermion doubling theorem established in
Ref. 74, the authors of Ref. 18 were able to diagnose
the surface fourfold Dirac fermion as anomalous without
establishing a bulk or boundary field theory. Lastly, it
was subsequently shown in Ref. 63 that fourfold Dirac
fermion doubling can also be evaded in lattice models of
2D magnetic SMs with the symmetry {T |a/2} common
to Type-IV 2D symmetry (wallpaper or layer) groups (see
SA D 2 b). Hence, one may infer the existence of novel
quantized response effects and condensed-matter realiza-
tions of high-energy anomalies by exploiting the restric-
tions imposed by crystal symmetries on lattice models of
SMs, TIs, and TCIs.

Because a complete tabulation of the magnetic small
(co)reps was previously unavailable, then earlier theoret-
ical searches for magnetic exceptions to fermion doubling
theorems, such as Ref. 63, were performed ad hoc. How-
ever, the magnetic small (co)reps, the magnetic compat-
ibility relations, and the MEBRs computed in this work
allow, for the first time, the immediate enumeration of
the complete set of lattice models of symmetry-stabilized
magnetic SMs in three or fewer dimensions. Below, we
will outline the method for enumerating the complete set
of stable magnetic SMs using the data generated in this
work. We will then detail the simplest possible mag-
netic fermion doubling exception that can be obtained
by considering the set of lattice models of 1D magnetic
SMs inferred from the 1D MEBRs. Despite the simplic-
ity of the example below, we find that it has not been
addressed from the intuitive picture of mean-field mag-
netic band theory in previous literature. In SA F 6 a,
we also introduce a doubling theorem for twofold Dirac
fermions in magnetic 2D symmetry groups, which we find
to be evaded on the surfaces of the non-axionic magnetic
HOTIs discovered in this work (see SA F 6 b).

To begin, by occupying the bands that transform
in each connected branch of each MEBR with integer-
valued numbers of electrons increasing from one to one
less than the dimension of the MEBR (see Refs. 5,6 and

Γ 𝑘𝑥 X Γ

𝐸

a

𝐸

b

𝐸

c

തΓ 𝑘𝑥
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FIG. 4: Dirac fermion doubling from elementary band
(co)representations. (a) A pair of spinful bands that trans-
form in the double-valued EBR of a Type-II line group gener-
ated by {T |0} and lattice translation [isomorphic to Type-II
double SG 1.2 P11′ modulo lattice translations]. At half fill-
ing, there are two, twofold Dirac fermions in (a), representing
an example of twofold Dirac fermion doubling in 1D. (b) The
edge spectrum of a 2D TI features an unpaired twofold Dirac
fermion that circumvents the doubling theorem in (a)25,26,29.
(c) A pair of spinful bands that transform in the double-
valued MEBR of a Type-IV magnetic line group generated by
{T |1/2} [isomorphic to Type-IV double MSG 1.3 PS1 mod-
ulo lattice translations]. At half filling, the spectrum in (c)
consists of an unpaired twofold Dirac fermion with the same
k · p Hamiltonian as the Dirac points at Γ and X in (a) and
the 2D TI edge in (b), representing a magnetic exception to
twofold Dirac fermion doubling in 1D.

SA D 3, E 3 b, and G 2), we have obtained the exhaus-
tive list of connectivity-enforced 3D magnetic SMs. The
remaining stable 3D SMs can then be obtained through
band inversion in lattice models constructed from sums
of MEBRs (or branches of decomposable MEBRs, see
SA E 3 b) using the magnetic compatibility relations, as
well as previously established topological invariants for
nodal fermions at low-symmetry k points. Specifically,
in each MSG, the minimal multiplicity of stable nodal
points may be obtained by considering the small (co)reps
along all high-symmetry BZ lines and planes [which are
accessible through Corepresentations, see SA D 2], in ad-
dition to the nodal points stabilized by topological in-
variants evaluated along closed manifolds in the BZ (e.g.
Weyl points, see Refs. 20,35,64–66). Lastly, the com-
plete set of 2D and 1D lattice models of magnetic SMs
may be obtained by restricting the above procedure to
MSGs that are isomorphic modulo integer lattice trans-
lations to layer and rod groups, respectively (see SA B
and Refs. 18,55,63).

In Fig. 4, we show the simplest example of a fermion
doubling exception obtained using the MEBRs. First,
in Fig. 4(a), we show a pair of spinful bands in a non-
magnetic 1D crystal that transform in the double-valued
EBR of the Type-II 1D double symmetry (line) group
generated by {T |0} and lattice translation. At half fill-
ing, the band structure in Fig. 4(a) exhibits two, twofold
Dirac fermions per 1D BZ. Additionally, in the absence
of chiral symmetry – which is not generically a symmetry
of crystalline solids – unpaired nodal points away from
Γ and X in Fig. 4(a) cannot be stabilized. Specifically,
even if a nodal point stabilized by reflection or rotation
symmetry is present at a point kx, {T |0} symmetry man-
dates the existence of a second stable nodal point at −kx.

http://www.cryst.ehu.es/cryst/corepresentations
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FIG. 5: The five families of 3D symmetry-indicated, spinful, strong topological phases. In this work, we have computed the
complete set of symmetry-indicated spinful topological phases of 3D magnetic and nonmagnetic crystalline solids (see SA F). We
find that, for spinful bands in 3D crystals that satisfy the insulating the compatibility relations along all high-symmetry lines
and planes [see SA D 3], there are only five families of symmetry-indicated strong topological phases: (a) Smith-index Weyl SMs
(Weyl SISMs), (b) axion insulators (AXIs) and 3D TIs defined by the nontrivial axion angle20,27–29,68 θ = π [e.g. MnBi2Te4

43,44],
(c) helical TCIs and higher-order TCIs (HOTIs) equivalent to two superposed AXIs with the same orbital hybridization and
twofold rotation or rotoinversion symmetry [e.g. bismuth36 and MoTe2

19], (d) helical TCIs and HOTIs equivalent to four
superposed AXIs with the same orbital hybridization55 and fourfold rotation or screw symmetry [e.g. SnTe32,34], and (e)
helical TCIs and HOTIs equivalent to six superposed AXIs with the same orbital hybridization and sixfold rotation or screw
symmetry. Through the double SIs calculated for this work (Table II and SA F 4 and F 5), we have discovered the existence of
helical magnetic HOTIs with mirror-protected hinge states and bulk topology respectively enforced by the mirror and rotation
symmetries of (c) double MPG 8.1.24 mmm [i.e. D2h, see Ref. 11], (d) double MPG 15.1.53 4/mmm [D4h], and (e) double
MPG 27.1.100 6/mmm [D6h], where we have labeled MPGs using the notation of the CorepresentationsPG tool (see SA E 1).
The magnetic HOTIs in (c-e) are respectively indicated by the minimal double SIs (c) z4 = 2 in double MSG 47.249 Pmmm,
(d) z8 = 4 in double MSG 123.339 P4/mmm, and (e) z12 = 6 in double MSG 191.233 P6/mmm [as well as trivial values for
all other independent minimal double SIs, see Table II and SA F 6 for further details].

By further investigating the symmetry-allowed band con-
nectivities in all Type-II 1D (line and rod) supergroups
of the line group in Fig. 4(a) (which can be inferred from
the Corepresentations, MCOMPREL, and MBANDREP
tools in Table I), we conclude that an odd number of
twofold Dirac fermions cannot be stabilized in 1D non-
magnetic, spinful lattice models.

However, it is well established that twofold Dirac
fermion doubling in 1D is evaded on the edge of a 2D
TI through spectral flow25,26,29 [Fig. 4(b)]. Recently, in
Ref. 75, the author performed an intensive, high-energy
field-theory calculation demonstrating that a 1D lattice
model with an unpaired twofold Dirac fermion could be
formulated by invoking an exotic, non-on-site T -like sym-
metry. However, in this work, we recognize that a sim-
pler, alternative interpretation of a non-on-site T symme-
try is the antiferromagnetic (AFM) symmetry {T |1/2}
common to all Type-IV magnetic line groups (SA B 4).
Correspondingly, in Fig. 4(c), we show a pair of spin-
ful bands that transform in the double-valued MEBR
of a Type-IV magnetic double line group generated by
{T |1/2}. When the bands in Fig. 4(c) are half filled,
the band structure features an unpaired twofold Dirac
fermion with the same k ·p Hamiltonian as the anomalous
twofold Dirac fermion on the edge of a 2D TI [Fig. 4(b)].
Hence, the crystal in Fig. 4(c) represents a magnetic ex-
ception to twofold Dirac fermion doubling in 1D, analo-
gous to the magnetic exception to fourfold Dirac fermion
doubling in 2D demonstrated in Ref. 63.

Symmetry-based indicators of stable band topology in
the 1,651 double SSGs – If a set of bands in a crystal is
energetically isolated along all high-symmetry BZ lines

and planes, then a subset of the topological properties of
the bands may be inferred through the eigenvalues of uni-
tary crystal symmetries. Restricting focus to symmetry-
indicated stable topological bands, which do not trans-
form in integer-valued linear combinations of EBRs [see
SA F 1], the crystal symmetry eigenvalues that indicate
stable topology [encoded in the small (co)reps of the iso-
lated bands, see SA D 2] form the symmetry-based in-
dicators (SIs) of stable band topology [see SA F 2 and
Refs. 7,13–15,19]. In each SSG, the SIs consist of an SI
group (e.g. Z4 × Z3

2) and an SI formula (e.g. the Fu-
Kane parity criterion for 3D TIs28, see SA F 2 a for an
additional detailed example). The complete SIs of spin-
ful band topology in nonmagnetic 3D crystals – which
we term the double SIs of the 230 Type-II double SGs
– were previously computed in Refs. 7,14,15. Follow-
ing those works, the single and double SI groups in the
1,421 MSGs were computed in Ref. 16, but the authors of
that work did not compute the SI formulas or determine
the physical interpretation (i.e. the bulk topology and
anomalous boundary states) of the magnetic bands with
nontrivial SIs [see Fig. 1].

In this work, we have computed the complete set of
double SI groups and formulas for spinful band topol-
ogy in all 1,651 double SSGs. We have further deter-
mined symmetry-respecting bulk and anomalous surface
and hinge states for all nontrivial values of the double
SIs. The SI formulas introduced in this work (see SA F 4
and F 5) have been unified into a consistent basis in which
all previously identified nonmagnetic double SI formulas
correspond to established nonmagnetic SM, TI, and TCI
phases, and in which the SIs of symmetry-indicated TIs

http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentations
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/mbandrep


8

Minimal Double SIs of Spinful Band Topology the 1,651 Magnetic and Nonmagnetic Double SSGs

SI Minimal Double SSG(s) Bulk Topology SI Minimal Double SSG(s) Bulk Topology

η4I 2.4 P 1̄ WSM/QAH/AXI z±4m,π 83.43 P4/m weak TI/weak TCI

z2I,i 2.4 P 1̄ QAH z+
4m,0 84.51 P42/m QAH/weak TI/weak TCI

η′2I 2.4 P 1̄ AXI z8 83.44 P4/m1′, 123.339 P4/mmm AXI/TCI/HOTI

z2R 3.1 P2, 41.215 Ab′a′2 QAH z3R 147.13 P 3̄ QAH

δ2m 10.42 P2/m QAH/AXI/TCI z6R 168.109 P6 QAH

z±2m,π 10.42 P2/m QAH/weak TI/weak TCI δ3m 174.133 P 6̄ QAH/AXI/TCI

z4 2.5 P 1̄1′, 47.249 Pmmm, AXI/TCI/HOTI z±3m,π 174.133 P 6̄ weak TI/weak TCI

83.45 P4′/m

z′4 135.487 P4′2/mbc
′ AXI/TCI δ6m 175.137 P6/m QAH/AXI/TCI

z2w,i 2.5 P 1̄1′, 47.249 Pmmm, weak TI/weak TCI z±6m,π 175.137 P6/m weak TI/weak TCI

83.45 P4′/m

z4R 75.1 P4 QAH z+
6m,0 176.143 P63/m QAH/weak TI/weak TCI

z′2R, 27.81 Pc′c′2, 54.342 Pc′c′a, QAH z12 175.138 P6/m1′, 191.233 P6/mmm AXI/TCI/HOTI

z′′2R 56.369 Pc′c′n, 60.424 Pb′cn′,

77.13 P42, 110.249 I41c′d′

z4S 81.33 P 4̄ QAH z′12 176.144 P63/m1′ AXI/TCI/HOTI

δ2S 81.33 P 4̄ WSM z′4R 103.199 P4c′c′ QAH

z2 81.33 P 4̄ AXI z′6R 184.195 P6c′c′ QAH

δ4m 83.43 P4/m QAH/AXI

TABLE II: The minimal double SIs of spinful band topology in all 1,651 double SSGs. In order, this table contains the symbol
of each double SI, the minimal double SSG(s) [i.e. the lowest-symmetry SSG(s) in which the double SI predicts nontrivial
band topology, see SA F 3 and G 3], and the bulk topological phase(s) associated to nontrivial values of the double SI. All
symmetry-indicated spinful SISM (specifically symmetry-indicated WSM), quantum anomalous Hall (QAH), TI, and TCI
phases in magnetic and nonmagnetic crystalline solids necessarily exhibit nontrivial values of at least one of the double SIs
listed in this table. We note that, in this table, the symbol AXI refers to both magnetic AXIs and T -symmetric 3D TIs, because
AXI and 3D TI phases are both defined by the nontrivial bulk axion angle θ = π [Fig. 5(b) and Refs. 20,29,68]. Additionally,
the symbols TCI and HOTI respectively indicate helical (i.e. non-axionic) mirror Chern insulators32 and HOTIs14,15,18,34,35,
which include the magnetic HOTIs in Fig. 5(c-e) introduced in this work, as well as the nonmagnetic helical HOTI phases
previously identified in bismuth36 and MoTe2

19. Specific details of our SI calculations – including explicit SI formulas, TI and
TCI layer constructions, tight-binding models, and the minimal double SSG associated to each double SSG – are provided in
SA F and G 3.

and TCIs with the same bulk topology (e.g. 3D TIs and
AXIs with the common nontrivial axion angle θ = π) are
related by intuitive SI subduction relations. To summa-
rize our calculation of the double SIs, we begin by con-
sidering a set of bands that is energetically isolated along
all high-symmetry lines and planes, such that the Bloch
states across all k points transform in small (co)reps that
satisfy the insulating compatibility relations [see SA D 3].
If the bands exhibit nontrivial SIs, then the bands can-
not be inverse-Fourier-transformed into exponentially lo-
calized, symmetric Wannier orbitals. This can be seen
by recognizing that the set of bands does not transform
in an integer-valued linear combination of EBRs. Con-
sequently, the set of bands either forms a topological
semimetal with nodal points in the BZ interior – which
we term a Smith-index SM (SISM), or corresponds to a
stable TI or TCI phase with anomalous 2D surface or 1D
hinge states7,13–15,17–19,25–28,31–36,55.

Because there are 1,651 double SSGs, then individ-
ually calculating the bulk and anomalous surface and
hinge states and physical basis for each nontrivial SI in
each double SSG is a practically intractable task. How-

ever, in this work, we have reduced the size of the cal-
culation by recognizing that the double SIs in each dou-
ble SSG G continue to exhibit unique, nontrivial values
– termed the minimal double SIs – when the SI topo-
logical bands in G are subduced onto a double SSG M
from the considerably smaller subset of 34 minimal dou-
ble SSGs. In SA F 3, we rigorously detail the procedure
for obtaining the minimal double SIs, and in SA G 3,
we list the minimal double SSG associated to each dou-
ble SSG. Across all of the minimal double SIs, we have
implemented a consistent physical basis for the SI for-
mulas, determined symmetry-respecting topological bulk
and boundary states, and formulated layer constructions
of the stable TI and TCI phases – the minimal double
SIs are summarized in Table II and the details of our SI
calculations are provided in SA F.

Using the subduction relations and layer construc-
tions contained in SA F 4, we have determined by direct
computation that, for spinful bands in 3D crystals, all
symmetry-indicated topological phases are either strong
topological Weyl SISMs, AXIs, 3D TIs, helical TCIs
or HOTIs, or can be deformed into weak stacks of 2D
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TIs, mirror TCIs, or Chern insulators with nonzero net
Chern numbers in each unit cell [termed QAH states].
Curiously, we find that there are no Type-IV minimal
double SSGs (SA G 3). This implies that symmetry-
indicated spinful SISM, TI, and TCI phases in Type-IV
MSGs are actually protected by the symmetries of Type-
I or Type-III double MSGs, as opposed to the symmetry
{T |a/2} common to Type-IV MSGs [though, as shown in
Fig. 4(c) and in Ref. 63, there exist topological SM phases
unique to Type-IV MSGs]. For example, in Ref. 76,
the authors introduced I-symmetric AFM TCIs in which
θ = π was enforced by the symmetry {T |a/2} common
to all Type-IV MSGs. However, we have shown that
the spinful, symmetry-indicated TCI phases in Type-IV
MSGs can be subduced onto Type-I or Type-III MSGs
without closing a gap or changing the bulk topology.
Hence, the symmetry-indicated AFM TCIs introduced in
Ref. 76 can more simply be understood as I-symmetry-
enforced AXIs that remain topological when subduced
onto the minimal Type-I double MSG 2.4 P 1̄. Through
the layer constructions and double SI dependencies in
SA F 4 and G 3, we have also demonstrated that all of
the 3D symmetry-indicated spinful magnetic TCIs with
odd numbers of chiral modes on crystal hinges (edges) in
the 1,421 double MSGs exhibit the nontrivial axion an-
gle θ = π, and are therefore AXIs20,29,68. Specifically, we
find that all of the symmetry-indicated, spinful magnetic
TCIs with chiral hinge states are AXIs in which θ = π
is either quantized by I, or by one of the rotoinversion
symmetries C4z×I or C6z×I (see Table II). This result
is not necessarily intuitive – for example, when cut into
a rod with the same point group symmetry as the bulk
MSG, an I-symmetric AXI in Type-I double MSG 2.4
P 1̄ exhibits two chiral hinge states, whereas a C4z × T -
symmetric AXI in Type-III double MSG 83.45 P4′/m ex-
hibits four chiral hinge states; nevertheless, as shown in
SA F 4, both AXI phases exhibit θ = π. We additionally
note that there do not exist symmetry-indicated, spinful
magnetic TCIs with even numbers of intrinsic copropa-
gating chiral hinge states (though magnetic TCIs with
mirror symmetry may in principle exhibit copropagating
chiral hinge modes, depending on the bulk mirror Chern
numbers and boundary termination details).

Overall, across the 1,651 double SSGs, we find that
there are only five families of 3D symmetry-indicated,
spinful, strong topological phases [Fig. 5]: Weyl SISMs,
AXIs and 3D TIs, and helical TCIs and HOTIs with
twofold, fourfold, and sixfold symmetries. We note that
helical TCIs and HOTIs in particular exhibit trivial ax-
ion angles θ mod 2π = 0, and are therefore non-axionic.
In this work, we have discovered three novel variants
of non-axionic magnetic HOTIs, which are shown in
Fig. 5(c-e). Further details for the non-axionic HOTIs in
Fig. 5(c-e), including symmetry-enhanced fermion dou-
bling theorems18,35 and tight-binding models, are pro-
vided in SA F 6. When cut into the finite nanorod ge-
ometries shown in Fig. 5(c-e), the non-axionic magnetic
HOTIs exhibit helical, mirror-protected hinge states.

We note that, if the mirror-symmetric HOTI hinges
in Fig. 5(c-e) were sanded to expose mirror-symmetric
2D surfaces, each surface would exhibit two anomalous,
mirror-protected, twofold Dirac cones, analogous to the
mirror-protected helical hinge states of SnTe discussed
in Ref. 34. Lastly, we emphasize that the magnetic HO-
TIs in Fig. 5(c,e) exhibit the same nontrivial double SI
z4 = 2 as T -symmetric helical HOTI phases in super-
groups of Type-II double SG 2.5 P 1̄1′ (see Table II and
Refs. 6,8,9,19,36). Unlike for AXIs and 3D TIs27–29,68,
the bulk response theories of helical HOTIs have not yet
been elucidated. In light of recent experiments demon-
strating incipient signatures of helical higher-order topol-
ogy in bismuth crystals36 and MoTe2

77, the absence of
a response theory for helical HOTIs analogous to axion
electrodynamics29,68 has become an urgent issue. The
discovery in this work of helical magnetic HOTI phases
whose bulk topology is solely enforced by the combina-
tion of unitary (spinful) mirror and rotation symmetries
should provide crucial insight towards the elucidation of
quantized response effects in helical HOTIs.

Discussion

The theory of MTQC can also be applied to a wide
variety of problems beyond the topological applica-
tions highlighted in this work. Most notably, while we
have enumerated the spinful stable topological phases
with nontrivial double SIs, the analogous enumeration
of spinless magnetic SISMs and TCIs with nontrivial
single SIs remains an open problem. In particular,
whereas bosonic, symmetry-indicated AXI phases pro-
tected by I and SU(2) spin-rotation symmetry have
been demonstrated in previous works16,19, it remains an
open question whether there exist symmetry-indicated,
non-axionic spinless (bosonic) TCIs. Additionally, while
we have restricted consideration to single-particle topo-
logical phases, the magnetic (co)reps computed in this
work can also be used to characterize correlated sys-
tems, including spin (-orbital) liquids78 and multipole
tensor gauge theories79. For example, if a correlated
magnetic insulator admits a mean-field slave-rotor de-
scription80, then the effective Hamiltonian of each quasi-
particle species, such as spinon and chargeon degrees of
freedom81, can separately be analyzed with MTQC.

Data Availability

The data supporting the findings of this study are
available within the paper and through the BCS applica-
tions listed in Table I. Additional information regarding
the data generated for this study is available from the
corresponding authors upon reasonable request.
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Appendix A: Introduction to Supplementary Appendices

In this supplement, we provide proofs and tables that extend Topological Quantum Chemistry (TQC)5,57,58,60,85,86

to the magnetic space groups (MSGs), to develop a complete theory of Magnetic Topological Quantum Chemistry
(MTQC). MTQC provides, for the first time, a predictive, position-space formulation of the characteristics of band
structures – including stable and fragile topology – in all translationally invariant crystalline solids that are charac-
terized by mean-field theory with a static background magnetic field. Most relevant to the physical systems studied
in this work, MTQC provides tools for characterizing the symmetry and topology of electronic states in solid-state
materials with lattice-commensurate magnetism. We begin in Appendix B by precisely defining the MSGs, drawing
connection where possible to the more familiar nonmagnetic space groups (SGs). We then discuss in Appendix C 1
the Wyckoff positions of the MSGs, whose sites are left invariant under the symmetries of site-symmetry groups that
are necessarily isomorphic to crystallographic magnetic point groups (MPGs)12,24,61,62,87–95. Next, in Appendix D, we
introduce crystal momentum k in the MSGs, and discuss how spatial and magnetic symmetries are represented in mo-
mentum space. To enumerate the set of symmetry-independent k points in each MSG and SG, we have implemented
the MKVEC tool (further detailed in Appendix D 1), which is now available on the Bilbao Crystallographic Server
(BCS)61,62. In Appendix D 2, we then describe how, in this work, we have for the first time derived the complete set
of irreducible [small] little group and full [space group] (co)representations [(co)reps] of the MSGs, which can now be
accessed on the BCS61,62 through the Corepresentations tool [further detailed in Appendices D 2 a and D 2 b]. Lastly,

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations


13

by combining the results of Appendices D 1 and D 2, we then in Appendix D 3 derive the compatibility relations
between small (co)reps in the MSGs, which we have made accessible through the MCOMPREL tool on the BCS.

Having established position- and momentum-space characterizations of the MSGs, we then in Appendix E
complete the theory of MTQC by enumerating the magnetic elementary band (co)representations [ME-
BRs]5,23,24,57,58,60,85,86,90,96,97, which represent all possible [magnetic] trivial atomic limits. To obtain the MEBRs, we
first in Appendix E 1 introduce the minimal magnetic atomic orbitals [e.g. px + ipy] that correspond to the (co)reps
of the magnetic site-symmetry groups, which are isomorphic to MPGs. In Appendix E 1, we additionally detail
the CorepresentationsPG tool on the BCS, which we have implemented for this work to provide access to the (co)reps
of the magnetic site-symmetry groups of the MSGs. Next, in Appendix E 2, we establish the central machinery of
MTQC through which band (co)representations [band (co)reps] in momentum space are induced from site-symmetry
(co)reps in position space. We also introduce and detail in Appendix E 1 the MSITESYM tool, through which users
may access the small (co)reps subduced from each band (co)rep of each SSG. Finally, in Appendix E 3, we complete
the derivation of MTQC by enumerating the MEBRs. In Appendix E 3 b, we additionally detail the MBANDREP tool
on the BCS, which we have developed for this work to compute and display both the elementary and non-elementary
[i.e. composite] band (co)reps of the MSGs.

The theory of MTQC uniquely enables us to, for the first time, enumerate all of the symmetry-based indicators of
band topology (SIs)7,13–15,19,97–101 [i.e. generalized Fu-Kane-like symmetry-eigenvalue topological indices28] for the
double-valued (co)reps of the 1,651 spinful [double] magnetic and nonmagnetic space groups [SSGs]. Specifically, a
(co)rep is respectively defined as single- or double-valued if the matrix representatives of time-reversal and rotation
symmetries in the (co)rep square to plus or minus the identity11. Double groups have both single- and double-valued
(co)reps, whereas single groups only have single-valued (co)reps. Electronic [fermionic] states in solid-state materials
are generically characterized by double-valued (co)reps of double symmetry groups, though in the absence of spin-
dependent interactions [e.g. spin-orbit coupling (SOC)], spin-degenerate electronic states may be labeled with single-
valued (co)reps. In Appendix F, we compute the SI groups and formulas for all symmetry-indicated, spinful, mean-field
topological phases in the 1,651 double SSGs. We specifically demonstrate in Appendix F 3 how the SI calculation can be
reduced by recognizing that the SIs in all 1,651 double SSGs are dependent on the SIs in a considerably smaller subset
of minimal double SSGs. Through the minimal SI calculation, which is provided in explicit detail in Appendix F 4, we
discover several novel, helical, magnetic higher-order topological crystalline insulators (HOTIs)7,14,15,18–20,34–36,98,102

whose bulk response theories do not correspond to axion electrodynamics19,20,29,68,103–121. The non-axionic magnetic
HOTIs discovered in this work are further detailed in Appendix F 6. Lastly, in Appendix G, we provide supplementary
tables of additional data generated for this work.

Appendix B: Magnetic Space Groups

In this section, we list the basic group theoretic properties of the magnetic space groups (MSGs). To begin, it was
established in Refs. 122,123 (and translated into English in Ref. 10) that the Hamiltonians of 3D, periodic systems
(i.e. crystalline solids) without particle-hole symmetry are invariant under the symmetries contained in at least one
of the 1,651 Shubnikov space groups (SSGs). All of the SSGs contain the group of fundamental lattice translations:

GT = Ta ⊗ Tb ⊗ Tc, (B1)

where Ti is the group comprised of the set of lattice translations tni , where n ∈ Z and:

ti = {E|ti}, (B2)

where E is the identity operation. Throughout this work, we will employ a notation [Eq. (B2)] in which ti is the
symmetry operation of a translation by the vector ti. In Eq. (B1), the generating translations ta,b,c must be linearly
independent, but are not necessarily orthogonal (though ta,b,c are indeed both linearly independent and orthogonal
in many SSGs).

The 1,651 SSGs subdivide into four types, which are distinguished by their antiunitary symmetries10,11,122–124.
Of the four types of SSGs, the 1,421 Types-I, III, and IV SSGs characterize magnetic crystals (i.e. crystals with
lattice-commensurate magnetic order); hence, in this work, we interchangeably denote Type-I, III, and IV SSGs as
MSGs or SSGs. Conversely, the 230 Type-II SSGs exclusively characterize nonmagnetic crystals; hence, in this work,
we interchangeably refer to Type-II SSGs as SGs or SSGs. Unlike in other recent works on magnetic symmetry and
topology16,125, we will not refer to the 230 Type-II groups as MSGs, to avoid employing terminology in which the
Type-II SSGs are “nonmagnetic magnetic SGs.” All SSGs (MSGs and SGs) are given in the notation established in
Ref. 126 and reproduced on the Bilbao Crystallographic Server (BCS)61,62. Because the set of possible GT in Eq. (B1)
coincides with the 14 3D nonmagnetic (gray) Bravais lattices, then all 1,651 SSGs can be characterized by the 14

https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/msitesym
http://www.cryst.ehu.es/cryst/mbandrep
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Bravais lattices. However, as we will detail in Appendix B 4, the Type-IV groups – which contain elements of the
form T (ti/2) where T is the operation of time-reversal – are also frequently characterized using the 22 “black and
white” Bravais lattices that account for the relative positions of localized spins (or classical magnetic moments) [c.f.
Chapter 7 in Ref. 11]. In this work, we will refer to all 1,651 SGs by their nonmagnetic (gray) Bravais lattice (i.e.,
the Bravais lattice of their primitive, or “magnetic” unit cell). This choice of Bravais lattice is naturally incorporated
into the numbering and notation of Belov, Nerenova, and Smirnova126 (labeled as the “BNS setting” on the BCS),
which we will employ throughout this work. For generality and connection with other works, we also note that on the
BCS, information about the SSGs can alternatively be obtained in the convention of Opechowski and Guccione127

(labeled as the “OG setting” on the BCS); we will not employ, or further discuss, the OG setting in this work.

It is important to highlight the distinction between MSGs and phenomenological descriptions of magnetic order.
Specifically, while all magnetic crystals with Type-IV MSGs are antiferromagnets (see Appendix B 4), there are both
ferromagnets and antiferromagnets with Type-I or Type-III MSGs11 (Appendices B 1 and B 3, respectively). For each
of the three types of MSGs, we will below provide representative examples of quasi-1D chains with symmetry-allowed
magnetic ordering, including phenomenologically distinct magnetic order in crystals with the same Type-I or Type-
III MSG (see Appendices B 1 and B 3, respectively). Each of the quasi-1D chains shown below is invariant under a
crystallographic magnetic rod group (MRG)11,12,55,128,129 MRG, i.e. a subperiodic group with 3D symmetry operations
and 1D translations. Each MRG is isomorphic to an SSG M under the addition of in-plane lattice translations, where
the group-subgroup relations between MRG and M depend on the details of the additional translations. For example,
when translations in the xy-plane are added to Type-I MRG (p42cm)RG, the resulting MSG is either Type-I MSG
101.179 P42cm or Type-I MSG 105.211 P42mc, depending on whether the shortest lattice translations are respectively
added in the x and y or x ± y directions128,129. In this work, we will refer to quasi-1D chains and rods using the
terminology established in Refs. 19,20,55 in which a chain or rod with the translation symmetry tc = {E|c} is termed
c-directed. The symbols for the MRGs referenced in this work are given in the convention employed by Litvin in
Ref. 12.

1. Type-I SSGs: Ordinary (Fedorov) Groups (230 MSGs)

𝑦

𝑥
𝑧

𝑎𝑥

FIG. 6: A ferromagnetic chain with MRG (p1)RG, which is generated by {E|1} (tx) where E is the identity operation, and is
isomorphic after the addition of perpendicular lattice translations (e.g. ty and tz) to Type-I MSG 1.1 P1. There are two atoms
within each unit cell, where the right-most atom in each cell (hashed circle) exhibits a weaker y-directed magnetic moment than
the left-most atom (solid circle), lies away from x = ax/2, and is displaced from the xy-plane (z 6= 0 for the hashed atoms). If
there was just one atom in each unit cell, if the solid and hashed atoms were moved to be coplanar, or if the magnetic moments
were tuned to be the same magnitude, then the chain would respect additional symmetries, such as {mz × T |0}.

Each Type-I SSG MI is exclusively characterized by a set of unitary symmetry operations. The simplest Type-I
SSG – MSG 1.1 P1 – is isomorphic to GT [Eq. (B1)], and is a common subgroup of all 1,651 SSGs. The Type-I
MSGs have historically been termed the ordinary groups11, because Type-I magnetic symmetry groups do not contain
antiunitary symmetries that relate classical magnetic moments at different positions in a crystal. Type-I MSGs can
characterize a variety of magnetic configurations11. For example, Type-I MSG 1.1 P1 can characterize crystals with
either ferromagnetism (Fig. 6) or antiferromagnetism (Fig. 7).

2. Type-II SSGs: Gray (Nonmagnetic) Groups (230 SSGs)

Each Type-II SSG MII takes the form:

MII = G ∪ {T |000}G = G ∪ T G, (B3)
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𝑦

𝑥
𝑧

𝑎𝑥

FIG. 7: An antiferromagnetic chain with MRG (p1)RG, which is generated by {E|1}, and is isomorphic after the addition of
perpendicular lattice translations to Type-I MSG 1.1 P1. The solid and hashed circles represent magnetic atoms with distinct
chemical environments [e.g. atoms of the same species with different oxidation states or on-site (chemical) potentials] and
equal and opposite magnetic moments. The right-most atom in each cell (i.e. the hashed atom with a red magnetic moment)
lies away from x = ax/2 and z = 0, such that the solid and hashed atoms are neither equally spaced nor coplanar. If the
chemical environments of the solid and hashed atoms were tuned to be equivalent, if the solid and hashed atoms were moved
to be coplanar, or if the atoms were shifted to be separated by a distance ax/2 in the x-direction, then the chain would have
additional symmetries. For example, if the local chemical environment (i.e. hoppings and on-site potentials) of the solid and
hashed atoms were made equivalent, then the chain would respect {mz × T |0} symmetry (as well as additional symmetries),
and if the atoms tuned to lie in equivalent chemical environments and shifted to be equally spaced and coplanar, then the chain
would respect both {C2z|0} and {my × T |1/2} symmetry (as well as additional symmetries).

where G is isomorphic to a Type-I SSG. Because each Type-II SSG contains the element {T |000}, then no position in
the unit cell of a crystal with a Type-II SSG can host a local magnetic moment. Therefore, crystals invariant under
Type-II SSGs are necessarily T -symmetric. The Type-II MSGs have historically been termed the gray groups11,
because Type-II groups do not admit the presence of localized magnetic moments, due to {T |000} symmetry at each
point in each unit cell. Unlike the symbols of the Type-I SSGs, the symbols of Type-II, III, and IV SSGs contain
primes, which denote antiunitary group elements. Because we are discussing both MSGs and (nonmagnetic) SGs in
this work, we will employ the notation of Ref. 12 in which the symbols of T -symmetric groups MII are followed by 1′

to emphasize that {T |000} ∈ MII . For example, in this work, the symbol P4/mmm refers to Type-I MSG 123.339,
whereas the symbol P4/mmm1′ refers to Type-II SSG 123.340 (which is frequently denoted in other works5,57,58,60,85,86

using only the simplified expression “space group 123 P4/mmm”).

Given a group G and a subgroup H of G, we will find it useful to define the index of H in G. Here and throughout
this work, we will use cosets to precisely define the group-subgroup index. Specifically, given a group G and a subgroup
H, we can define the coset of H represented by an element g ∈ G as:

gH ≡ {gh|h ∈ H}. (B4)

By construction, Eq. (B4) implies that every element g ∈ G is in one (and only one) coset gH. By definition, G may
be decomposed into cosets with respect to H by the set difference G \H:

G = H ∪ g1H ∪ g2H ∪ ..., (B5)

such that:

G \H = {g|g ∈ G, g /∈ H} = g1H ∪ g2H ∪ ..., (B6)

where giH are (unique) cosets of H defined by giH 6= gjH for gi,j ∈ G, gi,j /∈ H. If G and H are groups, E ∈ G and
E ∈ H where E is the identity element, implying that G \H is not a group, because E 6∈ G \H. Similarly, there does
not exist a case in which gi = E in Eq. (B6), as this would imply that G \H = H. We emphasize that the choice of
each gi in Eq. (B6) is not unique; there are generically multiple, equivalent ways of expressing the decomposition of
G \H into cosets of H. Eq. (B6) implies that:

G = H ∪ (G \H) = H ∪ g1H ∪ g2H ∪ ..., (B7)

from which we define the quotient:

G/H = {H, g1H, g2H, ...}. (B8)

We briefly pause to note that, if H is additionally a normal subgroup of G, such that gH = Hg, then we can define
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a group operation on cosets:

g1Hg2H = g1g2H. (B9)

Finally, using Eq. (B8), we establish the definition of the index [G : H] of the subgroup H of G as:

[G : H] = |G/H| = |G|/|H|, (B10)

where |G|, |H|, and |G/H| are respectively the number of elements in G, H, and G/H [equal to one plus the number
of coset representatives gi in Eq. (B6)]. It is important to note that |G| (|H|) in Eq. (B10) is necessarily infinite if G
(|H|) is an infinite group. However, if G and H are both infinite, then the index [G : H] = |G|/|H| may still be finite.

It is worth noting that all 1,421 MSGs are index-2 subgroups of 230 Type-II SSGs. For the previous Type-I groups
in Appendix B 1, this follows directly from Eq. (B3), and for the Type-III and Type-IV groups, this will respectively
be proved in Appendices B 3 and B 4.

3. Type-III SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs)

𝑦

𝑥
𝑧

𝑎𝑥

FIG. 8: A ferromagnetic chain with MRG (pm′mm′)RG, which is generated by {E|1}, {C2x×T |0}, {C2y|0}, and {I|0}, and is
isomorphic after the addition of perpendicular lattice translations to Type-III MSG 47.252 Pm′m′m. The primes in the symbol
(pm′mm′)RG indicate that the MRG contains the symmetries {mx×T |0} and {mz×T |0}. In the decomposition in Eq. (B11),
MIII = (pm′mm′)RG, G = (pmmm)RG [isomorphic to Type-I MSG 47.249 Pmmm after the addition of perpendicular
lattice translations], and H = (p12/m1)RG [isomorphic to Type-I MSG 10.42 P2/m after the addition of perpendicular lattice
translations].

𝑦

𝑥
𝑧

𝑎𝑥

FIG. 9: An antiferromagnetic chain with MRG (pmmm′)RG, which is generated by {E|1}, {C2x × T |0}, {C2y × T |0}, and
{I × T |0}, and is isomorphic after the addition of perpendicular lattice translations to Type-III MSG 47.251 Pm′mm. The
prime in the symbol (pmmm′)RG indicates that the MRG contains {mz×T |0} symmetry. The red and blue magnetic moments
are equal in magnitude and opposite in direction, and are related by the operation of {C2z|0} about the midpoints between
adjacent atoms. In the decomposition in Eq. (B11), MIII = (pmmm′)RG, G = (pmmm)RG [isomorphic to Type-I MSG 47.249
Pmmm after the addition of perpendicular lattice translations], and H = (pmm2)RG [isomorphic to Type-I MSG 25.57 Pmm2
after the addition of perpendicular lattice translations].

Each Type-III SSG MIII takes the form:

MIII = H ∪ T (G \H), (B11)

where G and H are isomorphic to Type-I SSGs, H ⊂ G, and G \ H is a set that contains no elements of the form
{E|t}, where E is the identity operation and t is a translation. Hence, G \ H in Eq. (B11) does not include the
identity element {E|0}, though G \H is free to contain elements of the form {f |0} where f is a unitary rotation or
rotoinversion. Because G \H does not contain pure translations, then it follows that H is a subgroup of G with the
same Bravias lattice. Following arguments recently presented in Ref. 130, we will demonstrate that H is an index-2

Victor
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subgroup of G. To establish that [G : H] = 2, we will first show that H is an index-2 subgroup of MIII . We begin by
noting that, given an antiunitary symmetry gA ∈ T (G \H):

gA = T × g, (B12)

where g is a unitary symmetry g ∈ G, g 6∈ H. Hence, g2
A is a unitary symmetry operation g2

A ∈MIII , implying that:

g2
A ∈ H, g2

A 6∈ T (G \H). (B13)

Eqs. (B11), (B12), and (B13) imply that:

MIII = gAMIII = gAH ∪ gAT (G \H), (B14)

such that:

T (G \H) = gAH, (B15)

implying that H is an index-2 subgroup of MIII . Eq. (B14) also implies through Eqs. (B11) and (B12) that:

|H| = |T (G \H)| = |G \H|, (B16)

establishing that H is also an index-2 subgroup of G:

G = H ∪ gH, (B17)

such that gH = G \H, consistent with Eqs. (B12) and (B15). Finally, to see that MIII is an index-2 subgroup of a
Type-II SSG (specifically MII = G ∪ T G), we consider the effects of restoring T symmetry to Eq. (B11):

MIII ∪ TMIII = H ∪ T (G \H) ∪ T H ∪ (G \H)

= G ∪ T G
= MII . (B18)

Like the previous Type-I MSGs in Appendix B 1, Type-III MSGs can characterize both ferromagnetic (Fig. 8) and
antiferromagnetic (Fig. 9) crystals. The symbols for Type-III MSGs contain primes that denote which symmetry
operations are formed from the combination of T and a unitary element of G \H [Eq. (B11)]. The Type-III MSGs
have historically been termed the black and white groups without black and white Bravais lattices, because Type-III
groups contain antiunitary symmetries that relate classical magnetic moments at different positions in a crystal, but
do not contain the antiferromagnetic translation symmetry t0T common to Type-IV MSGs that generates the black
and white Bravais lattices (see Appendix B 4 and Chapter 7 in Ref. 11.) Representative examples demonstrating the
usage of primes in Type-III magnetic group symbols are presented in Figs. 8 and 9.

4. Type-IV SSGs: Black and White Groups with Black and White Bravais Lattices (517 MSGs)

Each Type-IV SSG MIV takes the form:

MIV = H ∪ T t0H, (B19)

in which H is isomorphic to a Type-I SSG and t0 is a translation whose length is half that of either ta,b,c, ta+tb, ta+tc,
tb + tc, or ta + tb + tc, where ta,b,c are the primitive lattice translations in H11. The fractional lattice translations
tn0 where n mod 2 = 1 relate positions of alternating color (classical spin orientation) in the black and white Bravais
lattice of MIV (see Chapter 7 in Ref. 11), whereas the full lattice translations ta,b,c relate positions with the same
color in the nonmagnetic (gray) Bravais lattice of MIV . Hence, historically11, the Type-IV MSGs have been termed
the black and white groups with black and white Bravais lattices. As previously with the Type-III groups [see the text
surrounding Eq. (B12)], we can show that H is an index-2 subgroup of MIV . To demonstrate that [MIV : H] = 2,
we first rearrange Eq. (B19) into the same form as Eq. (B11):

MIV = H ∪ T (G \H), (B20)
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𝑦

𝑥
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𝑎𝑥
𝐺

𝑎𝑥
𝑀

FIG. 10: An antiferromagnetic chain with MRG (pa1)RG, which is generated by {T |1/2} (taMx /2T ), and is isomorphic after the
addition of perpendicular lattice translations to Type-IV MSG 1.3 PS1. The red and blue magnetic moments on the atoms
labeled with solid circles are equal in magnitude and opposite in direction. The two nonmagnetic atoms (hashed circles) in
each magnetic unit cell are displaced out of the xy-plane, breaking additional symmetries such as {mz × T |0}. In terms of
the black and white Bravais lattices historically employed to characterize (antiferro)magnetic structures11, the atoms with blue
magnetic moments can be taken to occupy white sites, whereas the atoms with red (time-reversed) magnetic moments can be
taken to occupy black sites. Throughout this work, we will only use the more familiar gray (nonmagnetic) Bravais lattices to
characterize magnetic symmetry groups, because the black and white Bravais lattices add an additional level of complexity
that does not factor into any of the group-theoretic calculations that comprise MTQC. Further discussion and a complete
enumeration of the black and white Bravais lattices is provided in Chapter 7 in Ref. 11. In the antiferromagnetic chain in this
figure, the blue and red magnetic moments are related by taMx /2T . The primitive (magnetic) unit cell of the spin chain has

a length aMx , whereas the nonmagnetic unit cell, which is realized by restoring T symmetry [Eq. (B22)], has a shorter length
aGx = aMx /2. In the decomposition in Eq. (B19), MIV = (pa1)RG, H = (p1)RG with the lattice constant a = aMx [isomorphic
to Type-I MSG 1.1 P1 after the addition of perpendicular lattice translations], and t0 = taMx /2. From this, we establish the

decomposition in Eqs. (B20) and (B21), in which MIV = (pa1)RG, G = (p1)RG with the lattice constant a = aGx = aMx /2, and
H = (p1)RG with the lattice constant a = aMx .

for which, by construction:

G = H ∪ t0H, (B21)

such that G is isomorphic to a Type-I SSG with the gray Bravais lattice given by ignoring the colors of the black and
white Bravais lattice of MIV (see Fig. 10). To show that MIV is an index-2 subgroup of a Type-II group, we again
restore T symmetry [see Eq. (B18)]:

MIV ∪ TMIV = H ∪ T t0H ∪ T H ∪ t0H
= G ∪ T G
= MII , (B22)

where G is given in Eq. (B21). As shown in the text following Eq. (B10), Eq. (B21) also implies that H is an index-2
subgroup of the Type-I MSG G.

Physically, Eq. (B22) implies that the process of “turning off” the magnetism in a crystal with a Type-IV SSG
(MSG) MIV generates a nonmagnetic crystal that is invariant under a Type-II group MII with a smaller unit cell than
the magnetic unit cell of MIV (Fig. 10), and with the same gray Bravais lattice as G in Eq. (B21) (as opposed to the
gray Bravais lattice of H). Unlike the previous Type-I and Type-III MSGs in Appendices B 1 and B 3, respectively,
Type-IV MSGs necessarily characterize crystals with net-zero magnetic moments, because the operation of t0T ∈MIV

[Eq. (B19)] relates the spin configuration of one half of the primitive (magnetic) unit cell to its time-reverse in the
other half. The symbols for Type-IV MSGs contain subscripts that denote the direction of t0, and therefore specify
the gray (nonmagnetic) Bravais lattice of G in Eqs. (B21) and (B22).

Appendix C: Site-Symmetry Groups and Wyckoff Positions of the Magnetic Space Groups

Next, we will discuss the position-space action of the symmetries of the MSGs. In Appendix C 1, we will introduce
the site-symmetry (stabilizer) groups of the MSGs, and in Appendix C 2, we will discuss how the Wyckoff positions
of the MSGs are related to those of the T -symmetric SGs.

Throughout the text below, we will provide representative 2D atomic and spin configurations highlighting properties
of the site-symmetry groups and Wyckoff positions of the MSGs. The 2D magnetic structures shown in this section each
respect the symmetries of a magnetic layer group (MLG) MLG – a subperiodic group with 3D symmetry operations
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and 2D translations12,18,63,128,129,131. Each MLG is isomorphic to (at least one) MSG M modulo out-of-plane lattice
translations. Specifically, taking the in-plane translations to be elements of Tx,y (Ta,b), and taking tc ∈ Tc (Tz) to be
a lattice translation in the z (out-of-plane) direction:

M = MLG ∪ tcMLG. (C1)

In this work, the symbols of MLGs are given in the convention employed by Litvin in Ref. 12.

1. Site-Symmetry Groups of the Magnetic Space Groups

In this section, we will define the site-symmetry group Mq at a point q in crystal that is invariant under an SSG
M . To begin, M is composed of unitary symmetry operations:

gU,i = {hi|ti}, (C2)

and antiunitary symmetry operations:

gA,j = {hj × T |tj}, (C3)

where each hi,j is a unitary symmetry operation that is either the identity, a rotation, or a rotoinversion. Given a
point q in an infinite crystal, the action of gU,i and gA,j on q is given by:

gU,iq = hiq + ti, gA,jq = hjq + tj , (C4)

in which only hi,j and ti,j act on q, because T , by definition, leaves spatial coordinates invariant11. As defined in
Ref. 5, a site-symmetry group Mq is spanned by the set of unitary and antiunitary symmetry operations g ∈M that
return a site q in an infinite crystal (i.e. a point in position space) to itself in the same unit cell :

gq = q, (C5)

for all g ∈Mq. Hence, the site-symmetry group Mq of q is finite a subgroup of the SSG M :

Mq ⊂M, (C6)

in which Mq does not contain elements of the form {E|t} or {T |t}, where E is the identity operation and t is a
translation. Later, in Appendix C 2, we will reintroduce the Wyckoff positions of M containing q, as defined in
Ref. 85.

In Eq. (C6), Mq is necessarily isomorphic to one of the 122 crystallographic Shubnikov point groups
(SPGs)12,24,61,62,87–94, which are listed in the MPOINT (http://www.cryst.ehu.es/cryst/mpoint.html)91–94

and CorepresentationsPG tools on the BCS, in which the SPGs are numbered according to the convention estab-
lished by Litvin in Ref. 12. The SPGs divide into 32 Type-I magnetic point groups (MPGs), 32 Type-II (non-
magnetic) SPGs, and 58 Type-III MPGs, where the type of an SPG is defined the same way as the type of an
SSG [Appendix B 1 and Eqs. (B3) and (B11), and (B11)]. We emphasize that, unlike in the MSGs, which sub-
divide into Types-I, III, and IV, there are only Type-I and Type-III MPGs. Specifically, there are no Type-IV
MPGs, because point groups, unlike space groups, cannot contain operations of the form {T |t} [Eq. (B19)], as
{T |t} does not fix any point in position space [Eq. (C4)]. Following the discussions in Appendices B 1 and B 3,
all Type-I and Type-III MPGs are subgroups of Type-II SPGs. For all 122 SPGs, the group-subgroup relations
are provided by Ascher and Janner in Ref. 133, and can be inferred by using the KSUBGROUPSMAG tool on the
BCS (http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl)91–94 on pairs of SSGs that are iso-
morphic to SPGs modulo integer lattice translations. For example, to see that Type-III MPG 9.3.31 4′ and Type-I
MPG 9.1.29 4 are both index-2 subgroups of Type-II SPG 9.2.30 41′, one can choose the “List of subgroups” option
in KSUBGROUPSMAG for Type-II SG 75.2 P41′ while specifying the magnetic wavevector k = 0. Documentation
and further examples of the output of KSUBGROUPSMAG are provided in Refs 94,134. For this work, we define
Type-I MPG 1.1.1 1 as both the trivial MPG and the trivial SPG, as its only generator is the identity operation E,
and because Type-I MPG 1.1.1 1 is the common subgroup of all MPGs and SPGs.

It is important to highlight that all site-symmetry groups in MSGs (i.e. Type-I, III, and IV SSGs) are isomorphic to
MPGs (i.e. Type-I and III SPGs), and correspondingly, that all site-symmetry groups in Type-II (nonmagnetic) SSGs
are isomorphic to Type-II SPGs. To show this, we first consider the Type-II SSGs. Because all Type-II SSGs contain
the element {T |0}, which fixes all points in space, then all site-symmetry groups in Type-II SSGs also necessarily

http://www.cryst.ehu.es/cryst/mpoint.html
http://www.cryst.ehu.es/cryst/mpoint.html
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl
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FIG. 11: (a) A magnetic crystal with Type-I magnetic layer group (MLG)12,18,63,128,129,131 p4, which is generated by {E|10}
and {C4z|00}, and is isomorphic after the addition of tz to Type-I MSG 75.1 P4. The atoms on the 1a sites in (a) exhibit an
additional magnetic moment in the +ẑ direction (blue dot), which we have chosen in order to break {mz×T |00} symmetry63 to
simplify the symmetry analysis performed in this section. (b) A magnetic crystal with Type-III MLG p4′, which is generated by
{E|10} and {C4z ×T |00}, and is isomorphic after the addition of tz to Type-III MSG 75.3 P4′. The red magnetic moments in
(b) have the same magnitudes as the blue magnetic moments; they are only colored in red to emphasize that the red moments
in (b) are related to the blue moments by the antiunitary symmetry operation ({C4z × T |00}). The atoms on the 1a sites
in (b) do not exhibit a magnetic moment, and instead are displaced out of the xy-plane in the +ẑ direction, which we have
indicated with black dots. We have chosen to displace the atoms at the 1a position in each unit cell in (b) out of the xy-plane
in order to break {mz|00} symmetry, such that the MLGs in (a) and (b) share the same “unprimed” Type-I MLG G = p4 [see
the text surrounding Eq. (C12)]. The 1a and 1b site-symmetry groups in (a) are isomorphic to Type-I MPG 9.1.29 4, which
is generated by C4z, whereas the 1a and 1b site-symmetry groups in (b) are isomorphic to Type-III MPG 9.3.31 4′, which is
generated by C4z × T . Nevertheless, in both (a) and (b), the 2c site-symmetry groups are isomorphic to Type-I MPG 3.1.6 2,
which is generated by C2z. In both (a) and (b), magnetic moments additionally occupy the 4d (general) position, where the
site-symmetry groups at 4d in both (a) and (b) are isomorphic to Type-I MPG 1.1.1 1, the trivial MPG. The MLGs in (a) and
(b) [p4 and p4′, respectively] are also isomorphic to magnetic wallpaper groups18,63,131,132.

contain {T |0}, and are therefore isomorphic to Type-II SPGs. Conversely, because MSGs (i.e. Type-I, III, and IV
SSGs) do not contain {T |0}, then none of their site-symmetry groups contain {T |0} (though they are free to contain
antiunitary operations such as {C4z×T |0}; hence, the site-symmetry groups in MSGs are isomorphic to either Type-I
or Type-III MPGs. In Type-I MSGs, all of the site-symmetry groups are isomorphic to Type-I MPGs, as Type-I MSGs
do not contain antiunitary symmetry elements (Appendix B 1). However, in each of the Type-III and Type-IV MSGs,
site-symmetry groups can be isomorphic to either Type-I or Type-III MPGs. For example, in Fig. 11(a,b), we depict
atomic and spin configurations that respect the symmetries of Type-I MLG p4 and Type-III MLG p4′, respectively
[see the text surrounding Eq. (C1) for the definition of an MLG]. In p4, the 1a and 1b site-symmetry groups are
isomorphic to Type-I MPG 9.1.29 4, whereas in p4′, the 1a and 1b site-symmetry groups are isomorphic to Type-III
MPG 9.3.31 4′. Nevertheless, in both p4 and p4′, the 2c site-symmetry groups are isomorphic to Type-I MPG 3.1.6 2.

2. Wyckoff Positions of the Magnetic Space Groups

In this section, we will next reintroduce the Wyckoff positions of the MSGs. First, we will below precisely define a
Wyckoff position. Then, in Appendix C 2 a, we will apply the definitions and relations established below to illustrative
2D examples of MLGs derived from the Type-II layer group (LG) p41′.

To begin, as discussed in Ref. 5, the Wyckoff positions of an SSG M are defined using the orbits of symmetry sites.
We first select a site qα in a crystal that is invariant under an SSG M . As defined in the text surrounding Eq. (C5),
the site-symmetry group Mqα contains all of the symmetries g ∈ M that return qα to itself. However, there also
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generically exist symmetries:

g̃i ∈M, g̃i 6∈Mqα (C7)

that act to send qα to other points qα′ in the crystal, where qα′ may or may not lie in the same unit cell as qα. We
next define the set of symmetries:

{g̃} = M \Mqα . (C8)

Acting with all of the g̃i ∈ {g̃} on qα generates an infinite number of sites {g̃iqα}, because M includes lattice
translations and Mqα does not. Additionally, it is possible for two elements g̃i,j ∈ {g̃} to map qα to the same point.
For example, if qα = (x, y, 0), g̃i = {C2z|000}, and g̃j = {I|000}, then g̃iqα = g̃jqα = (−x,−y, 0). Continuing to
employ the previous definition from TQC5,57,58,60,85,86, we define the orbit of qα to be the infinite subset of unique
points {g̃iqα}∪qα. We then define the Wyckoff orbit indexed by qα as the finite set of points in the orbit – including
qα itself – that lie in the same unit cell as qα. In this work, we will summarize the Wyckoff orbit containing qα using
the notation {qα}, for simplicity. In the Wyckoff orbit of qα, the index α runs from 1 to n, where n – which is termed
the multiplicity of the Wyckoff orbit – is the number of unique sites qα in the orbit of qα that lie in the same unit cell
as qα plus one for qα itself. Given a site-symmetry group Mqα , all of the other site-symmetry groups in the Wyckoff
orbit of qα are given by:

Mqβ = g̃αβMqα g̃
−1
αβ , (C9)

where g̃αβ is a symmetry in M \Mqα [Eq. (C7)] for which:

g̃αβqα = qβ , (C10)

where qβ is in same Wyckoff orbit as qα. Hence, all of the site-symmetry groups Mqβ in the same Wyckoff orbit as
Mqα are isomorphic and conjugate to Mqα , and to each other. Lastly, we define the Wyckoff position containing qα
as the set of Wyckoff orbits with the same multiplicity in which the coordinates of the sites in the orbit {qα} can be
smoothly deformed into each other without changing the Wyckoff orbit multiplicity. For example, in Type-I MSG 2.4
P 1̄, which is generated by {I|0} and 3D lattice translation, the sites [(0, 0, 0.1), (0, 0,−0.1)] and [(0, 0, 0.2), (0, 0,−0.2)]
define distinct Wyckoff orbits. Nevertheless, in MSG 2.4 P 1̄, the two Wyckoff orbits [(0, 0, 0.1), (0, 0,−0.1)] and
[(0, 0, 0.2), (0, 0,−0.2)] represent different parameter choices for the same Wyckoff position [(x, y, z), (−x,−y,−z)]
(labeled the 2i position on the BCS). The coordinates, multiplicities, and site-symmetry groups of the Wyckoff
positions of all 1,651 SSGs have previously been made accessible through the MWYCKPOS tool on the BCS (http:
//www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl)91–94.

Next, to further determine the maximal Wyckoff positions – which we will later find to be important in calculating
the magnetic elementary band (co)representations (Appendix E) – we follow the definition established in Ref. 85.
First, we recognize that, for each Wyckoff position in the SSGs, there is a set of coordinates that defines the locations
of atoms (magnetic atomic orbitals, see Appendix E 1) occupying the Wyckoff position. In high-symmetry Wyckoff
positions, some or all of the coordinates have fixed values (e.g. 0 or 1/2), whereas in other, lower-symmetry positions,
the coordinates have free values (e.g. z) that represent distinct Wyckoff orbits in the same Wyckoff position [see the
text following Eq. (C10)]. For example, in the output of MWYCKPOS on the BCS91–94 for Type-III MSG 10.45
P2/m′, the 1a position lies at (0, 0, 0) and has a site-symmetry group isomorphic to Type-III MPG 5.4.15 2/m′,
whereas the 2i position has sites at (0, y, 0) and (0,−y, 0), each of which has a site-symmetry group isomorphic to
Type-I MPG 3.1.6 2. As an intermediate step towards defining a maximal Wyckoff position, we first establish a
definition for connected Wyckoff positions. We define two Wyckoff positions to be connected if the coordinates of one
of the sites in the lower-symmetry Wyckoff position [e.g. (0, y, 0) in the 2i position in the previous example in MSG
10.45 P2/m′] can be adjusted to coincide with the coordinates of the higher-symmetry Wyckoff position [e.g. the 1a
position at (0, 0, 0) in the previous example in MSG 10.45 P2/m′]. From this, we define a maximal Wyckoff position
to be a Wyckoff position that is not connected to a Wyckoff position with a higher-symmetry site-symmetry group
(i.e. the site-symmetry group of a maximal Wyckoff position must be a larger supergroup of the site-symmetry group
of any Wyckoff position to which it is connected). This definition of a maximal Wyckoff position is identical to the
previous definition established in Refs. 5,85 for the Type-I MSGs and Type-II SSGs; in this work, we have applied
the earlier definition to the Type-III and Type-IV MSGs by incorporating the action of the antiunitary symmetries
gA,j in Type-III and Type-IV MSGs [see Appendices B 3 and B 4 and the text surrounding Eq. (C4)]. Specifically, in
both this work and in TQC, the set of site-symmetry groups in the maximal Wyckoff positions in an SSG M coincide
with the set of maximal site-symmetry subgroups of M . In this work, the only distinction from the earlier discussion
of Wyckoff positions in Refs. 5,85 is the incorporation of the action of antiunitary symmetries through Eq. (C4).

http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
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We will now discuss the relationship between the Wyckoff positions in the MSGs and the Wyckoff positions in
the more familiar Type-II (nonmagnetic) SSGs. First, the Wyckoff positions of the Type-I and Type-III MSGs can
straightforwardly be obtained from the Wyckoff positions of the Type-II SSGs. For the Type-I MSGs, this follows
directly from the definition of a Type-II SSG (Appendix B 2). Specifically, in a Type-II SSG MII = G∪T G [Eq. (B3)],
all of the site-symmetry groups MII,q take the form:

MII,q = Gq ∪ T Gq. (C11)

In each Wyckoff position indexed by a site q in a crystal invariant under MII , the multiplicity of the Wyckoff position
of q is only determined by the unitary symmetries g of the Type-I subgroup G of MII , because T symmetry acts as
the identity on q [see Eq. (C4) and the surrounding text]. Therefore, in a Type-I MSG G, all of the Wyckoff positions
have the same multiplicities and coordinates as the Wyckoff positions in MII = G ∪ T G [Eq. (B3)], and all of the
site-symmetry groups Gq are isomorphic to the unitary subgroups of MII,q [Eq. (C11)].

Conversely, in a Type-III MSG MIII = H ∪ T (G \ H) [Eq. (B11)], the site-symmetry groups MIII,q can be
isomorphic to either Type-I and Type-III MPGs, as previously discussed in Appendix C 1. Nevertheless, we will show
below that the multiplicities of the Wyckoff positions in MIII are still inherited from the “unprimed” Type-I group
G in the definition of MIII [Eq. (B11)]. Specifically, in this work, we define G to be the “unprimed” group of MIII ,
because G and MIII share the same symbols if primes are neglected (i.e., under transforming group elements of the
form g′ = {h× T |t} → {h|t}). To show this, we first note that, because T symmetry acts as the identity on spatial
coordinates, then:

T q = q, (C12)

for all q in the 1,651 SSGs. Consequently, in a Type-III MSG MIII , only the unitary parts {h|t} of the unitary and
antiunitary symmetries in MIII can act to send q to other positions [see Eq. (C4) and the surrounding text]. As shown
in Appendix B 3, the unitary parts of the unitary and antiunitary symmetries in MIII comprise the unprimed Type-I
MSG G of MIII . Additionally, as shown in Eq. (B18), the unprimed group G of MIII is also the maximal unitary
subgroup of the Type-II SSG MIII ∪TMIII (i.e. MIII ∪TMIII = G∪T G). Lastly, as shown in the text surrounding
Eq. (C11), the Wyckoff positions of G are identical to the Wyckoff positions of G ∪ T G [though the site-symmetry
groups Gq are the unitary subgroups of the site-symmetry groups MII,q in G ∪ T G]. From this, we conclude that
the Type-I (unprimed) MSG G, the Type-II SSG MIII ∪ TMIII , and the Type-III MSG MIII all share the same
Wyckoff-position multiplicities and coordinates. It therefore follows that each site-symmetry group MIII,q ⊂MIII is
an index-2 subgroup of MII,q = Gq ∪ T Gq where:

MII,q ⊂ (MIII ∪ TMIII). (C13)

Specifically, MIII,q is either a Type-I site-symmetry group:

MIII,q = Gq, (C14)

or a Type-III site-symmetry group:

MIII,q = Hq ∪ T (Gq \Hq), (C15)

where Hq is a site-symmetry group in the Type-I (maximal unitary) subgroup H of MIII [see Eq. (B11) and the
surrounding text]. We will shortly provide in Appendix C 2 a an example demonstrating the relationship between Gq,
MII,q, and MIII,q in a Type-III magnetic symmetry group.

Unlike in Type-I and Type-III MSGs, the Wyckoff positions in Type-IV MSGs have more complicated dependencies
on the Wyckoff positions in the Type-II SSGs. This complication arises because the operation of t0T in Eq. (B19)
enlarges the magnetic unit cell of a crystal with a Type-IV MSG (i.e. aMx in Fig. 10) relative to the nonmagnetic unit
cell of its Type-II supergroup (i.e. aGx in Fig. 10). Hence, the primitive cell of a Type-IV MSG is always larger than
the primitive cell of its Type-II supergroup). Therefore, there is no corresponding notion of an “unprimed” group
for the Type-IV MSGs. Instead the multiplicities, coordinates, and site-symmetry groups in Type-IV MSGs must be
determined by composing the elements of the site-symmetry groups of the unitary subgroup H in Eq. (B19) with the
antiunitary (antiferromagnetic) translation symmetry t0T . An example demonstrating the composition of the unitary
site-symmetry group symmetries in H with t0T in a Type-IV MSG will later be provided in Appendix E 3 a.
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a. Wyckoff Positions in Magnetic Subgroups of Type-II LG p41′

To demonstrate how the site-symmetry groups in Type-I and Type-III MSGs derive from those in Type-II SSGs, we
will in this section analyze the examples of Type-II LG MII = p41′ and its Type-I and Type-III magnetic subgroups
Type-I MLG G = p4 and Type-III MLG MIII = p4′, respectively [Fig. 11(a,b), respectively]. MII is generated by
{C4z|00}, {T |00}, and the lattice translation {E|10}. Using MWYCKPOS on the BCS91–94 for Type-II SG 75.2
P41′, which is isomorphic to p41′ modulo Tz [i.e. after the addition of out-of-plane lattice translations, see the text
surrounding Eq. (C1)], we obtain the coordinates of the highest-symmetry (fourfold-symmetric) maximal Wyckoff
positions of p41′ (1a and 1b) and the SPGs isomorphic to the fourfold-symmetric maximal site-symmetry groups:

q1a = (0, 0), MII,1a = 41′ = 4 ∪ (T )4,

q1b = (1/2, 1/2), MII,1b = 41′ = 4 ∪ (T )4, (C16)

where the symbols 41′ and 4 respectively refer to Type-II SPG 9.2.30 41′ and Type-I MPG 9.1.29 4. There is also
a lower-symmetry maximal Wyckoff position in Type-II MLG p41 in which the site-symmetry groups do not contain
fourfold rotation symmetry (2c). The coordinates and site-symmetry-group-isomorphic SPGs of the 2c position in
Type-II MLG p41′ are given by:

q2c = {(1/2, 0), (0, 1/2)}, MII,2c = 21′ = 2 ∪ (T )2, (C17)

where the symbols 21′ and 2 respectively refer to Type-II SPG 3.2.7 21′ and Type-I MPG 3.1.6 2.

As defined in Eq. (B3), the layer group MII = p41′ admits a decomposition:

p41′ = p4 ∪ (T )p4, (C18)

where p4, which is generated only by {C4z|00} and {E|10}, is the maximal unitary subgroup of MII . An atomic
and spin configuration with MLG p4 is shown in Fig. 11(a). Using MWYCKPOS on the BCS91–94 for MSG 75.1 P4,
which is isomorphic to p4 modulo Tz, we obtain the coordinates and site-symmetry-group-isomorphic MPGs of the
maximal Wyckoff positions of p4:

q1a = (0, 0), G1a = 4,

q1b = (1/2, 1/2), G1b = 4,

q2c = {(1/2, 0), (0, 1/2)}, G2c = 2. (C19)

where the symbols 4 and 2 respectively refer to Type-I MPG 9.1.29 4 and Type-I MPG 3.1.6 2. As discussed in the
text following Eq. (C11), we observe that each site-symmetry group Gq in p4 [Eq. (C19)] is equivalent to the unitary
subgroup of the site-symmetry group MII,q of p41′ [Eq. (C16)].

Next, we perform the analogous analysis of the Wyckoff positions and site-symmetry groups in Type-III MLG
MIII = p4′, which is generated by {C4z × T |00} and {E|10}. As discussed in the text surrounding Eq. (B11),
MIII = p4′ admits a decomposition:

p4′ = p2 ∪ T [(p4) \ (p2)] , (C20)

in which p2 is the Type-I MLG generated by {E|10}, {E|01}, and {C2z|00} = ({C4z × T |00})6, where the exponent
of 6 is necessary to account for the possibility that p4′ is a double group (see Appendix A and Ref. 11). Because
p4 is the unitary subgroup of p41′, the SSG that results from restoring T symmetry to p4′ [Eqs. (B18) and (C20)],
then we refer to p4 as the “unprimed” group of p4′ [see Eq. (C12) and the surrounding text]. An atomic and spin
configuration with MLG p4′ is shown in Fig. 11(b). Using MWYCKPOS on the BCS91–94 for MSG 75.3 P4′, which is
isomorphic to p4′ modulo Tz, we obtain the coordinates and site-symmetry-group-isomorphic MPGs of the maximal
Wyckoff positions of p4′:

q1a = (0, 0), MIII,1a = 4′ = 2 ∪ T [(4) \ (2)] ,

q1b = (1/2, 1/2), MIII,1b = 4′ = 2 ∪ T [(4) \ (2)] ,

q2c = {(1/2, 0), (0, 1/2)}, MIII,2c = G2c = 2, (C21)

where the symbols 4′, 2, and 4 respectively refer to Type-III MPG 9.3.31 4′, Type-I MPG 3.1.6 2, and Type-I MPG
9.1.29 4. It is important to emphasize that MLGs p2 and p4′ do not share the same Bravais lattices: the Bravis lattice
of p2 is oblique, whereas the Bravis lattice of p4′ is square. In p2, the sites qp21b = (0, 1/2) and qp21c = (1/2, 0) each lie

http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
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in distinct, multiplicity-1, maximal Wyckoff positions. Conversely, in p4′, the symmetry element {C4z×T |00} relates

qp21b = (0, 1/2) and qp21c = (1/2, 0), causing the two sites to merge into a single, multiplicity-2, maximal Wyckoff position
in p4′ [q2c in Eq. (C21)]. All of the site-symmetry groups of p4′ are index-2 subgroups of the site-symmetry groups
of p41′ [Eqs. (C16) and (C17)]. However, unlike previously in p4 [Eq. (C19)], some of the site-symmetry groups in
Eq. (C21) are isomorphic to Type-III MPGs (MIII,1a and MIII,1b), whereas others are isomorphic to Type-I MPGs
(G2c). Crucially, for the site-symmetry groups MIII,q in Eq. (C21) that are isomorphic to Type-III MPGs, the
“unprimed” site-symmetry groups Gq [i.e. the site-symmetry groups that result from disregarding T symmetry, see
Eq. (C12) and the surrounding text] are still isomorphic to the unitary subgroups of the nonmagnetic site-symmetry
groups MII,q of p41′ [Eqs. (C16) and (C17)]. Specifically, at the 1a and 1b positions of p4′, the site-symmetry groups
MIII,1a and MIII,1b are both isomorphic to Type-III MPG 9.3.31 4′, whose unprimed group is Type-I MPG 9.1.29
4. Correspondingly, Type-I MPG 9.1.29 4 is also the unitary subgroup of Type-II SPG 41′, to which the 1a and 1b
site-symmetry groups of MLG p41′ are isomorphic [Eq. (C16)].

Appendix D: Small Coreps of the Little Groups and Full Coreps of the MSGs

In this section, we will establish the analogous momentum-space description5,11,52,57,58,60,85,86 of the MSGs, after
having previously established a position-space description of the MSGs in Appendices B and C. To begin, for an
infinite crystal that is invariant under an SSG G, the translation group GT [Eq. (B1)] is a subgroup of G, where GT
is generated by a set of three linearly-independent primitive translation operations:

ta = {E|ta}, tb = {E|tb}, tc = {E|tc}. (D1)

The shape of the unit (primitive) cell, and the (gray) Bravais lattice of G, are determined by the relative lengths and
directions of11 ta,b,c. Because the crystal is periodic and infinite, then it admits a reciprocal, Fourier-transformed
description that is also periodic and infinite. In reciprocal space, coordinates are indexed by crystal momentum k,
and the shapes of the reciprocal cells [i.e. Brillouin zones (BZs)] are determined by the primitive reciprocal lattice
vectors Ka,b,c, which are defined for a d-dimensional crystal as a set of d vectors {Kj} that satisfy:

ti ·Kj = 2πδij . (D2)

As previously with the Bravais lattice vectors, the primitive reciprocal lattice vectors Ka,b,c of a 3D crystal must
be linearly independent, but are not necessarily orthogonal (though Ka,b,c are indeed both linearly independent
and orthogonal in many SSGs). We note that, in some tools on the BCS, both ti and Kj are expressed in reduced,
dimensionless units in which factors of the Bravais lattice constants a, b, c and BZ length [2π in Eq. (D2)] are suppressed
(i.e., units in which |ta,b,c| = |Ka,b,c| = 1). However, throughout this work, unless we are discussing the specific output
of tools on the BCS, we will maintain the factor of 2π in Eq. (D2), though, like on the BCS, we will employ reduced
units in which a, b, c = 1 (i.e., units in which |ta,b,c| = 1 and |Ka,b,c| = 2π).

Similar to the Wyckoff positions in real space, there are also sets of k points in momentum space that are related
by the symmetries of the SSG G. These k points subdivide into distinct sets, known as momentum stars, which
we will rigorously define in Appendix D 1. For this work, we have specifically implemented the MKVEC tool on
the BCS, through which users can access the momentum stars of the SSGs; examples of the output of MKVEC are
provided in Appendix D 1. As we will discuss in Appendix D 1, MKVEC subsumes the earlier KVEC tool (https:
//www.cryst.ehu.es/cryst/get_kvec.html)61,62,135, which was only capable of generating the momentum stars of
the 230 Type-I (unitary) MSGs. Additionally at each point k in the first BZ, energy states (Bloch wavefunctions)
can be labeled by the irreducible “small” (co)reps of the little group11,21,22 Gk, which are defined in Appendix D 2.
One of the largest obstacles in constructing MTQC was the previous absence of a complete tabulation of the single-
valued (spinless) and double-valued (spinful) small coreps of the little groups of all 1,651 SSGs. Specifically, we cannot
calculate the MEBRs (further detailed in Appendix E), without a complete tabulation of the full (space group) coreps,
which are induced from the small coreps at each of the k points in a momentum star62,85,136. Previously, Miller and
Love in Ref. 52 computed the single- and double-valued irreducible small (co)reps of the little groups of each MSG
at high-symmetry points and along high-symmetry lines, but not along high-symmetry planes or in the BZ interior,
which are required to complete the insulating compatibility relations for each MSG (Appendix D 3) and to compute the
MEBRs (Appendix E). Additionally, the magnetic small (co)reps computed in Ref. 52 are not publicly available, are
displayed in difficult-to-read tables outputted directly from computer code, and are hence difficult to verify. For this
work, building on a prescription outlined by Bradley and Cracknell in Ref. 11, we have performed the first ever complete
tabulation of the over 100,000 single- and double-valued small coreps at all k points and full coreps in all momentum
stars of all 1,651 SSGs, which we have made freely accessible through the newly available Corepresentations tool on

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
https://www.cryst.ehu.es/cryst/get_kvec.html
https://www.cryst.ehu.es/cryst/get_kvec.html
https://www.cryst.ehu.es/cryst/get_kvec.html
http://www.cryst.ehu.es/cryst/corepresentations
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the BCS. Representative examples of the output of Corepresentations are provided in Appendices D 2 a and D 2 b.
Combined with the small and full coreps previously calculated for the Type-I and II SSGs for TQC5,57,58,60,85,86,
which can still be obtained through the REPRESENTATIONS DSG tool on the BCS (http://www.cryst.ehu.es/
cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg), the tools documented in this section represent
the completion of over 70 years10,11,52,122,123 of group-theoretic efforts to exhaustively enumerate the coreps of the
1,651 SSGs.

Additionally, using the small coreps of the little groups of the SSGs, we can further derive the compatibility rela-
tions60,86,137–140 that constrain the coreps at adjacent k points throughout the BZ. For this work, we have implemented
a new tool – MCOMPREL – through which the compatibility relations between pairs of k points in any of the 1,651
SSGs can be obtained, including, for the first time, the Type-III and Type-IV MSGs. In Appendix D 3, we detail
the methodology employed to implement MCOMPREL, as well as outline some of the subtleties that arise when
calculating compatibility relations in the MSGs.

1. Little (Co)Groups, Momentum Stars, and the MKVEC Tool

In this section, we will introduce the concepts of little groups, little co-groups, and momentum stars. We will
then demonstrate how the little (co)groups and momentum stars of all 1,651 SSGs can be obtained using the newly
available MKVEC tool on the BCS. To begin, we define two points k and k′ to be equivalent if:

k− k′ = Kν , (D3)

where Kν is an integer-valued linear combination of the reciprocal lattice vectors Ka,b,c defined in Eq. (D2). In this
work, we will employ a condensed notation in which two equivalent points k and k′ satisfy:

k ≡ k′. (D4)

Through Eqs. (D3) and (D4), we establish a definition of inequivalent k points in which two points k and k′ are
inequivalent if:

k− k′ 6= Kν , (D5)

for all possible linear combinations of reciprocal lattice vectors Kν . We summarize Eq. (D5) with a condensed notation
in which two inequivalent points k and k′ satisfy:

k 6≡ k′. (D6)

Consider a symmetry:

g = {R̃|v}, (D7)

where g is an element of an SSG G. In this work, R̃ denotes an operator, whereas PR̃ denotes the 3 × 3 matrix

representation of the action of the unitary part of R̃ on coordinates in the basis of reciprocal lattice vectors. Hence,
R̃ is basis-independent, where as PR̃ is basis-dependent. We note that in earlier works11,62, symmetry actions have

been formulated in terms of PR̃, rather than R̃, requiring the introduction of distinct symmetry actions for unitary

and antiunitary symmetries g. As an example of R̃ and PR̃, consider h = {mz × T |0}, for which R̃ = mz × T and
PR̃ = diag(1, 1,−1) in the coordinate basis (x, y, z). At each of the k points in the first BZ of G, the symmetry
operations g act on k as:

gk = R̃k, (D8)

where the tilde on R̃ is used to indicate that R̃ can be either a unitary symmetry of the form R̃ = R or an antiunitary
symmetry of the form R̃ = R× T . In this work, we define two points k and k′ to be dependent if:

k′ ≡ gk, (D9)

for any symmetry g ∈ G. Given a point k, we then define the subgroup Gk ⊆ G, as the group of symmetries g ∈ Gk

that act to return k to itself modulo reciprocal lattice vectors:

gk ≡ k. (D10)

http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg
http://www.cryst.ehu.es/cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg
http://www.cryst.ehu.es/cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg
https://www.cryst.ehu.es/cryst/mcomprel
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/mkvec
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Specifically, if R̃ is unitary (R̃ = R), then Eq. (D10) is satisfied if:

R̃k = Rk ≡ k, (D11)

and if R̃ is antiunitary (R̃ = R× T ), then Eq. (D10) is satisfied if:

R̃k = −Rk ≡ k. (D12)

Gk is defined as the little group11 of k. Because Bravais lattice translations {E|ta,b,c} leave k points invariant
[Eqs. (D8)], then Gk necessarily contains the group of lattice translations GT [Eq. (B1)] at any point k; hence, Gk is
isomorphic to an SSG. We may also define a little co-group Ḡk, which is given by the (Shubnikov) point group of Gk.
Because translation operations v leave k points invariant [Eq. (D8)], then symmetries with and without translations
[e.g. twofold screw symmetry {C2z|00 1

2} and twofold rotation symmetry {C2z|000}, respectively] have the same
action on k points. However, as we will shortly discuss in Appendix D 2, the momentum-space [small] (co)reps of Gk,
conversely, can differ depending on whether Gk contains symmetries with or without fractional lattice translations v
[e.g. in nonsymmorphic and symmorphic symmetry groups, respectively]11.

In general, given an SSG G and little group Gk ⊆ G, if G 6= Gk, then there exists a set of symmetry elements in
the subset:

g̃ ∈ G \Gk, (D13)

for which:

g̃k 6≡ k. (D14)

Eqs. (D13) and (D14) define a set of m k points {kγ} in the first BZ consisting of k and all k′ that are dependent
on each other and on k [defined in Eq. (D9)], where the index γ of kγ runs from 1 to m. The set of points {kγ} is
known as the momentum star of k in G, for which m indicates the number of inequivalent k points in the star. m can
alternatively be defined as the number of k points in the orbit of k, in analogy to the discussion of Wyckoff positions
and symmetry sites in Appendix C 2. In this work, to distinguish orbits in position space from symmetry-related k
points in momentum space, we will refer to m as the number of arms in the star of k, following the convention of
Refs. 11,135. From Eqs. (D13) and (D14), it follows that, for a point k′ ≡ g̃k,

Gk′ = g̃Gkg̃
−1, (D15)

such that Gk′ is isomorphic (and in fact conjugate) to Gk. Continuing to follow the definitions for position-space
quantities established in Appendix C 2, we define two momentum stars respectively indexed by arms at k and k′ to
be connected if the coordinates of any of the arms in the star of k [e.g. the coordinate v in the LD star with two
arms at (0, v, 0) and (0,−v, 0) in SSG 3.2 P21′] can be adjusted to coincide with the coordinates of any of the arms
in the star of k′ [e.g. the Γ point (0, 0, 0) in SSG 3.2 P21′, which is the only arm in its star], or vice versa. From
this, we then further define a maximal momentum star as a momentum star indexed by an arm at k (also known as
a k vector of maximal symmetry5,57,60,85,86,141) for which all connected momentum stars indexed by arms at k′ have
little groups Gk′ that are proper subgroups of Gk:

Gk′ ⊂ Gk, (D16)

for all k′ connected to k. We emphasize that a maximal momentum star may still have arms that lie along high-
symmetry lines or planes, rather than high-symmetry k points; for example, there are maximal momentum stars
with arms lying along lines and planes in SSGs that are respectively isomorphic to magnetic rod11,12,55,128,129 and
wallpaper18,63,131 groups modulo translations [see the text following Eq. (B2) and the text surrounding Eq. (C1)].
Because Eqs. (D13), (D14), (D15), and (D16) are closely related to the definitions for real-space Wyckoff positions
(Appendix C 2), then the momentum stars are sometimes also known as the “momentum-space Wyckoff positions” of
G (see Refs. 135,142 and the KVEC tool on the BCS for more information).

Prior to the completion of this work, the momentum stars and little (co)groups of the Type-I MSGs were made
available on the BCS through the KVEC tool135. However, the earlier tool – KVEC – only incorporated the action of
unitary crystal symmetries. In this work, we introduce a new tool – MKVEC – which additionally incorporates the
action of the antiunitary symmetries present in Type-II, III, and IV SSGs (Appendix B). As an example, consider
the lowest-symmetry momentum stars (general momentum-space Wyckoff positions135) in Type-I MSG 3.1 P2 and
Type-II SSG 3.2 P21′ [Fig. 12]. MSG 3.1 P2 is generated by {C2y|0} and 3D lattice translations, whereas SSG 3.2

https://www.cryst.ehu.es/cryst/get_kvec.html
https://www.cryst.ehu.es/cryst/get_kvec.html
https://www.cryst.ehu.es/cryst/get_kvec.html
http://www.cryst.ehu.es/cryst/mkvec
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P21′ is generated by {C2y|0}, {T |0}, and 3D lattice translations. In MSG 3.1 P2, the lowest-symmetry star sits at
generic momenta in the BZ interior, and has two arms that lie at k and C2yk [Eq. (D8)]. Conversely, in SSG 3.2
P21′, the lowest-symmetry star (GP in Fig. 12) has four arms, which lie at k, C2yk, T k, and C2yT k.

In Fig. 13, we also show the output of MKVEC for the more complicated example of Type-III MSG 75.3 P4′. To
explain the output of MKVEC in Fig. 13, we must first define additional terminology. First, in many cases, there
exist multiple symmetry groups that are isomorphic to the same SSG. For example, the MSG generated by:

{C2y|0}, {E|100}, {E|010}, {E|001}, (D17)

is isomorphic to the symmetry group generated by:

{C2z|0}, {E|100}, {E|010}, {E|001}. (D18)

Furthermore, the symmetry groups generated by the elements in Eqs. (D17) and (D18) are both isomorphic to Type-I
MSG 3.1 P2. In BCS applications, unless otherwise specified, all of the properties associated to a symmetry group are

List of k-vector types of the Magnetic Space Group P21' (No. 3.2)

Unitary subroup: P2 (No. 3) in its standard setting.

k-vector
type

coordinates of the
vectors of the star

magnetic little
co-group

k-vector type
of the unitary subgroup

coordinates of the
vectors of the star

in the unitary subgroup

unitary little
co-group

GM (0,0,0) 21' GM (0,0,0) 2
A (1/2,0,1/2) 21' A (1/2,0,1/2) 2
B (0,0,1/2) 21' B (0,0,1/2) 2
C (1/2,1/2,0) 21' C (1/2,1/2,0) 2
D (0,1/2,1/2) 21' D (0,1/2,1/2) 2
E (1/2,1/2,1/2) 21' E (1/2,1/2,1/2) 2
Y (1/2,0,0) 21' Y (1/2,0,0) 2
Z (0,1/2,0) 21' Z (0,1/2,0) 2

LD
(0,v,0)

2
LD (0,v,0)

2
(0,-v,0) LE (0,-v,0)

U
(1/2,v,1/2)

2
U (1/2,v,1/2)

2
(-1/2,-v,-1/2) UA (-1/2,-v,-1/2)

V
(0,v,1/2)

2
V (0,v,1/2)

2
(0,-v,-1/2) VA (0,-v,-1/2)

W
(1/2,v,0)

2
W (1/2,v,0)

2
(-1/2,-v,0) WA (-1/2,-v,0)

F (u,0,w),(-u,0,-w) 2' F (u,0,w),(-u,0,-w) 1
G (u,1/2,w),(-u,1/2,-w) 2' G (u,1/2,w),(-u,1/2,-w) 1

GP
(u,v,w),(-u,v,-w)

1
GP (u,v,w),(-u,v,-w)

1
(-u,-v,-w),(u,-v,w) GQ (-u,-v,-w),(u,-v,w)

FIG. 12: The output of the MKVEC tool on the BCS for Type-II SSG 3.2 P21′. MKVEC, which we introduce in this work,
outputs the momentum stars of all 1,651 SSGs, representing an extension of the earlier KVEC tool, which was only capable of
generating the momentum stars of the 230 Type-I (unitary) MSGs. From left to right, the columns in the output of MKVEC
list the name (“k-vector type”) of each momentum star indexed by a point k in the first BZ of the specified SSG G, the
coordinates of the arms of the star containing k in the standard setting (conventional cell), the little co-group Ḡk, the name
of the vectors in the star of k in the unitary subgroup H of G (Appendix B), the coordinates of the arms of the star(s) in H
that combine to form the star of k in G, and the Type-I (unitary) magnetic little co-group H̄k of k in H. For the labels and
coordinates of the arms of each star, we have employed the convention of Stokes, Campbell, and Cordes136 to be consistent
with the ISOTROPY Software Suite, which was developed by Stokes, Hatch, and Campbell. In the example of SSG 3.2 P21′

shown in this figure, the unitary subgroup H of G is isomorphic to Type-I MSG 3.1 P2. In H = P2, there are more momentum
stars (right-most three columns) than in G = P21′ (left-most three columns), due to the absence of {T |0} symmetry in H. For
example, in H – which is generated by {C2y|0} and lattice translation symmetry, LD (0, v, 0) and LE (0,−v, 0) are distinct,
multiplicity-1 momentum stars; however, in G, LD and LE merge into a single multiplicity-2 momentum star (also named LD)
[(0, v, 0), (0,−v, 0)].

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
https://www.cryst.ehu.es/cryst/get_kvec.html
http://www.cryst.ehu.es/cryst/mkvec
https://stokes.byu.edu/iso/isotropy.php
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generated in a standard setting in which the choice of rotation axes and mirror planes is fixed throughout the BCS.
For each symmetry group on the BCS, the standard setting is chosen to be the setting of the symmetry group in the
International Tables for Crystallography (Refs. 128,129). For example, unless otherwise specified, the properties of
Type-I MSG 3.1 P2 are provided on the BCS in the (standard) setting in which MSG 3.1 P2 is generated by {C2y|0}
and 3D lattice translations [Eq. (D17)]. In the nomenclature of this work and the BCS, the symmetry group generated
by {C2z|0} and lattice translation [Eq. (D18)] is termed a non-standard setting of MSG 3.1 P2. Next, given an SSG
G, we define the Bravais class of G to be the highest-symmetry, symmorphic11, Type-II SSG with the same gray
(nonmagnetic) Bravais lattice as G (see Appendix B). As discussed in Fig. 13, MKVEC compares the momentum
stars of G to the momentum stars of the Bravais class of G, and, when there is a discrepancy, outputs an additional
table [the lower table in Fig. 13] indicating the specific parameters for which the momentum stars in G coincide with
the momentum stars in the Bravais class of G.

Having established definitions for standard and non-standard SSG settings and Bravais classes [Eq. (D18) and the
surrounding text], we will now analyze the output of MKVEC for Type-III MSG 75.3 P4′ in Fig. 13. G = P4′ is
generated by:

{C4z × T |0}, {E|100}, {E|001}, (D19)

such that the unitary subgroup H of G is generated by {C2z|0} and 3D lattice translations, and is therefore isomorphic
to Type-I MSG 3.1 in a non-standard (z-oriented) setting [Eq. (D18)]. Unlike in the previous example in Fig. 12,
there are two complications that we must consider in generating the momentum stars of the Type-III MSG G = P4′

from the momentum stars of a unitary (Type-I) MSG, whose momentum stars were previously computed for the
earlier BCS tool KVEC61,62,135. First, in the standard setting, MSG 3.1 P2 is generated by {C2y|0} and 3D lattice
translations [Eq. (D17)], as opposed to the unitary subgroup H of G = P4′, which is isomorphic to MSG 3.1 P2 in
a non-standard setting [see the text following Eq. (D19)]. To begin to generate the momentum stars in G, we first
employ a transformation matrix P to convert the k points in the standard (y-oriented) setting of MSG 3.1 P2 into
the non-standard (z-oriented) basis of H:

kH = PkP2, (D20)

where P is the 3 × 3 matrix in the left three columns of the gray box at the top of Fig. 13. Next, we account for
the difference in Bravais lattice between G and H. Specifically, G = P4′ has a primitive tetragonal Bravais lattice,
whereas H has a primitive monoclinic Bravais lattice. Because of this, high-symmetry k points (lines) that were
independent in H [e.g. (0, 1/2, w) and (1/2, 0,−w) in the upper table in Fig. 13] become merged by the symmetry
{C4z × T |0} ∈ G into the same star in G [e.g. W in the left-most column of the upper table in Fig. 13].

The need for a transformation matrix P [Eq. (D20) and Fig. 13] and the difference in Bravais lattice lead to
a potential ambiguity in the momentum-star labeling, namely whether we should employ the labels of an MSG
(here 75.3 P4′) or those of the unitary subgroup [here 3.1 P2 in the non-standard (z-oriented) setting, see the text
surrounding Eq. (D17)]. We note that this ambiguity does not arise in all MSGs, or at all k points – a point k in
an MSG G only carries a labeling ambiguity if the k point has a different label in the Bravais lattice of G than in
the Bravais lattice of the unitary subgroup H of G. In the new tools on the BCS created for this work, we resolve a
k-point labeling ambiguity by continuing to label the k point using the momentum stars of G, while labeling the little
group (small) coreps at k (which we will shortly introduce in Appendix D 2) with both the momentum star labels in
G and with the momentum star labels of the unitary (and possibly rotated) subgroup H (see Fig. 14 for an example
of magnetic small corep labeling on the BCS).

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
https://www.cryst.ehu.es/cryst/get_kvec.html
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List of k-vector types of the Magnetic Space Group P4' (No. 75.3)

Unitary subroup: P2 (No. 3). Transformation matrix to the standard setting:

   1   0   0      0
   0   0   1      0
   0  -1   0      0

k-vector
type

coordinates of the
vectors of the star

magnetic little
co-group

k-vector type
of the unitary subgroup

coordinates of the
vectors of the star

in the unitary subgroup

unitary little
co-group

A (1/2,1/2,1/2) 4' E (1/2,-1/2,1/2) 2
GM (0,0,0) 4' GM (0,0,0) 2
LD (0,0,w) 2 LD (0,-w,0) 2
M (1/2,1/2,0) 4' A (1/2,0,1/2) 2
V (1/2,1/2,w) 2 U (1/2,-w,1/2) 2
Z (0,0,1/2) 4' Z (0,-1/2,0) 2

GP
(u,v,w),(-u,-v,w)

1
GP (u,-w,v),(-u,-w,-v)

1
(-v,u,w),(v,-u,w) GQ (-v,-w,u),(v,-w,-u)

W
(0,1/2,w)

2
V (0,-w,1/2)

2
(1/2,0,-w) W (1/2,w,0)

WA
(1/2,0,-w)

2
W (1/2,w,0)

2
(0,1/2,w) V (0,-w,1/2)

Other labels used in this Bravais class but that are particular
cases of vectors of the previous list in this specific magnetic group

k-vector
type

coordinates of
a representative
vector of the star

more general
k-vector type

coordinates of
the more general

k-vector type

specific values
of the coordinates

k-vector type
of the unitary subgroup

coordinates of the
vectors of the star

in the unitary subgroup

specific values
of the coordinates

in the unitary subgroup
R (0,1/2,-1/2) W (0,1/2,w) w→-1/2 D (0,1/2,1/2)
X (0,1/2,0) W (0,1/2,w) w→0 B (0,0,1/2)
RA (1/2,0,1/2) WA (1/2,0,-w) w→-1/2 C (1/2,-1/2,0)
XA (1/2,0,0) WA (1/2,0,-w) w→0 Y (1/2,0,0)
DT (0,v,0) GP (u,v,w) u→0,w→0 F (u,0,w) u→0,w→v
DU (v,0,0) GP (u,v,w) u→v,v→0,w→0 F (u,0,w) u→v,w→0
S (u,u,-1/2) GP (u,v,w) v→u,w→-1/2 G (u,1/2,w) w→u
SA (u,-u,1/2) GP (u,v,w) v→-u,w→1/2 G (u,-1/2,w) w→-u
SM (u,u,0) GP (u,v,w) v→u,w→0 F (u,0,w) w→u
SN (u,-u,0) GP (u,v,w) v→-u,w→0 F (u,0,w) w→-u
T (u,1/2,-1/2) GP (u,v,w) v→1/2,w→-1/2 G (u,1/2,w) w→1/2
TA (1/2,-u,1/2) GP (u,v,w) u→1/2,v→-u,w→1/2 G (u,-1/2,w) u→1/2,w→-u
U (0,v,-1/2) GP (u,v,w) u→0,w→-1/2 G (u,1/2,w) u→0,w→v
UA (v,0,1/2) GP (u,v,w) u→v,v→0,w→1/2 G (u,-1/2,w) u→v,w→0
Y (u,1/2,0) GP (u,v,w) v→1/2,w→0 F (u,0,w) w→1/2
YA (1/2,-u,0) GP (u,v,w) u→1/2,v→-u,w→0 F (u,0,w) u→1/2,w→-u
B (0,v,w) GP (u,v,w) u→0 GP (u,v,w) u→0,v→-w,w→v
BA (v,0,-w) GP (u,v,w) u→v,v→0,w→-w GP (u,v,w) u→v,v→w,w→0
C (u,u,w) GP (u,v,w) v→u GP (u,v,w) v→-w,w→u
CA (u,-u,-w) GP (u,v,w) v→-u,w→-w GP (u,v,w) v→w,w→-u
D (u,v,0) GP (u,v,w) w→0 F (u,0,w) w→v
E (u,v,1/2) GP (u,v,w) w→1/2 G (u,-1/2,w) w→v
F (u,1/2,w) GP (u,v,w) v→1/2 GP (u,v,w) v→-w,w→1/2
FA (1/2,-u,-w) GP (u,v,w) u→1/2,v→-u,w→-w GP (u,v,w) u→1/2,v→w,w→-u

FIG. 13: The output of the MKVEC tool on the BCS for Type-III MSG 75.3 P4′. Unlike the previous example of SSG 3.2 P21′

in Fig. 12, G = P4′ and the unitary subgroup H of G have different Bravais lattices. Additionally, the unitary subgroup H is
generated by {C2z|0} and 3D lattice translation [Eq. (D18)], and is therefore isomorphic to Type-I 3.1 P2 in a non-standard (z-
oriented) setting that differs from the standard (y-oriented) setting used throughout the BCS [see Eq. (D17) for the definitions
of standard and non-standard settings]. In MKVEC, we account for the difference in the orientation of the twofold rotation
axis between H and the standard setting of MSG 3.1 P2 by using the 3×3 P matrix given by the left three columns of the gray
box [Eq. (D20)]. After using the P matrix to reorient the twofold rotation symmetry in MSG 3.1 P2 to align with the twofold
axis in H, we then determine which of the momentum stars (e.g. GP and GQ) in MSG 3.1 P2 (the three right-most columns
in the top table) merge into the same momentum star (e.g. GP) in MSG 75.3 P4′ (the three left-most columns in the top
table). MKVEC also refers to the Bravais classes, which are defined in the text following Eq. (D18). For SSGs G with fewer
momentum stars than in the Bravais class of G, MKVEC also outputs the bottom table, which lists additional k points that
represent specific parameters for the same momentum stars in the top table chosen to coincide with distinct momentum stars
in the Bravias class of G. For example, in some SSGs G – such as Type-III MSG 75.3 P4′ in this figure – two k points represent
different parameter choices for the same star [e.g. the X point at (0, 1/2, 0) and the R point at (0, 1/2,−1/2) in the lower table
represent different parameter choices for the W star in the upper table], even though the two k points lie in distinct momentum
stars in the Bravais class of G [which, for the example of Type-III MSG 75.3 P4′, is the primitive tetragonal Type-II SSG
123.340 P4/mmm1′]. To summarize, in Type-III MSG 75.3 P4′, the R and X points and W lines are all mutually connected
[defined in the text following Eq. (D15)], and therefore appear as a single entry (W) in the top table, but the R and X points
are not connected in the Bravais class of G (Type-II SSG 123.340 P4/mmm1′), and therefore appear as distinct entries (R
and X) in the bottom table. Further details for obtaining the Bravais class of each SSG are provided in the documentation
for MKVEC on the BCS.

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/mkvec
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2. Small and Full Coreps and the Corepresentations Tool

Having established the definitions of little (co)groups and momentum stars (Appendix D 1), we will now in this
section detail our tabulation of the small and full (co)reps of the MSGs. At each k point in a crystal, the representa-
tions of the little group Gk can be used to characterize electronic (Bloch) wavefunctions11,21,22,143, superconducting-
and magnetic-transition order parameters46,50,51,144, magnons145, and Raman scattering tensors146. For the specific
purposes of MTQC, we cannot derive the magnetic elementary band (co)representations without knowledge of the
set of irreducible full [i.e. space group] (co)reps in each momentum star induced from the irreducible small (co)reps
in one arm of the star (see Appendix E). Therefore, before we can continue towards characterizing energy bands and
enumerating band (co)representations across the SSGs, we must tabulate all of the small (co)reps [defined below] of
each little group Gk of each k point in each of the 1,651 SSGs, which we must then use to generate the irreducible full
(co)reps in each momentum star of each SSG. Though a partial tabulation consisting of the magnetic small (co)reps
at high-symmetry BZ points and along high-symmetry BZ lines was performed by Miller and Love in Ref. 52, we have
in this work performed the first complete tabulation of the small (co)reps of Gk at all k points for all 1,651 single and
double SSGs.

To begin, because Gk is isomorphic to an SSG [text following Eq. (D10)], then Gk is an infinite group, and does
not have a finite set of irreducible (co)reps. Historically, several methods have been employed to extract a physically
meaningful finite set of (co)reps from Gk. One option is to form a finite group from Gk. If k is an isolated high-
symmetry point, then we can form the group:

HGk = Gk/Tk, (D21)

where Tk is the group of translations {E|tµ} ∈ Tk for which exp(−ik · tµ) = 1, and where we recall that / is the set
quotient [Eq. (B8)], as opposed to the set difference \ [Eq. (B6)]. HGk is known as “Herring’s little group”11,147. At
high-symmetry k points in Type-I MSGs or Type-II SSGs, it is shown in Ref. 11 that HGk is either isomorphic to
an abstract finite point group, or to the direct product of an abstract finite point group and a 3D group of lattice
translations that is a subgroup of the lattice translations of Gk. Hence, a finite number of coreps can be generated
from HGk by either encountering the case in which HGk is already a finite group, or by taking HGk modulo the
remaining integer lattice translations. The (co)reps of the abstract point subgroups of HGk for all of the k points in
the single and double Type-I MSGs and Type-II SGs were exhaustively tabulated in Ref. 11. However, the abstract
point subgroups of HGk for all of the k points in the single and double Type-III and Type-IV MSGs have not been
calculated to date. Additionally, when generalizing to high-symmetry BZ lines and planes, we can no longer rely on
Eq. (D21), because Gk/Tk cannot simply be reduced to a finite group by modding out lattice translations for values
of k away from high-symmetry points; a more complicated procedure involving the central extension of the little
co-group Ḡk may instead be employed, as detailed in Chapter 5 of Ref. 11.

In this work, to avoid the complications involved with reducing Gk to a finite group, we will instead employ an
alternative approach in which a finite set of (co)reps can be generated for each Gk in each SSG, regardless of whether
k is a high-symmetry BZ point. To begin, because Gk is a space group, then Gk can be expressed as a left coset
decomposition with respect to the group of Bravais lattice translations GT [Eq. (B1)]:

Gk =
⋃
i

giGT = GT ∪
⋃

gi /∈GT

giGT = GT ∪ {R̃1|v1}GT ∪ {R̃2|v2}GT + ..., (D22)

where the index i in Eq. (D22) runs over a set of coset representatives gi = {R̃i|vi} of Gk for which giGT 6= gjGT for
gi,j ∈ Gk, such that each coset giGT is unique. In Eq. (D22), we use the tilde symbol to emphasize that the symmetry

operation R̃i can be either unitary (R̃i = Ri) or antiunitary (R̃i = Ri×T ). In the coset decomposition in Eq. (D22),
gi 6= {E|0} in the second equality, because {E|0} ∈ GT . To motivate the coset decomposition in Eq. (D22), we can
compare Gk to ḠkGT , where Ḡk is the little co-group [i.e. Ḡk is the SPG obtained by setting all of the vi → 0 in
Eq. (D22), see text following Eq. (D12)]. First, we define a symmorphic SSG11 to be an SSG G in which there exists

a choice of origin for which each symmetry g ∈ G takes the form g = {R̃|t}, where {E|t} ∈ GT (using the same origin
for each symmetry g)11,128. This implies that Gk = ḠkGT at all k points. Hence, in symmorphic symmetry groups,
we could in principle obtain a finite set of (co)reps of Gk by restricting consideration to the (co)reps of Ḡk. However,
in an SSG that is not symmorphic (i.e. a nonsymmorphic SSG), there exist k points at which Gk 6= ḠkGT , providing
an obstacle towards generically using Ḡk to obtain finite sets of (co)reps of Gk. For example, at k = (0, π, 0) in
nonsymmorphic Type-I MSG 4.7 P21 – which is generated by screw symmetry {C2y|0 1

20} and the lattice translations

{E|100} and {E|001} – Gk 6= ḠkGT . We further note that, because all Type-IV SSGs necessarily contain elements
of the form t0T = {T |t0} for which {E|t0} /∈ GT (i.e. t0 is a fractional lattice translation, see Appendix B 4), then
all Type-IV SSGs are nonsymmorphic.
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Instead, we will show below that, unlike Ḡk, Eq. (D22) will allow us to construct a prescription for obtaining a
finite set of (co)reps at all k points in both symmorphic and nonsymmorphic SSGs. First, we recognize that, even
though Gk in Eq. (D22) is an infinite group, the number of unique cosets giGT of Gk is finite. This can be seen by

recognizing that E and the finite set {R̃i} in Eq. (D22) comprise the finite little co-group Ḡk. Next, we recall that Gk

is isomorphic to an SSG, implying that, in principle, there exist infinitely many (co)reps of Gk. We therefore impose
an additional restriction to (co)reps σ of Gk (not necessarily irreducible) for which lattice translations tµ = {E|tµ}
have the matrix representatives:

∆σ(tµ) = e−ik·tµ1χσ({E|0}), (D23)

where 1χσ({E|0}) is the χσ({E|0})-dimensional identity matrix. Eq. (D23) implies that, given two symmetries gi ∈ Gk

and tµgi ∈ Gk in the same coset giGT , where tµ = {E|tµ} and tµ ∈ GT , the matrix representatives ∆σ(gi) and
∆σ(tµgi) in σ in Eq. (D23) – which is termed a small11,61,85,136 (co)rep of Gk – are related by an overall (Bloch)
phase11. Specifically:

∆σ(tµgi) = e−ik·tµ∆σ(gi), (D24)

such that ∆σ(tµgi) and ∆σ(gi) are unitarily equivalent. Using Eqs. (D22), (D23), and (D24), we can then extract a
finite set of irreducible small (co)reps from Gk by restricting focus to the indecomposable small (co)reps whose matrix
representatives are not related by an overall phase, or any other unitary transformation. Specifically, we first define
two (co)reps σ and σ′ of a little group Gk to be equivalent if there exists a unitary matrix N that relates the matrix
representatives ∆σ(g) and ∆σ′(g):

∆σ(g) = N∆σ′(g)N†, (D25)

for all g ∈ Gk (in which the same matrix N is used for all g ∈ Gk). Then, using Eq. (D25), we define the irreducible
small (co)reps of Gk as the finite set of inequivalent (co)reps of Gk that cannot be expressed as direct sums of
each other and for which the matrix representatives of integer lattice translations take the form of Eq. (D23). We
further note that, at high-symmetry k points, the small (co)reps of Gk are equivalent to the (co)reps of HGk [modulo
lattice translations, see the text following Eq. (D21)], and, along high-symmetry BZ lines, the small (co)reps of
Gk are equivalent to the (co)reps of the central extension of the little co-group Ḡk (see Chapter 5 in Ref. 11 for
a detailed discussion of the role of the central extension in the group theory of crystalline solids). For Type-I
and Type-II SSGs, the little group small (co)reps were previously tabulated by Bradley and Cracknell11, and were
reconstructed in the REPRESENTATIONS DSG tool on the BCS for TQC5,57,58,60,85,86. Conversely, there have been
relatively few previous attempts to exhaustively tabulate the small coreps of the Type-III and Type-IV MSGs in an
accessible form, though a partial tabulation consisting of the magnetic small (co)reps at high-symmetry BZ points
and along high-symmetry BZ lines was performed by Miller and Love in Ref. 52 using little group decompositions
of the form of Eq. (D22). In this work, we have, for the first time, performed a complete tabulation of the small
(co)reps of the little group Gk at each k point in each of the 1,651 SSGs, which we have made accessible through
the Corepresentations tool on the BCS. Across all of the momentum stars of the 1,651 single and double SSGs, the
completion of Corepresentations required the computation of over 100,000 single- and double-valued small (co)reps.
In the text below, we will detail our methodology for tabulating the small (co)reps; in Appendices D 2 a and D 2 b,
we will additionally provide representative examples of the output of Corepresentations.

To complete our derivation of the little group small (co)reps, we return to the coset decomposition in Eq. (D22).
First, we recognize that, if Gk is isomorphic to a Type-I MSG, then its small (co)reps can already be obtained from
either the tables in Ref. 11 or through the earlier REPRESENTATIONS DSG tool on the BCS5,57,58,60,85,86, and no
further calculations are required. Next, we consider the more complicated case in which Gk is isomorphic to a Type-II,
III, or IV SSG. In this case, Gk necessarily contains antiunitary elements, and therefore admits a decomposition of
the form:

Gk = Hk ∪ g̃AHk, (D26)

where Hk is the maximal unitary (index-2, see Appendices B 2, B 3, and B 4) subgroup of Gk, and g̃A is an antiunitary
symmetry operation of the form:

g̃A = {R× T |v}, (D27)

where g̃A is known as the “representative” antiunitary symmetry operation, R is a unitary point-group symmetry
element (proper or improper rotation or the identity E), and either v = 0 or v is a fractional lattice translation.

http://www.cryst.ehu.es/cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg
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As discussed earlier in Appendices B 2, B 3, and B 4 and summarized in Table III, Type-II, III, and IV SSGs are
distinguished by the form of R and v in Eq. (D27).

SSG Definitions in Terms of Eqs. (D26) and (D27)

SSG Type Condition on R Condition on v

Type-II SSG R = E v = tµ
Type-III MSG R 6= E No constraint

Type-IV MSG R = E v 6= tµ, v2 = tµ

TABLE III: Definitions of the SSGs with antiunitary symmetry operations (Types-II, III, and IV, respectively defined in
Appendices B 2, B 3, and B 4). E is the identity operation, and tµ is a Bravais lattice vector, such that {E|tµ} ∈ GT [Eq. (B1)].

Next, for each of the cosets on the right-hand side of Eq. (D22) [including GT itself], we choose one element to place

into a set G̃k. In this work, we specifically choose the identity element {E|0} from GT , and then, from each coset giGT ,

we choose one element gi = {R̃i|vi} for which each component of the translation vi is chosen to satisfy |vi · ta,b,c| < 1
(in reduced units where the lattice constants a, b, c = 1), such that either v = 0 or vi is a specific fractional lattice

translation for which gi = {R̃i|vi} is an element of the little group Gk. We note that, if Gk is isomorphic to a

symmorphic SSG [defined in the text following Eq. (D22)], then G̃k becomes a finite group [specifically, G̃k = Ḡk if
Gk is symmorphic, where Ḡk is the little co-group, see the text following Eq. (D12)]. We note that, in this section, we

will always consider the more general case in which G̃k is a set, and not necessarily a group. Using H̃k – the maximal
unitary subset of G̃k – we can re-express Eq. (D22) for a Type-II, III, or IV little group Gk as:

Gk = G̃kGk =
⋃
i

hiGT ∪
⋃
i

gA,iGT =
(
H̃k ∪ g̃AH̃k

)
GT , (D28)

where g̃A is the representative antiunitary symmetry operation in Eq. (D27), and where the index i in Eq. (D28) runs
over all unique unitary (hiGT ) and antiunitary (gA,iGT ) cosets of Gk. Bradley and Cracknell outline a convention11

for choosing g̃A (for example, in Type-II little groups, the most natural choice is g̃A = {T |0}); however, below, we

will employ a more general procedure that is independent of the form of g̃A. Because all gA,i ∈ g̃AH̃k in Eq. (D28) are
antiunitary, and therefore do not have well-defined characters in any small corep of Gk (where the character χσ(h)
of a unitary symmetry h in the corep σ is defined11 as Tr[∆σ(h)]), then it is straightforward to see that the set of
small coreps of Gk can only be formed from the small irreps of its unitary subgroup Hk, which may become paired
by the action of the elements gA,i ∈ g̃AH̃k. We note that it is not possible for the irreducible small coreps of Gk to be
composed of more than two irreps of Hk, because Hk is either isomorphic to Gk (i.e. Gk is isomorphic to a Type-I
MSG, see Appendix B 1), or Hk is an index-2 subgroup of Gk (i.e. Gk is isomorphic to a Type-II, III, or IV SSG, see
Appendices B 2, B 3, and B 4, respectively).

Given a small irrep σ of Hk with a matrix representative ∆σ(h) for each symmetry h ∈ H̃k, we next define a matrix:

∆̄σ(h) =
[
∆σ(g̃−1

A hg̃A)
]∗
. (D29)

As shown by Bradley and Cracknell11, the small coreps σ̃ of Gk can only take one of three forms, which we designate
as “types” (a), (b), and (c):

• Type (a): ∆̄σ(h) is equivalent to ∆σ(h), such that ∆σ(h) = N∆̄σ(h)N† for all h ∈ H̃k [Eq. (D25)]. Additionally,
for coreps of type (a), the antiunitary matrix representative ∆σ(g̃A) = NK, where K is complex conjugation,

carries the property that ∆σ(g̃2
A) = [∆σ(g̃A)]2 = NN∗ = N2 [which is well defined, because g̃2

A ∈ H̃kGT in
Eq. (D28)]. For coreps of type (a), this implies that:

σ̃ ≡ σ, (D30)

such that the small corep σ̃ of Gk is equivalent to a small irrep σ of Hk. However, because Gk and Hk are
different symmetry groups, then the equivalence between σ̃ and σ is defined differently than the equivalence
that we previously defined between (co)reps of the same symmetry group [see the text surrounding Eq. (D25)].
Specifically, in this work, we define an irrep σ of a Type-I (unitary) symmetry group Hk and a corep σ̃ of
an index-2 Type-II, III, or IV (antiunitary) supergroup Gk of Hk to be equivalent if there exists a unitary
matrix N that relates the matrix representatives ∆σ(h) and ∆σ̃(h) by ∆σ(h) = N∆σ̃(h)N† for all of the unitary
symmetries h ∈ Hk, h ∈ Gk (where the same matrix N is used for all h ∈ Hk, h ∈ Gk). In nonmagnetic
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(Type-II) SSGs, type (a) coreps are most familiarly encountered at k points with real symmetry eigenvalues in
the absence of SOC. For example, at k = 0 in Type-II SSG 2.5 P 1̄1′ in the absence of SOC, which is generated
by {I|0}, {T |0}, and 3D lattice translations, Gk has two, one-dimensional, single-valued small coreps that
each correspond to a singly degenerate, T -invariant Bloch state (per spin)11. Type (a) coreps also exist in
nonmagnetic SSGs G in the presence of SOC at T -invariant k points with complex-conjugate pairs of spinful
symmetry eigenvalues that are already paired by unitary crystal symmetries in the unitary subgroup Hk of Gk.
For example, at k = 0 in Type-II SSG 25.57 Pmm2 in the presence of SOC, which is generated by {mx|0},
{my|0}, {T |0}, and 3D lattice translations, Gk has one, two-dimensional small corep that is equivalent to a two-
dimensional small irrep σ of Hk with complex-conjugate pairs of mx,y eigenvalues due to the anticommutation
relation {∆σ(mx),∆σ(my)} = 0.

• Type (b): ∆̄σ(h) is equivalent to ∆σ(h) for all h ∈ H̃k, where equivalence continues to be defined by Eq. (D25).
However, for coreps of type (b), ∆σ(g̃2

A) = NN∗ = −N2, implying through Kramers’ theorem that:

σ̃ = σ ⊕ σ ≡ σσ, (D31)

such that the small corep σ̃ of Gk is formed from pairing two copies of the same small irrep σ of Hk. We
further note that, because g̃A exchanges the two irreps σ that comprise σ̃ in Eq. (D31), then the matrix
representative ∆σ(g̃A) is itself undefined for a single irrep σ. Instead for coreps σ̃ of type (b), the antiunitary
matrix representative ∆σ̃(g̃A) is only well-defined in the larger space of the two irreps σ in σ̃, in which the
unitary part of ∆σ̃(g̃A) is block-off-diagonal. In nonmagnetic (Type-II) SSGs, type (b) coreps are most familiarly
encountered at k points with real symmetry eigenvalues in the presence of SOC. For example, at k = 0 in Type-
II SSG 2.5 P 1̄1′ in the presence of SOC, which is generated by {I|0}, {T |0}, and 3D lattice translations, Gk

has two, two-dimensional, double-valued small coreps that each correspond to a doubly-degenerate (Kramers)
pair of Bloch states with two parity (I) eigenvalues of the same sign11.

• Type (c): ∆̄σ(h) is not equivalent to ∆σ(h) [i.e., there does not exist a matrix N that satisfies Eq. (D25) for

all of the symmetries h ∈ H̃k]. Instead, ∆̄σ(h) is equivalent to ∆σ′(h), where σ′ is a different small irrep of Hk

than σ. This implies that:

σ̃ = σ ⊕ σ′ ≡ σσ′, (D32)

such that the small corep σ̃ of Gk is formed from pairing two different small irreps σ and σ′ of Hk. Unlike in
coreps of type (a) or type (b), there is no constraint on the form of the matrix representative ∆σ(g̃2

A) in coreps
of type (c). However, like previously in Eq. (D31), the unitary part of ∆σ̃(g̃A) for a type (c) corep σ̃ [Eq. (D32)]
is off-diagonal in the block basis of σ and σ′, and ∆σ(g̃A) cannot by itself be defined for a single irrep σ or
σ′. In nonmagnetic (Type-II) SSGs, type (c) coreps are most familiarly encountered at k points with complex
symmetry characters in Hk, whether or not SOC is taken into consideration. For example, at k = 0 in Type-II
SSG 6.19 Pm1′ in the presence of SOC, which is generated by {my|0}, {T |0}, and 3D lattice translations, Gk

has one, two-dimensional, double-valued small corep that corresponds to a doubly-degenerate (Kramers) pair of
Bloch states with a complex-conjugate (±i) pair of my eigenvalues11.

The above definitions seem to imply that the type of small corep σ̃ induced in Gk can only be determined through
a careful selection of g̃A in Eq. (D28), followed by an exhaustive search for equivalence matrices N that satisfy
Eq. (D25). However, as shown by Bradley and Cracknell11, we can also diagnose the type of the induced corep simply
by calculating the modified Frobenius-Schur indicator148–150 [c.f. Eq. (7.3.48) in Ref. 11]:

Jσ =
∑
i

χσ(g2
A,i), (D33)

where χσ(h) is the character of the unitary symmetry operation hi = g2
A,i, hi ∈ Hk in the small irrep σ of Hk [which

is equal to the trace of the matrix representative ∆σ(hi)], and where the summation in Eq. (D33) runs over all of the

antiunitary coset representatives in Eq. (D28) (i.e., all of the distinct elements gA,i ∈ g̃AH̃k). Because σ in Eq. (D33)
is an irrep, Jσ can only assume one of three values11,148,149:

Jσ =


|H̃k|, σ induces a small corep σ̃ of type (a) in Gk

−|H̃k|, σ induces a small corep σ̃ of type (b) in Gk

0, σ induces a small corep σ̃ of type (c) in Gk

, (D34)
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where |H̃k| is the number of elements [see the text following Eq. (B8)] in the set H̃k [Eq. (D28)]. In a Type-II little
group, g̃AHk = {T |0}Hk, such that:

JIIσ = sgn
[
χσ(T 2)

]∑
i

χσ(h2
i ), (D35)

where the summation in Eq. (D35) runs over all of the unitary coset representatives in Eq. (D28) (i.e., all of the

elements hi ∈ H̃k). We note that Eq. (D35) is the well-established Herring test11,147 (i.e. the standard Frobenius-
Schur indicator11,148,149) for determining the “reality” of σ in a nonmagnetic (Type-II) symmetry group. However, for
little groups that are isomorphic to Type-III and Type-IV MSGs, there is no analogous simple relationship between the
reality of σ and the type of σ̃, and the more general formulas in Eqs. (D33) and (D34) must be employed to determine
the type of σ̃. To confirm our complete calculation of all of the small coreps σ̃ of the SSGs, we have performed both
of the independent analyses detailed in this section. Specifically, for all of the unitary subgroup small irreps σ and
induced small coreps σ̃ of the little groups Gk at all k points in all 1,651 single and double SSGs, we have checked
for all possible equivalences between ∆σ(h) and ∆̄σ(h) [Eq. (D29) and the surrounding text], and we have confirmed
that the results agree with the values of Jσ [Eqs. (D33) and (D34)]. We will shortly provide in Appendix D 2 b an
example of the explicit computation of Jσ [Eq. (D34)] in a magnetic little group.

In addition to calculating the small (co)reps of the little groups of the MSGs, we have also calculated, for the first
time, the full (co)reps of each momentum star of each MSG. Whereas each small (co)rep is a representation of the
little group Gk at a point k, each full (co)rep is a representation of the entire SSG G in the momentum star indexed
by k (Appendix D 1). To calculate the full (co)reps, we adapt the procedure employed in Refs. 62,85,136 to the most
general case of a magnetic or nonmagnetic SSG G. First, we recognize that, given a little group Gk ⊆ G, there may
exist a set of symmetries:

g̃ ∈ G \Gk, (D36)

for which:

g̃k ≡ k′ 6≡ k, (D37)

such that k and k′ lie in different arms of the same momentum star in G. Because the little group Gk′ is conjugate
to Gk [Eq. (D15)], then the (co)reps at k and k′ are not independent. Specifically, if there exists a Bloch eigenstate
at k labeled by a (co)rep σ̃k of Gk, then there must also exist a Bloch eigenstate at k′ labeled by a (co)rep σ̃k′ of

Gk′ . For σ̃k and σ̃k′ , the matrix representatives of each unitary symmetry h ∈ H̃k and g̃hg̃−1 ∈ g̃H̃kg̃
−1 are related

by the symmetries g̃ ∈ G \Gk. If g̃ is unitary, then:

∆σ̃k′ (g̃hg̃
−1) = ∆σk

(h), (D38)

and if g̃ is antiunitary, then:

∆σ̃k′ (g̃hg̃
−1) = [∆σk

(h)]∗. (D39)

Finally, we will use Eqs. (D38) and (D39) for each of the symmetries g̃ ∈ G \Gk, to compute the matrix represen-

tatives of the full (co)rep Σ̃k of G in the star indexed by k. First, we define the full (co)rep of G in the star of k to
be:

Σ̃k =

m⊕
i=1

σ̃ki , (D40)

in which ki is the ith arm of the multiplicity-m momentum star of k. In Eq. (D40), Σ̃k is an m × χσ̃k
({E|0})-

dimensional full (co)rep of G. The matrix representatives ∆Σ̃k
(h) of the unitary SSG symmetries h ∈ G are not

necessarily block-diagonal, because σ̃k and σ̃k′ in Eqs. (D38) and (D39) may not be equivalent [defined in Eq. (D25)
and the surrounding text]. Instead we may choose a basis in which ∆Σ̃k

(h) is block-diagonal if the unitary symmetry
h ∈ Hki for all of the points ki in the momentum star indexed by k, and is otherwise not block-diagonal.

Rather than list the over 100,000 small and full (co)reps computed for this work in paper-format tables, we have
implemented the Corepresentations tool on the BCS, through which the irreducible small and full (co)reps at any k
point and in any momentum star in any SSG can respectively be accessed. Representative examples demonstrating
the output of Corepresentations are provided below in Appendices D 2 a and D 2 b.
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a. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 P4′

In this section, we will determine the small coreps of the little group GX of the X point in Type-III MSG 75.3 P4′,
as well as the full coreps induced in the momentum star of X consisting of X (which in some works is alternatively
labeled as X ′ or Y ) and XA (which in some works is alternatively labeled X). MSG 75.3 P4′ is generated by:

{C4z × T |000}, {E|100}, {E|001}, (D41)

and the maximal unitary subgroup H of G = P4′ [see Eq. (B11) and the surrounding text] is generated by:

{C2z|000}, {E|100}, {E|010}, {E|001}. (D42)

Hence, H is isomorphic to Type-I MSG 3.1 P2 in a non-standard (z-oriented) setting [see the text surrounding
Eq. (D18) for the definitions of standard and non-standard symmetry-group settings]. Eqs. (D41) and (D42) imply
the decomposition:

G = P4′ = H ∪ {C4z × T |000}H, (D43)

in which H is isomorphic to the z-oriented (non-standard) setting of Type-I MSG 3.1 P2.

The X point in G = P4′ is one arm of a multiplicity-2 momentum star. In the convention of the BCS, the X point
lies at:

kX = 2π(0, 1/2, 0), (D44)

where the other arm of the momentum star indexed by kX lies at:

kXA ≡ (C4z × T )kX ≡ 2π(1/2, 0, 0). (D45)

For all of the unitary elements h ∈ H:

hkX ≡ kX . (D46)

However, for all of the antiunitary elements g̃ ∈ {C4z × T |000}H in Eq. (D43):

g̃kX 6≡ kX . (D47)

Eqs. (D46) and (D47) imply that the little group GX is isomorphic to its maximal unitary subgroup HX . In turn,
HX at the point kX = (0, π, 0) in H is isomorphic to HB at the point kB = (0, 0, π) in Type-I MSG 3.1 P2 in its
standard (y-oriented setting, see Fig. 13). Therefore, the small coreps of GX are simply equivalent to the small irreps
of HX , which are equivalent to the small irreps of HB in MSG 3.1 P2, where representation equivalence is defined in
the text surrounding Eq. (D25).

In Figs. 14 and 15, we show the output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4′,
which has been split into two figures in order to preserve the legibility of the output text. First, in Fig. 14, we show
the matrix representatives ∆σ̃X (h) of the symmetries h ∈ H̃X [Eq. (D22)] in each of the small coreps σ̃X of HX .

Then, in Fig. 15, we show the matrix representatives ∆Σ̃X
(g) of the symmetries g ∈ G in each of the full coreps Σ̃X

of G in the star indexed by kX [{kX ,kXA}]. Specifically, as shown in Eq. (D45), kX and kXA are related by the
antiunitary symmetry {C4z × T |000}, for which:

{C4z × T |000}{C2z|000}{(C4z × T )−1|000} = {C2z|000}. (D48)

Eqs. (D39) and (D48) imply that:

∆σ̃XA(h) = [∆σ̃X (h)]∗, (D49)

for each unitary symmetry h ∈ H̃X [see the text surrounding Eq. (D28)], which is given by:

H̃X =

{
{E|000}, {C2z|000}, {Ē|000}, {ĒC2z|000}

}
. (D50)

In Eq. (D50), Ē = C1n is the symmetry operation of 360◦ rotation about an arbitrary axis n, which distinguishes
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single-valued (spinless) and double-valued (spinful) (co)reps. Throughout the BCS, Ē is also sometimes denoted with
the Seitz symbol d1, as it is in Figs. 14 and 15.

Eqs. (D49) and (D50) imply that the full coreps Σ̃X consist of pairs of single-valued coreps at kX and kXA with the
same real (spinless) C2z eigenvalues [labeled ∗(X)B1Y1 and ∗(X)B2Y2 in Fig. 15], and pairs of double-valued coreps
with opposite imaginary (spinful) C2z eigenvalues [labeled ∗(X)B̄3Ȳ4 and ∗(X)B̄4Ȳ3 in Fig. 15]. Additionally, because
the momentum star {kX ,kXA} is left invariant under all of the symmetries g ∈ P4′, then the matrix representatives
∆Σ̃X

(g) are well-defined for all of the symmetries g ∈ P4′. This implies that ∆Σ̃X
(g) is well defined for both the

unitary symmetries h ∈ GX , as well as the antiunitary symmetries g̃ ∈ P4′ \ H, where H is the maximal unitary
subgroup of G = P4′ [Eq. (D43)], and where H is isomorphic to Type-I MSG 3.1 P2 in a non-standard (z-oriented)
setting [see the text surrounding Eq. (D18)].

For each full corep Σ̃k of an SSG G in a momentum star indexed by an arm k, Corepresentations outputs the
matrix representative ∆Σ̃k

(g) for each of the unitary and antiunitary symmetries g ∈ G. For example, unlike the
table in Fig. 14 for the small coreps of GX , the table in Fig. 15 for the full coreps of G in the star of kX contains the
antiunitary matrix representatives ∆Σ̃X

({C4z × T |000}). For each full corep Σ̃X and antiunitary symmetry gA ∈ G,

the full (co)rep table in Corepresentations displays the unitary part of the matrix representative ∆Σ̃X
(gA), which is

colored in red to indicate that ∆Σ̃X
(gA) is antiunitary. In general, ∆Σ̃k

(g) for each of the unitary and antiunitary
symmetries g ∈ G is block-diagonal if g ∈ Gki for all of the points ki in the momentum star indexed by k, and is
otherwise non-diagonal. For example, in Fig. 15, each ∆Σ̃X

(g) is a 2 × 2 matrix, because each small corep σ̃X in

Fig. 14 is one-dimensional. Additionally, in Fig. 15, each ∆Σ̃X
(g) is diagonal for each symmetry g ∈ G, g ∈ GX and

g ∈ GXA [e.g. {C2z|000}], but is non-diagonal for each symmetry g ∈ G, g 6∈ GX or g 6∈ GXA [e.g. {C4z × T |000}].
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Irreducible co-representations of the (Double) Magnetic Space Group P4' (No. 75.3)

and wave-vector X:(0,1/2,0)

Unitary (Double) Space Group: P2 (No. 3).
Transformation matrix to its standard setting:

   1   0   0      0
   0   0   1      0
   0  -1   0      0

Coordinates of the wave-vector in the standard setting of the unitary subgroup: B:(0,0,1/2)

Magnetic little co-group of the wave-vector: 2

Little co-group of the wave-vector in the unitary subgroup: 2

Irreducible co-representations of the magnetic little group.

The matrices of the representations (the whole representation and the representation of the little group) with dimension smaller than 5 are given explicitly.
When the dimension of the representation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Matrix presentation
(In red color the antiunitary operations)

Seitz Symbol 
(In red color the antiunitary operations)

(X)B1 (X)B2 (X)B3 (X)B4

   1   0   0     t1
   0   1   0     t2
   0   0   1     t3

 1  0

 0  1
{1|t1,t2,t3} eiπt2 eiπt2 eiπt2 eiπt2

  -1   0   0      0
   0  -1   0      0
   0   0   1      0

 -i   0

  0   i
{2001|0,0,0} 1 -1 -i i

   1   0   0      0
   0   1   0      0
   0   0   1      0

 -1   0

  0  -1
{d1|0,0,0} 1 1 -1 -1

  -1   0   0      0
   0  -1   0      0
   0   0   1      0

  i   0

  0  -i
{d2001|0,0,0} 1 -1 i -i

FIG. 14: The output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4′, part 1. Even though MSG 75.3
P4′ contains antiunitary symmetries, the little group GX at kX = (0, π, 0) does not contain antiunitary symmetries, and is
therefore isomorphic to HX , its maximal unitary subgroup [see the text following Eq. (D47)]. At the top of this figure, the 3×3
matrix in the left-most three columns of the gray box is the transformation matrix P that converts k points into the standard
setting of the unitary subgroup. Specifically, in G = P4′ [Eq. (D41)], the unitary subgroup H [Eq. (D42)] is isomorphic to
Type-I MSG 3.1 P2 in a non-standard (z-oriented) setting [see the text surrounding Eq. (D18)]; as discussed in Fig. 13 and in
the text surrounding Eq. (D20), the P matrix in the gray box allows quantities – such as momentum stars and small irreps –
previously computed on the BCS for Type-I MSGs (here MSG 3.1 P2) to be transformed and adapted to the computation of
the analogous quantities in SSGs with antiunitary symmetries (Type-II, III, and IV SSGs, see Appendices B 2, B 3, and B 4,
respectively). The table in this figure shows the matrix representatives of the small coreps σ̃ of the little group GX , for
which the coreps with (without) overbars are double- (single-) valued. Because GX in P4′ is isomorphic to GB in Type-I
MSG 3.1 P2, then the coreps in this figure are labeled (X)Bi, and the table in this figure contains the same entries as the
table returned by Corepresentations for the B point in P2 [up to the orientation of the twofold axis, see the text following
Eq. (D47) and Fig. 13]. We note that throughout this work, a translation t is represented at a crystal momentum k by
exp(−ik · t) [i.e., in reduced units in which the lattice constants a, b, c = 1], whereas on the BCS, t is represented at k by the
phase exp(2πik · t) [i.e. with the opposite sign as employed in this work, and in different reduced units in which t and k are
respectively expressed as multiples of the lattice and reciprocal lattice constants a, b, c and 2π/(a, b, c)]. We additionally note
that the output of Corepresentations for the X point in Type-III MSG 75.3 P4′ contains an additional table, which is shown
in Fig. 15.
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The full corepresentation is induced from representations of the following two stars, related by the anti-unitary operations of the
magnetic group

X:(0,1/2,0)

XA:(1/2,0,0)

Coordinates of the vectors of the stars in the standard setting of the unitary subgroup:

B:(0,0,1/2)

Y:(1/2,0,0)

Irreducible full co-representations of the magnetic group.

Matrix presentation
(In red color the antiunitary operations)

Seitz
Symbol 

(In red color the

antiunitary

operations)

*(X)B1Y1
*(X)B2Y2

*(X)B3Y4
*(X)B4Y3

   1   0   0     t1
   0   1   0     t2
   0   0   1     t3

 1  0

 0  1
{1|t1,t2,t3}

 eiπt2   0

  0  eiπt1

 eiπt2   0

  0  eiπt1

 eiπt2   0

  0  eiπt1

 eiπt2   0

  0  eiπt1

  -1   0   0      0
   0  -1   0      0
   0   0   1      0

 -i   0

  0   i
{2001|0,0,0}

 1  0

 0  1

 -1   0

  0  -1

 -i   0

  0   i

  i   0

  0  -i

   1   0   0      0
   0   1   0      0
   0   0   1      0

 -1   0

  0  -1
{d1|0,0,0}

 1  0

 0  1

 1  0

 0  1

 -1   0

  0  -1

 -1   0

  0  -1

  -1   0   0      0
   0  -1   0      0
   0   0   1      0

  i   0

  0  -i
{d2001|0,0,0}

 1  0

 0  1

 -1   0

  0  -1

  i   0

  0  -i

 -i   0

  0   i

   0  -1   0      0
   1   0   0      0
   0   0   1      0

(1-i)√2/2 0

0 (1+i)√2/2
{4'+

001|0,0,0}
 0  1

 1  0

  0  -1

  1   0

 0  i

 1  0

  0  -i

  1   0

   0   1   0      0
  -1   0   0      0
   0   0   1      0

(1+i)√2/2 0

0 (1-i)√2/2
{4'-

001|0,0,0}
 0  1

 1  0

  0   1

 -1   0

  0  -1

 -i   0

  0  -1

  i   0

   0  -1   0      0
   1   0   0      0
   0   0   1      0

-(1-i)√2/2 0

0 -(1+i)√2/2
{d4'+

001|0,0,0}
 0  1

 1  0

  0  -1

  1   0

  0  -i

 -1   0

  0   i

 -1   0

   0   1   0      0
  -1   0   0      0
   0   0   1      0

-(1+i)√2/2 0

0 -(1-i)√2/2
{d4'-

001|0,0,0}
 0  1

 1  0

  0   1

 -1   0

 0  1

 i  0

  0   1

 -i   0

FIG. 15: The output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4′ [Eq. (D44)], part 2. The table
shown in this figure contains the full (SSG) coreps of G = P4′ in the star containing kX [(0, π, 0), (π, 0, 0)], see Eqs. (D44)
and (D45)]. For one coset representative in each of the little group cosets in Eq. (D22), as well as the SSG symmetries G \GX
[Eq. (D36) and the surrounding text], Corepresentations outputs the matrix representatives in each of the irreducible full
(co)reps of G in the star indexed by a point k. In the table shown in this figure, the matrix representatives of antiunitary

symmetries gA are labeled in red text, and the matrices listed for each full (co)rep Σ̃k indicate the unitary part U of the
antiunitary matrix representative ∆Σ̃(gA) = UK, where K is complex conjugation. Each of the full coreps for G = P4′ in
the star of kX is labeled with both (X) as well as BiYj , to indicate that the small coreps in each arm kX and kXA in G are
respectively equivalent to the small irreps at kB and kY in Type-I MSG 3.1 P2 [see Figs. 13 and 14 and the text surrounding
Eqs. (D20) and (D18)]. For each g ∈ G, each ∆Σ̃X

(g) shown in this figure is a 2 × 2 matrix, because each small corep σ̃X in

Fig. 14 is one-dimensional. Additionally, each ∆Σ̃X
(g) is diagonal for each symmetry g ∈ GX , g ∈ GXA [e.g. {C2z|000}], but

is non-diagonal for each symmetry g /∈ GX or g /∈ GXA [e.g. {C4z × T |000}].

http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations


39

b. Small and Full Coreps at the S Point in Type-IV MSG 25.63 PCmm2

In this section, we will determine the small coreps of the little group GS of the S point in Type-IV MSG 25.63
PCmm2. We will also show that the small coreps of GS coincide with the full coreps induced in G = PCmm2 in the
momentum star of S, because the S point in Type-IV MSG 25.63 PCmm2 is the only arm of a multiplicity-1 star
(see Appendix D 1 and the MKVEC tool for more information). To begin, MSG 25.63 PCmm2 is generated by:

Mx =

{
mx

∣∣∣∣000

}
, My =

{
my

∣∣∣∣000

}
, θ =

{
T
∣∣∣∣12 1

2
0

}
, tx = {E|100}, tz = {E|001}. (D51)

The S point in MSG 25.63 PCmm2 lies at:

kS = 2π(1/2, 1/2, 0). (D52)

Unlike in the previous example in Appendix D 2 a, all of the symmetries in MSG 25.63 PCmm2 return kS to itself
modulo reciprocal lattice vectors (gkS ≡ kS for all g ∈ PCmm2). Therefore, the little group GS is isomorphic to

MSG 25.63 PCmm2 itself, and the set G̃S [defined in the text surrounding Eq. (D28)] is given by

GS = G̃SGT =
(
H̃S ∪ θH̃S

)
GT . (D53)

with g̃A = θ. In Eq. (D53), the maximal unitary subset of G̃S is given by H̃S [in the specific case of the S point in

Type-IV MSG 25.63 PCmm2, H̃S is in fact a finite group, see the text preceding Eq. (D28) for more information]:

H̄S =

{
{E|0}, {mx|0}, {my|0}, {C2z|0}, {Ē|0}, {Ēmx|0}, {Ēmy|0}, {ĒC2z|0}

}
, (D54)

where Ē is defined in the text following Eq. (D50). The symmetry operations in H̃S in Eq. (D54) satisfy:

mx,ymy,xm
−1
x,y = Ēmy,x, mx,yC2zm

−1
x,y = ĒC2z, mx,yĒm

−1
x,y = C2zĒC

−1
2z = Ē,

mxmy = C2z, Ē
2 = E, m2

x,y = C2
2z = Ē. (D55)

Because all of the symmetries h ∈ H̃S are of the form {R|0}, then Eqs. (D54) and (D55) imply that the small
irreps of HS are equivalent to the irreps of an abstract finite group [see Ref. 11 and the text following Eq. (D21)]
that is isomorphic12,24,61,62,87–94 to Type-I MPG 7.1.20 mm2, which has five irreps σ. In Table IV, we reproduce
the matrix representatives ∆σ(h) of the small irreps of HS from the output of the Corepresentations tool for the S
point in Type-I MSG 25.57 Pmm2, which is the unitary subgroup of Type-IV MSG 25.63 PCmm2 (adjusting for the
differences in convention between how translations are represented in this work and on the BCS, see Fig. 14). The
five irreps in Table IV subdivide into four single-valued, one-dimensional irreps (S1−4) that are distinguished by their
spinless mx,y eigenvalues and one double-valued irrep (S̄5) that is two-dimensional because of the anticommutator
{∆S̄5

({mx|0}),∆S̄5
({my|0})} = 0.

To determine the type of the small corep σ̃ induced in GS , we calculate the indicator Jσ =
∑
i χσ(g2

A,i) [Eqs. (D33)

and (D34)] for each irrep σ in Table IV. Using Eq. (D53), we determine that there are eight gA,i to consider:

gA,i ∈ θH̃S , (D56)

where θ is defined in Eq. (D51), and where H̃S is defined in Eq. (D54) and in Table IV. First, we use Eqs. (D54)

and (D55) to determine that θ = txtyĒθ
−1, Ē2 = E, and that [Ē, hi] = 0 for all hi ∈ H̃S , where tx = {E|100} and

ty = {E|010}. We then determine that, in the case of G̃S in Type-IV MSG 25.63 PCmm2, χσ(g2
A,i) can be simplified

as:

χσ(g2
A,i) = χσ(θhiθhi) = sgn

[
χσ(Ē)

]
χσ
(
[θhiθ

−1txty]hi
)
, (D57)
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where hi ∈ H̃S in Eq. (D54). Next, we use Eq. (D51) to obtain the relations:

θC2zθ
−1txty = θ{C2z|000}θ−1{E|110} = {C2z|110}{E|110} = (txtyC2z)txty = (C2zt

−1
x t−1

y )txty = C2z,

θMxθ
−1txty = θ{mx|000}θ−1{E|110} = {mx|100}{E|110} = (txMx)txty = (Mxt

−1
x )txty = tyMx,

θMyθ
−1txty = θ{my|000}θ−1{E|110} = {my|010}{E|110} = (tyMy)txty = (Myt

−1
y )txty = txMy,

θĒθ−1 = θ{Ē|000}θ−1 = {Ē|000} = Ē. (D58)

Eqs. (D57) and (D58) imply that Jσ [Eq. (D33)] can be further simplified before specifying a value of σ:

Jσ =
∑
i

χσ(g2
A,i) = sgn

[
χσ(Ē)

]∑
i

χσ
(
[θhiθ

−1txty]hi
)

= 2 sgn
[
χσ(Ē)

] (
χσ(E)− χσ(Ē)

)
= 2

[
χσ(Ē)− χσ(E)

]
. (D59)

Matrix Representatives ∆σ(h) of the Small Irreps of HS

at the S point [kS = (π, π, 0)] in Type-I MSG 25.57 Pmm2,

the Unitary Subgroup of Type-IV MSG 25.63 PCmm2

h S1 S2 S3 S4 S̄5

{E|t1 + t2 + t3} e−iπ(t1+t2) e−iπ(t1+t2) e−iπ(t1+t2) e−iπ(t1+t2)

(
e−iπ(t1+t2) 0

0 e−iπ(t1+t2)

)

{C2z|000} 1 1 −1 −1

(
0 −1

1 0

)

{my|000} 1 −1 −1 1

(
0 −i
−i 0

)

{mx|000} 1 −1 1 −1

(
−i 0

0 i

)

{Ē|000} 1 1 1 1

(
−1 0

0 −1

)

{ĒC2z|000} 1 1 −1 −1

(
0 1

−1 0

)

{Ēmy|000} 1 −1 −1 1

(
0 i

i 0

)

{Ēmx|000} 1 −1 1 −1

(
i 0

0 −i

)

TABLE IV: The matrix representatives ∆σ(h) of the small irreps σ of the little group HS of the S point [kS = (π, π, 0)] in
Type-I MSG 25.57 Pmm2, the unitary subgroup of Type-IV MSG 25.63 PCmm2. Because MSG 25.57 Pmm2 is a Type-
I MSG (Appendix B 1), then H̃S is isomorphic to its maximal unitary subset. The values of ∆σ(h) in this table have been
reproduced from the output of the Corepresentations tool, and adapted to the notation employed throughout this work in which
a translation t is represented at a crystal momentum k by exp(−ik · t) [i.e., in reduced units in which the lattice constants
a, b, c = 1, see Fig. 14 for further details]. We note that in Corepresentations and in this table, the matrix representatives ∆σ(h)

are shown for each symmetry h ∈ H̃k except for the element {E|000} with exp(−ikS · tµ) = 1 [see Eqs. (D23) and (D24)];
instead the first element h in this table, and in the output of Corepresentations, is chosen to be {E|t1 + t2 + t3}, where
t1,2,3 are respectively integer-valued multiples of the lattice vectors tx,y,z (see Figs. 14 and 16). We make this substitution of
{E|t1 + t2 + t3} for {E|000} to provide users with information regarding the representations (phases) of translations at k (here
specifically at kS [Eq. (D52)]), which contribute towards determining the matrix representatives of all of the symmetries in Hk

(as opposed to just the symmetries in H̃k), and towards determining the pairing of unitary subgroup small irreps into little
group small coreps [see the text surrounding Eqs. (D58) and (D59), for example]. The overbar on σ = S̄5 is used to indicate
that S̄5 is double-valued, whereas the irreps without overbars (S1−4) are single-valued.

http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations


41

Remarkably, we find that Eq. (D59) only depends on whether σ is single- or double-valued:

Jσ =

{
0, for σ = S1−4

−|H̃S |, for σ = S̄5

, (D60)

where |H̃S | = 8 [Eq. (D54)]. Using Eq. (D34), we determine that the single-valued, one-dimensional irreps S1−4

induce paired, two-dimensional coreps of type (c) [Eq. (D32)], whereas the double-valued, two-dimensional irrep S̄5

induces a paired, four-dimensional corep of type (b) [Eq. (D31)].
To complete the calculation of the small coreps of GS in Type-IV MSG 25.63 PCmm2, we must determine which

of the single-valued irreps S1−4 become paired into coreps of type (c). This can be accomplished by computing the

matrix representative ∆̄σ(h) =
[
∆σ(g̃−1

A hg̃A)
]∗

[Eq. (D29)]. Choosing gA = θ and using Eq. (D58), we find that, for
the single-valued irreps σ = S1−4:

∆̄σ(C2z) = ∆σ(C2z) = ∆σ′(C2z), ∆̄σ(Mx,y) = −∆σ(Mx,y) = ∆σ′(Mx,y). (D61)

Along with Eq. (D60), which implies that S̄5 induces a paired corep of type (b), Eq. (D61) implies that GS in Type-IV
MSG 25.63 PCmm2 has three small coreps:

σ̃ = S1S2, S3S4, S̄5S̄5, (D62)

where S1S2 and S3S4 are single-valued, two-dimensional coreps and S̄5S̄5 is a double-valued, four-dimensional corep.
Below, we will shortly formulate a k · p Hamiltonian demonstrating that S̄5S̄5 corresponds to a 3D fourfold Dirac
fermion63,151 that is enforced by spinful mirrors that anticommute with each other {∆S̄5S̄5

(Mx),∆S̄5S̄5
(My)} = 0,

and with the matrix representative of θ {∆S̄5S̄5
(Mx,y),∆S̄5S̄5

(θ)} = 0.
In Fig. 16, we show the output of the Corepresentations tool for the S point in Type-IV MSG 25.63 PCmm2, which

agrees with the calculation performed in this section to obtain Eq. (D62). As previously discussed in Fig. 14 and in the
text surrounding Eq. (D45), the table in Fig. 16 contains the matrix representatives of the small coreps σ̃ [Eq. (D62)]
of the little group GS in Type-IV MSG 25.63 PCmm2. We note that, like in Fig. 15, the Corepresentations tool also
outputs a second table containing the matrix representatives of the full coreps in the momentum star indexed by kS
[see Appendix D 1 and the text surrounding Eqs. (D40) and (D52)]. However, because, kS in MSG 25.63 PCmm2
is the only arm of a multiplicty-1 momentum star (Appendix D 1 and MKVEC), then the second table outputted
by Corepresentations is identical to the table shown in Fig. 16. Therefore, for concision, we have omitted the second
table outputted by Corepresentations.

We can gain some physical intuition for the small coreps σ̃ in Eq. (D62) by forming a k ·p Hamiltonian characterized
by one of the σ̃. Focusing on the double-valued, four-dimensional corep σ̃ = S̄5S̄5, which characterizes spinful electronic
states, we can re-express the symmetry representation of the generating elements of GS in Table IV and Eq. (D62)
as acting on a four-band Hamiltonian H(q) = H(k− kS):

MxH(qx, qy, qz)M
−1
x = τzσxH(−qx, qy, qz)τzσx,

MyH(qx, qy, qz)M
−1
y = τzσyH(qx,−qy, qz)τzσy,

θH(qx, qy, qz)θ
−1 = τxσyH∗(−qx,−qy,−qz)τxσy, (D63)

where τ i and σj are 2 × 2 Pauli matrices, and where we have employed a shorthand in which τ iσj = τ i ⊗ σj ,
τ0 ⊗ σj = σj , and τ i ⊗ σ0 = τ i. We note that we have not included the generating translations of GS in Eq. (D63),
because translations are represented as phases in momentum space, and therefore do not by themselves impose
constraints on H(qx, qy, qz). The symmetry representation in Eq. (D63) admits a Hamiltonian:

H(q) = [v1xσ
y + v2xτ

xσx]qx + [v1yσ
x + v2yτ

xσy]qy + [v1zτ
z + v2zτ

xσz]qz, (D64)

that characterizes a linearly dispersing, fourfold condensed matter Dirac fermion with non-degenerate bands away
from q = 0. Specifically, in the qz = 0 plane, Eq. (D64) coincides with the Hamiltonian of the 2D filling-enforced131,152

fourfold magnetic Dirac fermion introduced in Ref. 63. Most recently, the methods employed in this section – which
we have adapted from Refs. 63,151,153–158 – were used by the authors of Ref. 130 to construct a complete list of
high-symmetry-point multifold fermions in the MSGs. Where there is overlap, the results of Ref. 130 agree with the
output of the Corepresentations tool introduced in this work.
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Irreducible co-representations of the (Double) Magnetic Space Group PCmm2 (No. 25.63)

and wave-vector S:(1/2,1/2,0)
Unitary (Double) Space Group: Pmm2 (No. 25) in its standard setting.

Coordinates of the wave-vector in the standard setting of the unitary subgroup: S:(1/2,1/2,0) 

Magnetic little co-group of the wave-vector: mm21' 

Little co-group of the wave-vector in the unitary subgroup: mm2 
 

Irreducible co-representations of the magnetic little group.
The matrices of the representations (the whole representation and the representation of the little group) with dimension smaller than 5 are given explicitly. 

When the dimension of the representation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Matrix presentation 
(In red color the antiunitary operations)

Seitz Symbol 
 

(In red color the
antiunitary
operations)

S1S2 S3S4 S5S5

   1   0   0     t1 
   0   1   0     t2 
   0   0   1     t3

 1  0

 0  1
{1|t1,t2,t3}

  eiπ(t1+t2)   0

  0  e-iπ(t1+t2)

  eiπ(t1+t2)   0

  0  e-iπ(t1+t2)

  eiπ(t1+t2)     0     0     0

    0   eiπ(t1+t2)     0     0

    0     0  e-iπ(t1+t2)     0

    0     0     0  e-iπ(t1+t2)

  -1   0   0      0 
   0  -1   0      0 
   0   0   1      0

 -i   0

  0   i
{2001|0,0,0}

 1  0

 0  1

 -1   0

  0  -1

  0  -1   0   0

  1   0   0   0

  0   0   0  -1

  0   0   1   0

   1   0   0      0 
   0  -1   0      0 
   0   0   1      0

  0  -1

  1   0
{m010|0,0,0}

  1   0

  0  -1

 -1   0

  0   1

  0  -i   0   0

 -i   0   0   0

  0   0   0  -i

  0   0  -i   0

   1   0   0    1/2 
   0   1   0    1/2 
   0   0   1      0

 1  0

 0  1
{1'|1/2,1/2,0}

 0  1

 1  0

 0  1

 1  0

  0   0  -1   0

  0   0   0  -1

  1   0   0   0

  0   1   0   0

  -1   0   0    1/2 
   0  -1   0    1/2 
   0   0   1      0

 -i   0

  0   i
{2'

001|1/2,1/2,0}
 0  1

 1  0

  0  -1

 -1   0

  0   0   0   1

  0   0  -1   0

  0  -1   0   0

  1   0   0   0

   1   0   0    1/2 
   0  -1   0    1/2 
   0   0   1      0

  0  -1

  1   0
{m'

010|1/2,1/2,0}
  0  -1

  1   0

  0   1

 -1   0

  0   0   0  -i

  0   0  -i   0

  0   i   0   0

  i   0   0   0

FIG. 16: The output of the Corepresentations tool for the S point in Type-IV MSG 25.63 PCmm2. The table in this figure
shows the matrix representatives of the small coreps σ̃ of the little group GS [kS = (π, π, 0)], for which the coreps with
(without) overbars are double- (single-) valued. As discussed in Fig. 14, throughout this work, a translation t is represented at
a crystal momentum k by exp(−ik · t) [i.e., in reduced units in which the lattice constants a, b, c = 1], whereas on the BCS, t is
represented at k by the phase exp(2πik · t) [i.e. with the opposite sign as employed in this work, and in different reduced units
in which t and k are respectively expressed as multiples of the lattice and reciprocal lattice constants a, b, c and 2π/(a, b, c)].
In the table shown in this figure, the matrix representatives of antiunitary symmetries gA are labeled in red text, and the
matrices listed for each small corep σ̃S indicate the unitary part U of the antiunitary matrix representative ∆σ̃S (gA) = UK,
where K is complex conjugation. We note that the output of Corepresentations for the S point in Type-IV MSG 25.63 PCmm2
also includes an additional table containing the matrix representatives of the full coreps in the momentum star containing kS
(see Fig. 15). However, because, kS in MSG 25.63 PCmm2 is the only arm of a multiplicty-1 momentum star (Appendix D 1
and MKVEC), then the second table outputted by Corepresentations is identical to the table shown in this figure; for concision
have therefore omitted the second table outputted by Corepresentations.
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3. Compatibility Relations in the MSGs and the MCOMPREL Tool

In this section, building upon the definition of the small coreps of the magnetic little groups established in Ap-
pendix D 2, we will now discuss the concept of compatibility relations (defined in detail in the text below), which
relate the coreps at different k points throughout the BZ. To begin, at a given point k in the first BZ of an SSG,
the set of occupied Bloch eigenstates can be labeled by the small coreps of the little group Gk. As shown in previous
works5,23,24,57,58,60,85,86,90,96,97,137–140, given knowledge of all of the coreps at k, the possible coreps present at a point
k′ that is connected to k [defined in the text following Eq. (D15)] can be inferred from the group-subgroup relations
between Gk and Gk′ . In this section, we will review how the compatibility relations between the coreps at connected
k points throughout the BZ can be reformulated using the language of graph theory. Finally, we will conclude this
section by discussing how the graph-theory interpretation of the compatibility relations can be exploited to determine
if a given set of coreps at a small number of high-symmetry k vectors [specifically, the arms of the maximal momentum
stars, see the text surrounding Eq. (D16)] are incompatible with the presence of an energy (band) gap at all k points
in the BZ.

To begin, consider two connected points k and k′ for which the little group Gk is of higher symmetry than the little
group Gk′ , such that Gk′ ⊂ Gk. Next, consider a set of occupied Bloch eigenstates to be present at k. The Bloch
states at k can be labeled with a small, generically-reducible corep ς̃k of Gk:

ς̃k =
⊕
i

aki σ̃i,k, (D65)

where σ̃i,k is the ith small (irreducible) corep of Gk (Appendix D 2). In Eq. (D65), aki is a non-negative integer159,
known as the multiplicity of σ̃i,k, that indicates the number of times that σ̃i,k appears in the decomposition of ς̃k.
The multiplicities {aki } are known as the symmetry data for each k point, and the set {ς̃k} over all of the arms k of
the maximal momentum stars in an SSG [defined in the text surrounding Eq. (D16)] is known as the symmetry data
vector6. In Eq. (D65), each small corep σ̃i,k can be further subduced onto the lower-symmetry little group Gk′ of a
point k′ that is connected to k:

σ̃i,k ↓ Gk′ =
⊕
j

mk,k′

i,j σ̃j,k′ , (D66)

where σ̃j,k′ is the jth small (irreducible) corep of Gk′ and mk,k′

i,j is the multiplicity of σ̃j,k′ in σ̃i,k ↓ Gk′ . The values of

mk,k′

i,j are known as the compatibility relations60,86,137–140 between σ̃i,k and σ̃j,k′ , and are required to be non-negative

integers, because they originate from group-subgroup subduction [Eq. (D66) and Ref. 159]. For future calculations,
it will be useful to re-express Eqs. (D65) and (D66) as:

mk,k′ ς̃k = ς̃k′ , (D67)

in which ς̃k (ς̃k′) is an w × 1- (z × 1-) dimensional column vector where w (z) is the number of small coreps of Gk

(Gk′). In the notation of Eq. (D67), ς̃k and ς̃k′ contain symmetry data [i.e. the multiplicities aki in Eq. (D65) and the

corresponding multiplicities ak
′

j at k′] indicating the number of Bloch wavefunctions that transform in the ith (jth)
small corep σ̃i,k (σ̃j,k′) of Gk (Gk′) in an energetically isolated group of Bloch states at k (k′). Hence, in Eq. (D67),

mk,k′ is a z × w-dimensional matrix whose entries are the compatibility relations mk,k′

i,j in Eq. (D66).

If Gk and Gk′ are Type-I little groups in a Type-I MSG (Appendix B 1), then the compatibility relations mk,k′

i,j for

any irrep pair σ̃i,k and σ̃j,k′ at any pair of connected points k and k′ can be obtained through the existing DCOM-
PREL program on the BCS (https://www.cryst.ehu.es/cgi-bin/cryst/programs/dcomprel.pl)5,57,58,60,85,86.
However, if Gk or Gk′ is isomorphic to an SSG with antiunitary symmetries (Type-II, III, or IV, Appendices B 2, B 3,

and B 4, respectively), then we must perform several additional steps to determine mk,k′

i,j . Specifically, if Gk is
isomorphic to a Type-II, III, or IV SSG, then, for each small corep σ̃i,k of Gk, we first calculate the subduction:

σ̃i,k ↓ Hk =
⊕
l

bki,lσl,k, (D68)

where Hk is the maximal unitary subgroup of Gk, σl,k is the lth small irrep of Hk, and where each coefficient bki,l = 0,

1, or 2, depending on whether σ̃i,k is a type (a), (b), or (c) small corep [respectively defined in the text surrounding
Eqs. (D30), (D31), and (D32)]. Specifically, if σ̃i,k is a type (a) [(b)] corep, then, for each value of i, bki,l = 1 [bki,l = 2]
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for one value of l, and bki,l = 0 for all of the other values of l at fixed i; conversely, if σ̃i,k is a type (c) corep, then bki,l = 1

for two values of l, and bki,l = 0 for all of the other values of l at fixed i (see Appendix D 2). This occurs because, if Gk

is isomorphic to a Type-II, III, or IV SSG, then Hk is necessarily an index-2 subgroup of Gk (see Appendices B 2, B 3,
and B 4), and because Gk = Hk ∪ gAHk where gA is an antiunitary symmetry gA ∈ Gk, gA 6∈ Hk. Hence, as shown
in Appendix D 2, each of the small coreps σ̃i,k of Gk is either equivalent to a small irrep σl,k of Hk such that bki,l = 1

for only one value of l for each i [type (a) corep, see Eq. (D30)], σ̃i,k is equivalent to the direct sum σl,k ⊕ σl,k such
that bki,l = 2 for only one value of l for each i [type (b) corep, see Eq. (D31)], or σ̃i,k is equivalent to the direct sum

σl1,k⊕σl2,k such that bki,l = 1 for only two values l = l1, l2 for each i [type (c) corep, see Eq. (D32)]. The values of bki,l
in Eq. (D68) can be obtained from the Corepresentations tool introduced in this work, which we previously detailed
in Appendix D 2. In the notation of Eq. (D67), Eq. (D68) can be re-expressed as:

bkς̃k = ςk, (D69)

in which ςk is an x× 1-dimensional column vector whose lth entry is the multiplicity of σl,k in ς̃k ↓ Hk, where x is the
number of small irreps of Hk, and where bk is a x× w-dimensional matrix whose entries are bki,l in Eq. (D68). Next,
for each small irrep σl,k of Hk, we further subduce onto Hk′ , the maximal unitary subgroup of Gk′ :

σl,k ↓ Hk′ =
⊕
s

nk,k
′

l,s σs,k′ , (D70)

where σs,k′ is the sth small irrep of Hk′ and nk,k
′

l,s is the multiplicity of σs,k′ in σl,k ↓ Hk′ . As with mk,k′

i,j in Eq. (D66),

the values of nk,k
′

l,s in Eq. (D70) are required to be non-negative integers, because they originate from group-subgroup

subduction159. Crucially, because Hk and Hk′ are both isomorphic to Type-I MSGs, then the compatibility relations

nk,k
′

l,s for all possible connected points k and k′ in all 1,651 SSGs can be determined using the earlier DCOMPREL

tool, which is documented in Ref. 86. Following Eq. (D67), Eq. (D70) can be re-expressed as:

nk,k
′
ςk = ςk′ , (D71)

in which ςk′ is a y × 1-dimensional column vector whose sth entry is the multiplicity of σs,k′ in ς̃k′ ↓ Hk′ , where y

is the number of small irreps of Hk′ , and where nk,k
′

is an y × x-dimensional matrix whose entries are the unitary

subgroup compatibility relations nk,k
′

l,s in Eq. (D70). As a last step towards calculating the compatibility relations

mk,k′

i,j in Eq. (D66), we calculate the subduction onto Hk′ for each small corep σ̃j,k′ of Gk′ :

σ̃j,k′ ↓ Hk′ =
⊕
s

ck
′

j,sσs,k′ , (D72)

where σs,k′ is the sth small irrep of Hk′ , and where, as detailed in the text following Eq. (D68), each coefficient

ck
′

j,s = 0, 1, or 2, depending on whether σ̃j,k′ is a type (a), (b), or (c) small corep [defined in the text surrounding

Eqs. (D30), (D31), and (D32), respectively]. As previously with bki,l in Eq. (D68), the values of ck
′

j,s in Eq. (D72) can

also be obtained from the Corepresentations tool introduced in this work (Appendix D 2). Like Eq. (D68), Eq. (D72)
can be re-expressed in the form of Eq. (D69):

ck
′
ς̃k′ = ςk′ , (D73)

where ck
′

is a y × z-dimensional matrix whose entries are ck
′

j,s in Eq. (D72). Finally, by combining
Eqs. (D67), (D69), (D71), and (D73), we determine that:

ck
′
mk,k′ = nk,k

′
bk. (D74)

To solve for mk,k′ in Eq. (D74), we need to obtain a left inverse for ck
′

[i.e. a matrix (ck
′
)−1 for which (ck

′
)−1ck

′
=

1z], where (ck
′
)−1 is guaranteed to exist (though not necessarily be unique), because of Frobenius reciprocity85,159.

Conversely, because ck
′

in Eq. (D73) is generically non-square and left-invertible, then a right inverse for ck
′

does

not generically also exist. Frobenius reciprocity specifically implies that we can obtain a left inverse for ck
′

through
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induction:

σs,k′ ↑ Gk′ =
⊕
j

dk
′

s,j σ̃j,k′ , (D75)

where each coefficient dk
′

s,j = 0 or 1, independent of whether σ̃j,k′ is a type (a), (b), or (c) small corep [defined in the
text surrounding Eqs. (D30), (D31), and (D32), respectively]. Specifically, because Gk′ = Hk′ ∪ gAHk′ where gA is

an antiunitary symmetry, then regardless of the type of the corep σ̃j,k′ , d
k′

s,j = 1 for one value of j, and dk
′

s,j = 0 for all
other values of j at fixed s (see Appendix D 2). We next re-express Eq. (D75) in the form of an inverse of Eq. (D73):(

ck
′
)−1

ςk′ = ς̃k′ , (D76)

in which (ck
′
)−1 is the left inverse of ck

′
and, crucially:[(

ck
′
)−1

]
sj

=
dk
′

s,j

[Gk′ : Hk′ ]
, (D77)

where [Gk′ : Hk′ ] is the index of the subgroup Hk′ of Gk′ [Eq. (B10)], which is present in Eq. (D77) because induction
(↑), unlike subduction (↓), does not preserve dimensionality (i.e., the character of the identity element E)85,159.

Therefore, independent of the SSG (little group) type of Gk′ , (ck
′
)−1 in Eq. (D76) is necessarily well-defined, and its

entries [Eq. (D77)] are non-negative, though they are not necessarily integers. Specifically, if Gk′ is isomorphic to a
Type-II, III, or IV SSG (Appendices B 2, B 3, and B 4, respectively), then Gk′ is necessarily an index-2 supergroup of

Hk′ , such that [Gk′ : Hk′ ] = 2, implying that the elements [(ck
′
)−1]sj in Eq. (D77) are non-negative multiples of 1/2.

Nevertheless, we have verified that, for all connected little group pairs Gk′ ⊂ Gk in all 1,651 single and double SSGs,
the elements of mk,k′ in the expression:

mk,k′ =
(
ck
′
)−1

nk,k
′
bk, (D78)

formed from Eqs. (D74), (D75), (D76), and (D77) are non-negative integers, as required by subduction [see the text

following Eq. (D66)]. Eq. (D78) implies that the multiplicities bki,l and ck
′

j,s obtained from Corepresentations and

the unitary subgroup compatibility relations nk,k
′

l,s obtained from DCOMPREL determine the compatibility relations

mk,k′

i,j between any two small coreps σ̃i,k and σ̃j,k′ at any two connected points k and k′ in any of the 1,651 SSGs.

To simplify this procedure, we have implemented a new tool – MCOMPREL – through which the values of mk,k′

i,j can
be directly obtained without using additional programs on the BCS. Further specific details of the implementation
of MCOMPREL are available in the documentation provided on the BCS.

We will now briefly present an example demonstrating the derivation of the multiplicities and compatibility relations
at two connected k points for the double-valued small coreps of Type-III double MSG 83.45 P4′/m, which is generated
by:

{C4z × T |000}, {I|000}, {E|100}, {E|001}. (D79)

In this example, we will specifically obtain the small corep compatibility relations [Eq. (D66)] for G = P4′/m at the
connected points:

kΓ = (0, 0, 0), kLD = (0, 0, w). (D80)

First, using Corepresentations, we determine that the little group GΓ is isomorphic to Type-III MSG 83.45 P4′/m,
and has two, two-dimensional, double-valued small coreps σ̃1,Γ and σ̃2,Γ, which are distinguished by their {I|0}
eigenvalues:

χσ̃1,Γ
({I|0}) = 2, χσ̃2,Γ

({I|0}) = −2. (D81)

Next, continuing to employ Corepresentations, we focus on the maximal unitary subgroup HΓ of GΓ. HΓ is isomor-
phic to Type-I MSG 10.42 P2/m, and has four, one-dimensional, double-valued small irreps σ1−4,Γ, which are also
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distinguished by their {I|0} and {C2z|0} = ({C4z × T |0})6 eigenvalues:

χσ1,Γ
({I|0}) = 1, χσ2,Γ

({I|0}) = 1, χσ3,Γ
({I|0}) = −1, χσ4,Γ

({I|0}) = −1,

χσ1,Γ({C2z|0}) = −i, χσ2,Γ({C2z|0}) = i, χσ3,Γ({C2z|0}) = −i, χσ4,Γ({C2z|0}) = i.

(D82)

We next subduce the small coreps σ̃i,Γ of GΓ onto HΓ [Eq. (D68)]:

σ̃1,Γ ↓ HΓ = σ1,Γ ⊕ σ2,Γ, σ̃2,Γ ↓ HΓ = σ3,Γ ⊕ σ4,Γ, (D83)

which may be summarized by introducing the multiplicity matrix [Eq. (D69)]:

bΓ =


1 0

1 0

0 1

0 1

 . (D84)

We then focus on the little group GLD, which is isomorphic to Type-III MSG 75.3 P4′, and is generated by:

{C4z × T |000}, {E|100}, {E|001}. (D85)

GLD has only one, two-dimensional double-valued small corep σ̃1,LD. The maximal unitary subgroup HDT of GDT is
isomorphic to Type-I MSG 3.1 P2, and has two, one-dimensional, double-valued small irreps σ1,LD and σ2,LD, which
are distinguished by their {C2z|0} eigenvalues:

χσ1,LD
({C2z|0}) = −i, χσ2,LD

({C2z|0}) = i. (D86)

Hence, through subduction [Eq. (D72)], we obtain:

σ̃1,LD = σ1,LD ⊕ σ2,LD, (D87)

which may be summarized through the multiplicity matrix [Eq. (D73)]:

cLD =

(
1

1

)
. (D88)

Next, we obtain a left inverse for cLD by establishing that [GLD : HLD] = 2 [see Eq. (B15) and the surrounding text],
and that:

σ1,LD ↑ GLD = σ2,LD ↑ GLD = σ̃1,LD. (D89)

Through Eq. (D77), this implies that: (
cLD

)−1
=

1

2

(
1 1

)
. (D90)

As a final step towards computing the corep compatibility relations mΓ,LD, we use subduction to obtain the unitary
subgroup compatibility relations [Eq. (D70)]:

σ1,Γ ↓ HLD = σ3,Γ ↓ HLD = σ1,LD,

σ2,Γ ↓ HLD = σ4,Γ ↓ HLD = σ2,LD. (D91)

consistent with the output of the earlier DCOMPREL tool. Eq. (D91) may be summarized by the multiplicity matrix
[Eq. (D71)]:

nΓ,LD =

(
1 0 1 0

0 1 0 1

)
.
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FIG. 17: Compatibility relations and graphs for magnetic rod group (MRG) (p422)RG, which is generated by {E|1}, {C4z|0},
and {C2x|0}, and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 89.87 P422 [see Refs. 11,
12,55,128,129 and the text following Eq. (B2)]. Using the MKVEC tool on the BCS for the kx = ky = 0 line in MSG 89.87
P422, we deduce that there are only three momentum stars (Appendix D 1) in MRG (p422)RG: Γ (kz = 0), Z (kz = π),
and LD (kz = ±w). Next, using MCOMPREL, we obtain the compatibility relations for MRG (p422)RG [i.e., the values of

mk,k′

i,j in Eq. (D66)], which, restricting to double-valued (spinful) coreps, are given by Γ̄6 ↓ GLD = Z̄6 ↓ GLD = LD5 ⊕ LD7

and Γ̄7 ↓ GLD = Z̄7 ↓ GLD = LD6 ⊕ LD8. (a) For a set of four spinful Bloch eigenstates at each kz point with a symmetry
data vector [see Refs. 6,82 and the text following Eq. (D65)] given by ς̃Γ = Γ̄6 ⊕ Γ̄6 and ς̃Z = Z̄6 ⊕ Z̄6, a separated pair of
connected graphs can be formed from the coreps at Γ and Z using the TQC graph-theory methodology detailed in Refs. 60,86.
The symmetry data in (a) is therefore compatible with an insulating (band) gap at a filling ν = 4. (b) Conversely, for a set
of four spinful Bloch eigenstates at each kz point with a symmetry data vector given by ς̃Γ = Γ̄6 ⊕ Γ̄6 and ς̃Z = Z̄6 ⊕ Z̄7,
there does not exist a graph for the coreps at Γ and Z that satisfies the compatibility relations. The symmetry data in (b) is
therefore incompatible with a band gap at a filling ν = 4, implying that the Bloch eigenstates at Γ and Z are connected to
other, unoccupied states (bands) not described by the symmetry data. In the nomenclature of Refs. 6,82, the symmetry data
in (b) consequently corresponds to an “enforced semimetal” (ES).

Lastly, we compute the small corep compatibility relations mΓ,LD using Eq. (D78):

mΓ,LD =
(
cLD

)−1
nΓ,LDbΓ =

1

2

(
1 1

)(
1 0 1 0

0 1 0 1

)
1 0

1 0

0 1

0 1

 =
(

1 1
)
,

in agreement with the subduction relations:

σ̃1,Γ ↓ GLD = σ̃2,Γ ↓ GLD = σ̃1,LD, (D92)

as well as the output of the MCOMPREL tool introduced in this work.
One of the key advances of TQC5,57,58,60,85,86 and related works7,13 was to recognize that, for each Type-I MSG and

Type-II SSG, there existed a small number of maximal k vectors [Eq. (D16)] from which the connectivity of Bloch
eigenstates (i.e. energy bands) throughout the entire BZ could be inferred from the symmetry data [ς̃k in Eq. (D65)].
Specifically, given a symmetry data vector {ς̃k}, the set of small coreps at each k point can be re-expressed as the
nodes of a weighted graph whose edges are required to be consistent with the compatibility relations [i.e., the values

of mk,k′

i,j in Eq. (D66)]. If such a graph cannot be constructed without violating the compatibility relations, then the

bands characterized by the symmetry data vector {ς̃k} are necessarily connected to other bands, implying that the
bulk is a form of topological semimetal [an “enforced semimetal” (ES) in the nomenclature of Ref. 6 (see Fig. 17)].
However, if a graph can be constructed, then it may further be separated into disconnected subgraphs. As we will
discuss in Appendix E, by collecting the symmetry data induced from (magnetic) atomic orbitals located at maximal
Wyckoff positions (Appendix C 2) and using the compatibility relations in MCOMPREL to construct graphs (which
may be additionally separable into disconnected subgraphs), we obtain the EBRs of all 1,651 SSGs (specifically the
PEBRs of the Type-II SSGs, and the MEBRs of the Type-I, III, and IV MSGs)5,23,24,57,58,60,85,86,90,96,97. In this
work, we will not provide further specific details of the TQC graph theory implementation60,86; we will instead simply
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FIG. 18: Compatibility relations and graphs for MRG (p21)RG, which is generated by a twofold screw operation (s21 =
{C2z|1/2}), and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 4.7 P21 [see Refs. 11,
12,55,128,129 and the text following Eq. (B2)]. Using the MKVEC tool on the BCS for the kx = kz = 0 line in MSG 4.7
P21, we deduce that there is only one, multiplicity-1 momentum star (Appendix D 1) in MRG (p21)RG, which is labeled LD
and lies at kLD = vẑ. In an example of the representation monodromy discussed in this section, the matrix representatives of
the small irreps of GLD are 4π-periodic in v [Eq. (D96)]. Specializing to three values of v respectively given by v = 0 (Γ1),
0 < v < 2π (Λ), and v = 2π (Γ2), we observe that the compatibility relations [Eq. (D97)] imply that the small irreps Λ1,2

connect to different irreps at the Γ point, depending on whether Γ lies in an odd-numbered BZ (e.g. Γ1 in the first BZ) or
in an even-numbered BZ (e.g. Γ2 in the second BZ). Crucially, the irrep labels (Γi1,2) are the same at the Γ point in each
BZ, consistent with the restriction that physical observables in pristine crystals are 2π-periodic (i.e., any physical observable
in an infinite, periodic system must be the same at any two points k and k′ that differ by a linear combination of reciprocal
lattice vectors Kν)11. Specifically restricting to spinless Bloch eigenstates, this implies that a pair of states (bands) with the
symmetry data vector ς̃Γ1 = Γ1

1 ⊕ Γ1
2 [see Refs. 6,82 and the text following Eq. (D65)], will be connected at an odd number

of k points in each BZ, where one of the crossing points in each BZ (i.e. the intersection of the dashed lines in this figure) is
movable, but unremovable17,18,60,63,74,86,131,137,140,152,160.

note that, for a given SSG, once the BCS tools introduced in this work have been used to obtain the momentum
stars [MKVEC, see Appendix D 1], small coreps [Corepresentations, see Appendix D 2], and compatibility relations
[MCOMPREL, see the text following Eq. (D66) in this section] then the previous graph theory construction from TQC
can be used without further modification. Concurrently with the preparation of this work, the MSG compatibility
relations in MCOMPREL were employed to perform a high-throughput analysis82 of band connectivity and topology
in the ∼ 500 magnetic materials on the BCS with well-characterized MSGs91–94.

As a final note, there are additional subtleties that come into play in determining the compatibility relations
[Eq. (D66)] and constructing connectivity graphs (Refs. 60,86 and Fig. 17) in non-primitive SSGs [defined as SSGs
whose gray Bravais lattices are not primitive11], SSGs without orthogonal lattice vectors [e.g. hexagonal SSGs], and
nonsymmorphic SSGs [defined in the text following Eq. (D22)]. First, in non-primitive SSGs, and in SSGs whose
generating translations [Eq. (B1)] are not orthogonal, the construction of a graph (or failure to construct a graph)
may depend on the compatibility relations along two distinct paths between the same maximal k points. For example,
in Type-I MSG 209.48 F432, given symmetry data at the maximal k points Γ [kΓ = (0, 0, 0), GΓ is isomorphic to
Type-I MSG 209.48 F432] and X [kX = (π, π, 0), GX is isomorphic to Type-I MSG 97.151 I422], the possibility
of constructing a graph depends on the compatibility relations along both of the lines DT [kDT = (0, v, 0), GDT is
isomorphic to Type-I MSG 79.25 I4] and SM [kSM = (u, u, 0), GSM is isomorphic to Type-I MSG 5.13 C2]. This
occurs because, for generic values of v and u, kDT and kSM are not related by any of the symmetries g ∈ F432 –
if kDT and kSM were instead related by symmetries, then kDT and kSM would be arms of the same momentum
star, and the compatibility relations across the BZ would only depend on the compatibility relations along either DT
or SM . We note that, throughout the BCS, k points are labeled in some applications with Greek letters (e.g. Γ),
whereas in other applications, the same k point is labeled with an English abbreviation (e.g. GM). Hence, in this
work, we will in general employ a mixed notation in which Greek letters and English abbreviations are consistently
used throughout each example, where specific labels are chosen to maximize consistency with previous works and
with the output of the BCS tools introduced in this work.
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As mentioned above, an additional subtlety occurs in nonsymmorphic SSGs. Specifically, as discussed in Refs. 17,
18,74,131,137,140,160, because of the monodromy of representations throughout the BZ, the compatibility relations in
a nonsymmorphic SSG can even differ at two k points that are related by a reciprocal lattice vector [Kν in Eq. (D3)].
For example, consider Type-I magnetic rod group (MRG) (p21)RG [Fig. 18], which is generated by the twofold screw
symmetry:

s21
= {C2z|1/2}, (D93)

and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 4.7 P21 [see Refs. 11,12,
55,128,129 and the text following Eq. (B2)]. Using the MKVEC tool on the BCS for the kx = kz = 0 line in MSG
4.7 P21, we deduce that there is only one, multiplicity-1 momentum star (Appendix D 1) in MRG (p21)RG, which is
labeled LD and lies at kLD = vẑ. To see the effect of the representation monodromy on the compatibility relations, we

will calculate the values of mk,k′

i,j in Eq. (D66) at three specific k points along the rod axis corresponding to different

values of v in the same star (LD):

kΓ1 = 0, kΛ = vẑ, kΓ2 = 2πẑ, (D94)

where Γ1,2 are related by a reciprocal lattice vector:

kΓ2 − kΓ1 = 2πẑ. (D95)

For simplicity, in the current demonstration of the role of representation monodromy in the compatibility relations
of MRG (p21)RG, we will restrict to the case of spinless Bloch eigenstates, which transform in single-valued small
coreps. Using the Corepresentations tool (Appendix D 2), we determine that, at generic points in the LD star (k = vẑ),
there are two, one-dimensional small coreps LD1,2, for which the matrix representatives [and characters, see the text
surrounding Eq. (D28) for more information] of the twofold screw symmetry s21

[Eq. (D93)] are given by:

∆LD1
(s21

) = χLD1
(s21

) = eiv/2, ∆LD2
(s21

) = χLD2
(s21

) = −eiv/2. (D96)

Evaluated at the k points in Eq. (D94), the matrix representatives of twofold screw in Eq. (D96) become:

∆Γ1
1
(s21) = 1, ∆Γ1

2
(s21) = −1, ∆Λ1(s21) = eiv/2, ∆Λ2(s21) = −e−iv/2, ∆Γ2

1
(s21) = −1, ∆Γ2

2
(s21) = 1, (D97)

where we have employed a notation for the small irreps at the Γ1,2 points in which Γij denotes the jth small irrep of

the little group GΓi at the k point Γi (i.e., at the Γ point in the ith BZ). Though GΓ1 = GΛ = GΓ2 , we can still
calculate compatibility relations of the form of Eq. (D66):

Γ1
1 ↓ GΛ = Λ1, Γ1

2 ↓ GΛ = Λ2, Γ2
1 ↓ GΛ = Λ2, Γ2

2 ↓ GΛ = Λ1. (D98)

In Eq. (D98), we find that, because of the 4π-periodicity of the matrix representatives in Eq. (D96), the compatibility
relations at kΓ1,2 are different, despite kΓ1,2 differing by a reciprocal lattice vector [Eq. (D95)]. This implies that,
as shown in Fig. 18, a pair of spinless Bloch states at Γ1 with the symmetry data ς̃Γ1 = Γ1

1 ⊕ Γ1
2 [see Refs. 6,

82 and the text following Eq. (D65)] will connect with each other, specifically forming a pair of spinless bands
that cross at an odd number of k points in each BZ, where one of the crossing points in each BZ is movable, but
unremovable17,18,60,63,74,86,131,137,140,152,160.

If additional symmetries are present in an SSG, such as {T |000} in Type-II SSGs (Appendix B 2), then the effects
of representation monodromy on the compatibility relations may be redundant with the constraints imposed by
the additional symmetries. Specifically, in Type-II SSGs, T symmetry relates half of a high-symmetry line to its
time-reversal partner, providing further restrictions on corep connectivity that can be used in lieu of comparing the
compatibility relations at k points that differ by a reciprocal lattice vector (e.g. Γ1,2 in Fig. 18)60. For example, adding
T symmetry to an s21

-symmetric rod [see the text surrounding Eq. (D93)] both doubles the band connectivity and
introduces pinned degeneracies at the high-symmetry points kΓ1 = 0 and kX1 = πẑ, obviating the need to consider
the compatibility relations at kΓ2 . In the case of a rod with T and s21

screw symmetry, the pinned degeneracies
at high-symmetry points specifically occur at odd electronic fillings [e.g. ν = 1, 3], and groups of bands connect in
“hourglass”-like patterns17,18,74,131,160 with odd numbers of moveable-but-unremovable twofold degeneracies in each
half of the BZ at fillings ν = 2+4n, n ∈ {Z+, 0} [e.g. ν = 2]. Consequently, there are only 4 Type-II single and double
SSGs in which monodromy constraints must be considered in addition to those imposed by the symmetries of the
SSG. In Table V, we list the single and double SSGs in which the monodromy of representations provides necessary
constraints on small corep (band) connectivity. The Type-I and Type-II SSGs listed in Table V were previously
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calculated for TQC5,57,58,60,85,86, whereas the Type-III and Type-IV MSGs listed in Table V are a new result that we
have calculated for the present work. Surprisingly, in Table V, we find that there are only 4 Type-IV single and double
MSGs in which representation monodromy must be taken into account to determine corep connectivity, despite the
fact that all Type-IV MSGs are nonsymmorphic [see the text following Eq. (D22)]. This occurs because each Type-IV

SSGs in Which the Monodromy of Representations Provides

Necessary Constraints on Band Connectivity

Type Symbol Number Symbol Number Symbol Number Symbol Number

Type-I P21 4.7 Pc 7.24 Cc 9.37 C2221 20.31

Pmc21 (S) 26.66 Pcc2 (S) 27.78 Pca21 29.99 Pnc2 30.111

Pmn21 31.123 Pna21 33.144 Cmc21 36.172 Ccc2 (S) 37.180

P41 76.7 P42 77.13 P43 78.19 I41 80.29

P42cm 101.179 P42nm 102.187 P4cc (S) 103.195 P4nc (S) 104.203

P42mc 105.211 P42bc 106.219 I41md 109.239 I41cd 110.245

P31 144.4 P32 145.7 P3112 151.29 P3212 153.37

P3c1 158.57 R3c 161.69 P61 169.113 P65 170.117

P62 171.121 P64 172.125 P63 173.129 P6cc (S) 184.191

P63cm 185.197 P63mc 186.203

Type-II P311′ 144.5 P321′ 145.8 P31121′ 151.30 P32121′ 153.38

Type-III P21/m
′ (S) 11.53 P2′/c (S) 13.67 P2′1/c 14.77 P21/c

′ 14.78

C2′/c (S) 15.87 P2′2′21 17.9 P212′12′ 18.19 P2′12′121 19.27

C2′2′21 20.33 Pm′a2′ 28.89 Pc′a2′1 29.101 Pb′a2′ 32.137

Pn′a2′1 33.146 Cm′c′21 36.176 Am′a2′ 40.205 Ab′a2′ 41.213

Pccm′ (S) 49.268 Pb′an (S) 50.279 Pm′ma (S) 51.291 Pn′na (S) 52.307

Pnn′a 52.308 Pm′na 53.323 Pmna′ 53.325 Pc′ca 54.339

Pcca′ (S) 54.341 Pb′am (S) 55.355 Pc′cn 56.367 Pccn′ (S) 56.368

Pbc′m (S) 57.380 Pbcm′ 57.381 Pn′nm 58.395 Pm′mn (S) 59.407

Pb′cn 60.419 Pbc′n 60.420 Pbcn′ 60.421 Pb′ca 61.435

Pn′ma (S) 62.443 Pnm′a (S) 62.444 Pnma′ 62.445 Cmcm′ (S) 63.461

Cm′c′m′ (S) 63.465 Cmca′ 64.473 Cm′c′a′ (D) 64.477 Cccm′ (S) 66.494

Ccca′ (S) 68.514 P4′1 76.9 P4′3 78.21 P42/m
′ 84.54

P42/n
′ 86.70 I41/a

′ 88.84 P412′2′ 91.106 P4′12′2 91.107

P412′12′ 92.114 P422′2′ 93.122 P422′12′ 94.130 P432′2′ 95.138

P4′32′2 95.139 P432′12′ 96.146 I412′2′ 98.160 P 4̄′2′c (S) 112.261

P 4̄′2′1c (S) 114.277 P 4̄′c2′ (S) 116.294 P4/m′cc (S) 124.353 P4/n′nc (S) 126.377

P4/m′nc (S) 128.401 P4/n′cc (S) 130.425 P42/m
′mc 131.437 P42/m

′cm 132.449

P42/n
′bc 133.461 P42/n

′nm 134.473 P42/m
′bc 135.485 P42/m

′nm 136.497

P42/n
′mc 137.509 P42/n

′cm 138.521 I41/a
′md 141.553 I41/a

′cd 142.563

P3112′ 151.31 P312′1 152.35 P3212′ 153.39 P322′1 154.43

P 3̄′c1 (S) 165.93 R3̄′c (S) 167.105 P63/m
′ 176.146 P612′2′ 178.159

P652′2′ 179.165 P622′2′ 180.171 P642′2′ 181.177 P632′2′ 182.183

P 6̄′c2′ 188.218 P 6̄′2′c 190.229 P6/m′cc (S) 192.245 P63/m
′cm 193.255

P63/m
′mc 194.265

Type-IV Pc31 144.6 Pc32 145.9 Pc3112 151.32 Pc3212 153.40

TABLE V: List of SSGs for which the monodromy of representations imposes additional restrictions on small corep (band)
connectivity beyond the constraints imposed by the symmetries of the SSG. The letters (S) and (D) after the symbol of an
SSG respectively indicate that the representation monodromy only provides necessary constraints on the connectivity of single-
and double-valued coreps of that SSG. In all of the other SSGs listed in this table, the representation monodromy provides
necessary constraints on the connectivity of both single- and double-valued small coreps.
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MSG [Eq. (B19)] necessarily contains a symmetry of the form:

θ = {T |t0}, (D99)

which acts the same as T symmetry ({T |000}) on points in k space [Eq. (D8)]:

θk = T k = −k. (D100)

Conversely, in Type-I MSGs, which only contain unitary symmetries (Appendix B 1), and in Type-III MSGs, which
only contain unitary symmetries and antiunitary symmetries of the form {h×T |v} in which h is a unitary symmetry
h 6= E (Appendix B 3), we find that representation monodromy frequently provides necessary constraints on corep
connectivity. As shown in Table V, we specifically find that there are 38 Type-I single MSGs, 32 Type-I double MSGs,
92 Type-III single MSGs, and 65 Type-III double MSGs in which the connectivity of small coreps can only be fully
determined by considering the effects of representation monodromy on the compatibility relations.

Appendix E: Elementary Band Corepresentations of the MSGs (MEBRs)

In the sections below, we will adapt the procedure previously employed in Refs. 5,60 to obtain the magnetic
elementary band corepresentations (MEBRs) of the Type-III and Type-IV single and double MSGs. Along with the
Type-I MEBRs of the Type-I MSGs and the physical EBRs (PEBRs) of the Type-II SSGs previously tabulated in
Refs. 5,60, the MEBRs of the Type-III and IV MSGs form the foundation of MTQC. More generally, in this work,
we will consider PEBRs and Type-III and Type-IV MEBRs to both be elementary band corepresentations (EBRs),
because they derive from Type-I MEBRs of Type-I (unitary) MSGs that are related by the action of antiunitary
symmetries (Appendix D 2). We note that, previously in TQC5,57,58,60,85,86, the Type-I MEBRs of the Type-I MSGs
were termed EBRs, to draw contrast with the PEBRs of the Type-II SSGs. However, in this work, we will revise the
previous terminology to accomodate the elementary band corepresentations of the Type-III and IV MSGs – in this
work, all elementary band (co)representations are in general termed EBRs, the elementary band corepresentations of
Type-II SSGs remain termed PEBRs, and the elementary band (co)representations of Type-I, III, and IV MSGs are
respectively termed Type-I, III, and IV MEBRs.

Below, we will show that the EBRs provide a basis for all Wannierizable5,58,161,162, mean-field crystalline insulators,
with or without magnetism. First in Appendix E 1, we will introduce the concept of (magnetic) atomic orbitals,
which we will then relate to maximally (exponentially) localized, symmetric Wannier functions161,162. Importantly,
in Appendix E 1, we will establish a rigorous correspondence between (magnetic) atomic orbitals and the (co)reps
of Shubnikov point groups (SPGs)12,24,61,62,87–94 (as well as site-symmetry groups, see Appendix C 1). Next, in
Appendix E 2, we will adapt the central machinery of band induction and small corep subduction from TQC to MTQC.
Specifically, in Appendix E 2, we will use the magnetic atomic orbitals introduced in Appendix E 1 to induce band
corepresentations, which we will then Fourier transform and subduce onto little groups to obtain dependencies between
small coreps in momentum space (Appendix D 2) and site-symmetry group coreps in position space (Appendix E 1).
In Appendix E 3, we will then enumerate the MEBRs by inducing band coreps from maximal Wyckoff positions and
then excluding the exceptional cases (Refs. 60,86,137–140 and Appendix E 3 a) of band coreps induced from maximal
Wyckoff positions that are non-elementary (i.e. composite). Finally, in Appendix E 3 b, we will provide detailed
statistics for the EBRs of all 1,651 SSGs, as well as introduce and detail the MBANDREP tool on the BCS, which
we have implemented for this work to access both the EBRs and the composite band coreps induced from each
Wyckoff position in each SSG. We note that prior to this work, Evarestov Smirnov, and Egorov in Ref. 24 introduced
a method for obtaining the MEBRs of the MSGs and computed representative examples, but did not perform a
large-scale tabulation of MEBRs or establish a connection to magnetic band topology. As will be detailed in this
section, in this work, we have employed a method equivalent to the procedure in Ref. 24 to perform the first complete
tabulation of the single- and double-valued MEBRs of the 1,421 MSGs. Furthermore, as detailed in the main text,
in this work, we have used the MEBRs to construct the first complete position-space theory of mean-field magnetic
band topology – MTQC.

1. Magnetic Atomic Orbitals and the CorepresentationsPG Tool

One of the fundamental advances of TQC was to introduce a predictive theory of bulk topology that derived from
the position-space chemistry of a material or model5, instead of momentum-space quantities such as (nested) Wilson
loops and Berry phases17–20,33,55,58,59,160,163–171. Specifically, in TQC, trivial bands in momentum-space are induced

http://www.cryst.ehu.es/cryst/mbandrep


52

from the position-space (co)reps of the site-symmetry groups of the Wyckoff positions in a pristine crystal that is
invariant under a particular SSG. As previously discussed in Appendix C 1, site-symmetry groups in SSGs, magnetic
or otherwise, are necessarily isomorphic to Shubnikov point groups (SPGs).

In the Type-II (nonmagnetic) SGs first analyzed with TQC, the authors of Ref. 5 exploited a correspondence between
the coreps of the site-symmetry groups in solid-state materials and the eigenstates of the Schrödinger Hamiltonian for
a hydrogen atom (hydrogenic ion). Specifically, because the Schrödinger Hamiltonian for an ion with a single electron
is spherically symmetric (isotropic) and nonmagnetic, then the Hamiltonian is invariant under the action of any point
group, crystallographic or otherwise89. In the language of group theory, the Schrödinger Hamiltonian for a hydrogenic
ion is invariant under the action of the symmetries of the nonmagnetic (Type-II) group Pin−(3) ∪ T × Pin−(3) [see
Refs. 152,172 for a detailed discussion of the relationship between Pin−(3), SO(3), and SU(2) in condensed matter
physics]. For the purposes of this work, it is sufficient to note that Pin−(3) ∪ T × Pin−(3) is composed of spinful
rotations [e.g. C2z, for which (C2z)

2 = −1], rotoinversions of the form of the product of spinful rotations and
spinless inversion I [e.g. mz = C2z×I, for which (mz)

2 = −1, (I)2 = +1], and antiunitary elements of the form of T
multiplied by rotation or rotoinversion [e.g. C2z×T , for which (T )2 = −1, such that (C2z×T )2 = +1]. Consequently,
the infinite group Pin−(3) ∪ T × Pin−(3) is a supergroup of any finite single or double 3D point group89,173 [see the
text following Eq. (C5)]. Returning to the hydrogenic ion, the eigenstates of the Schrödinger Hamiltonian are given
by ψσ(r, θ, φ) = R(r)Y (θ, φ)Sσ1/2, where Sσ1/2 is a two-level, fermionic spinor for which σ =↑, ↓. In ψσ, the angular

part Y (θ, φ) can be expressed in either the basis of spherical or cubic harmonics173–175; therefore, in this section, we
will denote Y (θ, φ) with suppressed angular (l, ml) or orbital (e.g. s, dxy) indices whenever Y (θ, φ) appears in a
basis-independent expression or statement. Across the set of wavefunctions {ψσ(r, θ, φ)}, the infinite set of angular
and spin parts {Y (θ, φ)}⊗{Sσ1/2} spans both the infinite set of basis functions of Pin−(3)∪T ×Pin−(3), as well as the

infinite set of basis functions of Pin−(3), the maximal unitary (Type-I) magnetic subgroup of Pin−(3)∪T ×Pin−(3).
We further note that the hydrogenic ion wavefunctions can also be expressed in a basis of coupled spinorbitals
ψσ(r, θ, φ) = R(r)Jσ(θ, φ). However, the set of all spinful basis functions (spin-orbit-coupled angular parts) {Jσ(θ, φ)}
can be generated using only spinless angular parts and two-level (spin-1/2) spinors,{

Jσ(θ, φ)

}
=

{
Y (θ, φ)

}
⊗
{

Sσ1/2

}
, (E1)

in which appropriately chosen Clebsch-Gordan coefficients (c.f. the tables in Ref. 89) are required to relate J
j,mj
l (θ, φ)

and Y mll (θ, φ)Sσ1/2 for specific values of j, mj , ml, and σ. Therefore, for the purposes of this work, we are free to sim-

plify notation by restricting consideration to hydrogenic ion wavefunctions of the form ψσ(r, θ, φ) = R(r)Y (θ, φ)Sσ1/2.

Hence, we may subduce the infinitely many irreducible coreps of Pin−(3)∪T ×Pin−(3) onto any finite SPG Gq [which
can either be a magnetic point group (MPG) or a nonmagnetic SPG, see the text following Eq. (C5)], yielding the
established result89,173–175 that the finite set of irreducible (co)reps of Gq are spanned by the [infinitely overcomplete]

set of irreducible coreps of Pin−(3) ∪ T × Pin−(3) subduced onto Gq. Specifically, there always exists at least one

[and in fact, are infinitely many] corep[s] of Pin−(3) ∪ T × Pin−(3) that subduce[s] to each irreducible (co)rep of
Gq. We therefore conclude that the set {Y (θ, φ)} ⊗ {Sσ1/2} necessarily spans the basis functions of the single- and

double-valued (co)reps of any Gq, because the (co)reps of a particular Gq are formed from the irreps of its maximal

unitary subgroup Hq, which is a subgroup of Pin−(3).

This establishes a correspondence between appropriately chosen linear combinations of the basis functions in
{Y (θ, φ)} ⊗ {Sσ1/2} and the (co)reps of Gq. For the nonmagnetic (Type-II) SPGs (site-symmetry groups) studied

in TQC5, the correspondence is intuitive. Specifically, given a Type-II SPG Gq and a hydrogenic ion wavefunction
ψσ(r, θ, φ) = R(r)Y (θ, φ)Sσ1/2 whose angular part Y (θ, φ) is expressed in the basis of atomic orbitals in which it is

real-valued (i.e. the basis of cubic harmonics173–175), one can first determine if ψσ(r, θ, φ) is an eigenstate of the
unitary symmetries (i.e. proper rotations and rotoinversions) h ∈ Hq, where Hq is the maximal unitary subgroup of
Gq, and where h includes SU(2) spin rotations if Hq is a single group. First, if ψσ(r, θ, φ) is an eigenstate of each
h ∈ Hq, then ψσ(r, θ, φ) can be classified by the phase λh that it acquires under the action of each h ∈ Hq [i.e.,
by the eigenvalue λh of h: hψσ(r, θ, φ) = λhψ

σ(r, θ, φ)]. Conversely, if ψσ(r, θ, φ) is not an eigenstate of any of the

unitary operations h ∈ Hq, then one can instead form an orthonormal set of symmetrized wavefunctions ψ̃σ(r, θ, φ)
from linear combinations of the wavefunctions in the set {hψσ(r, θ, φ)h−1} taken over all h ∈ Hq. Using the values

of λh for each symmetry h ∈ Hq acting on ψσ(r, θ, φ) [or on the orthonormal set of symmetrized ψ̃σ(r, θ, φ) formed
from {hψσ(r, θ, φ)h−1}], each atomic [ionic] orbital [or symmetric set of atomic orbitals] can then be uniquely labeled
by a (co)rep of Gq

176,177. Specifically, for each atomic orbital or symmetric set of orbitals, there is only one (co)rep ρ̃
of Gq whose characters [see the text following Eq. (D28)] satisfy χρ̃(h) =

∑
i λh,i for each h ∈ Hq and wavefunction

ψ̃σi (r, θ, φ) in the symmetrized, orthonormal basis of {hψσ(r, θ, φ)h−1}. Following the terminology employed in TQC5,
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we refer to the correspondence between [a set of] atomic orbital[s] and a (co)rep ρ̃ by stating that the atomic orbital
[or set of orbitals] “transforms in” the (co)rep ρ̃.

If T symmetry is relaxed, however, then Gq necessarily becomes isomorphic to a Type-I or Type-III magnetic point
group [MPG, see the text following Eq. (C5)]. In the case in which Gq is isomorphic to an MPG, the correspondence
between (co)reps and atomic orbitals is more opaque. Specifically, the basis functions of the (co)reps of the MPGs are
still spanned by the set {Y (θ, φ)}⊗{Sσ1/2}, which occurs because each MPG is a subgroup of a Type-II SPG [see the text

text following Eq. (C5)], which is itself a subgroup of Pin−(3)∪T ×Pin−(3). However, as we will show in this section,
for some MPG (co)reps, the corresponding ψσ(r, θ, φ) is only an eigenstate of the unitary symmetries h in the MPG if
the angular part Y (θ, φ) is expressed in the complex basis of spherical harmonics173–175. Therefore, for this work, we
introduce the term magnetic atomic orbital to reference the basis functions that transform in the lowest-dimensional
[i.e. in one-dimensional] MPG (co)reps89. As we will show in the examples below (Appendices E 1 a, E 1 b, and E 1 c),
the angular parts Y (θ, φ) of some magnetic atomic orbitals can be expressed in the real basis of the familiar cubic
harmonics (i.e. atomic orbitals, such as s and dxy), whereas the angular parts of other magnetic orbitals necessarily
take the form of T -breaking linear combinations of cubic harmonics (i.e. spherical harmonics, such as px ± ipy
magnetic atomic orbitals).

Because the 3D magnetic atomic orbitals are relatively esoteric, especially when considering the combined effects
of SOC and magnetism, then we will leave the complete tabulation of the magnetic atomic orbitals that transform in
each (co)rep of each SPG for future works. However, we will still in this work detail representative examples of MPG
(co)reps and their corresponding magnetic atomic orbitals. In Appendices E 1 a, E 1 b, and E 1 c, we will respectively
determine the lowest-angular-momentum, spin-degenerate pair of magnetic atomic orbitals that transforms in each
single-valued (co)rep of Type-I MPG 9.1.29 4, Type-III MPG 9.3.31 4′, and Type-II SPG 9.2.30 41′ [as was previously
done in Appendix C 1, we will continue to label SPGs employing the notation of the MPOINT tool on the BCS91–94

in which an SPG is labeled by its number, followed by its symbol].
Lastly, we note that double-valued MPG (co)reps in general correspond to less intuitive tensor products of fermionic

spinors and real-space wavefunctions11,89 [i.e., linear combinations of the basis functions in {Y (θ, φ)} ⊗ {Sσ1/2}]. For

example, a (dxy + idx2−y2)⊗ S↑z magnetic atomic spinorbital is less familiar than a nonmagnetic spinless dxy orbital.
Conversely, single-valued MPG (co)reps correspond to spin-degenerate linear combinations of the basis functions
in {Y (θ, φ)} ⊗ 1σ, where 1σ is the 2 × 2 identity in the space of Sσ1/2. Hence, for simplicity, in the examples

in Appendices E 1 a, E 1 b, and E 1 c, we will restrict focus to the single-valued (co)reps of single SPGs and their
corresponding [spin-degenerate pairs of] magnetic atomic orbitals.

Throughout this section, we will obtain the (co)reps of SPGs through character tables reproduced from the Corep-
resentationsPG tool on the BCS, which we have implemented for this work. For each of the 122 crystallo-
graphic SPGs, CorepresentationsPG outputs the single- and double-valued (co)reps, character tables, and symme-
try matrix representatives. CorepresentationsPG subsumes the earlier REPRESENTATIONS DPG tool (https:
//www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=dbg), which was imple-
mented for TQC5,85 to output the irreps and character tables of the 32 single and double Type-I MPGs. In Fig. 19,
we show the output of CorepresentationsPG for Type-III MPG 5.3.14 2′/m.

http://www.cryst.ehu.es/cryst/mpoint.html
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=dbg
https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=dbg
https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=dbg
http://www.cryst.ehu.es/cryst/corepresentationsPG
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Irreducible	corepresentations	of	the	Magnetic	Point	Group	2'/m	(N.	5.3.14)

Table	of	characters	of	the	unitary	symmetry	operations

(1) (2) (3) C1 C2 C3 C4
GM1 A' GM1 1 1 1 1
GM2 A'' GM2 1 -1 1 -1

GM4GM3 2E1E GM3GM4 2 0 -2 0

Lists	of	unitary	symmetry	operations	in	the	conjugacy	classes

C1:	1
C2:	m010

C3:	d1
C4:	dm010

Matrices of the representations of the group

The antiunitary operations are written in red color

N Matrix presentation
Seitz
symbol GM1 GM2 GM3GM4

1

 1  0  0

 0  1  0

 0  0  1

 1  0

 0  1
1 1 1

 1  0

 0  1

2

  1   0   0

  0  -1   0

  0   0   1

  0  -1

  1   0
m010 1 -1

 -i   0

  0   i

7

-1 0 0

0 1 0

0 0 -1

0 1

-1 0
d2'010 1 -1

  0  -i

 -i   0

8

-1 0 0

0 -1 0

0 0 -1

-1 0

0 -1
d1' 1 1

  0   1

 -1   0

FIG. 19: The output of the CorepresentationsPG tool on the BCS for Type-III MPG 5.3.14 2′/m. For each of the 122
crystallographic SPGs (see Appendix C 1 and Refs. 12,24,61,62,87–94), CorepresentationsPG outputs the irreducible (co)reps
of the SPG, the unitary symmetry operations in the SPG, and the matrix representatives of both the unitary and antiunitary
symmetry elements in the SPG. For each antiunitary symmetry gA,i in the SPG, entries in the table of matrix representatives
are labeled in red text, and the matrices listed for each (co)rep ρ̃ indicate the unitary part U of the antiunitary matrix
representative ∆ρ̃(gA,i) = UK, where K is complex conjugation. We note that the bottom table only contains a representative
subset of the output of CorepresentationsPG for Type-III MPG 5.3.14 2′/m, in order to preserve the legibility of the text in
this figure.

http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
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a. Irreps and Magnetic Atomic Orbitals in Type-I Single MPG 9.1.29 4

Character Table for

Type-I Single MPG 9.1.29 4

Irrep E C2z C4z C−1
4z

A 1 1 1 1

B 1 1 −1 −1
2E 1 −1 i −i
1E 1 −1 −i i

TABLE VI: Single-valued irreps and characters for Type-I single MPG 9.1.29 4, reproduced from CorepresentationsPG on the
BCS. For each irrep ρ and unitary symmetry element h, elements in the table correspond to the character χρ(h) = Tr[∆ρ(h)],
where ∆ρ(h) is the matrix representative of h in the irrep ρ [see the text following Eq. (D22)]. Following the nomenclature
established in Appendix D 2, we use the symbol E for the identity element. Because χρ[(C2z)

2] = χρ[(C4z)
4] = χρ(E) for all

of the single-valued irreps ρ of Type-I single MPG 9.1.29 4, then the irreps in this table can only correspond to 0D spinless
(spin-degenerate) electronic (bosonic) states.

We begin by examining the magnetic atomic orbitals that transform in irreps of Type-I single MPG 9.1.29 4. In
Table VI, we reproduce the characters for single MPG 9.1.29 4, obtained from CorepresentationsPG on the BCS. In
Table VI, and for all of the SPGs discussed in this work, we have labeled (co)reps in the notation of Ref. 11, which
is based on the notation employed by Mulliken in Ref. 178. For each irrep ρ and unitary symmetry element h in
Table VI, we list the character χρ(h) = Tr[∆ρ(h)], where ∆ρ(h) is the matrix representative of h in the irrep ρ [see
the text following Eq. (D22)].

𝑠 𝑑𝑥𝑦 𝑝𝑥 + 𝑖𝑝𝑦 𝑝𝑥 − 𝑖𝑝𝑦

+
+−

−+
− +

+𝑖

−𝑖

− +

−𝑖

+𝑖

FIG. 20: The lowest-angular-momentum spinless (i.e. spin-degenerate pairs of) magnetic atomic orbitals that transform
in176,177 single-valued irreps of Type-I single MPG 9.1.29 4 (Table VI). From left to right, the orbitals specifically transform
in the A, B, 2E, and 1E single-valued irreps of MPG 9.1.29 4. While the spinless s (A) and dxy (B) orbitals are the same as
their familiar nonmagnetic counterparts, the spinless px ± ipy (2,1E) orbitals correspond to T -breaking linear combinations of
nonmagnetic, spinless px,y orbitals. Most precisely, the angular parts of the wavefunctions of the spinless s and dxy orbitals
are respectively given by the s and dxy cubic harmonics, whereas the angular parts of the spinless px ± ipy orbitals are given
by the l = 1, ml = ±1 spherical harmonics173–175.

For each irrep of single-valued Type-I MPG 9.1.29 4 in Table VI, we obtain the corresponding lowest-angular-
momentum spinless magnetic atomic orbital through the following procedure. First, because we are characteriz-
ing electronic states labeled by single-valued irreps, we restrict consideration to spin-degenerate pairs of orbitals
{ψ↑(r, θ, φ),ψ↓(r, θ, φ)}, which we label by the spinless angular part of each orbital in the pair Y (θ, φ). Next, we
search for the circular harmonics [Y (θ, φ) = Y mll (θ, φ)] or cubic harmonics [Y (θ, φ) ∝ Y mll ± Y −mll ]173–175 that are
eigenstates of all of the unitary symmetries h ∈ Hq while carrying the lowest possible values of l and |ml|. This
procedure returns four (spin-degenerate pairs of) orbitals – one for each single-valued irrep in Table VI – which we
depict in Fig. 20. While the (spin-degenerate pairs) of s (A) and dxy (B) orbitals shown in Fig. 20 are the same as
their familiar nonmagnetic counterparts, the px ± ipy (2,1E) orbitals in Fig. 20 correspond to T -breaking linear com-
binations of nonmagnetic px,y orbitals. Specifically, the angular parts of the wavefunctions of the s and dxy orbitals
are respectively given by the s and dxy cubic harmonics, whereas the angular parts of the px ± ipy orbitals are given
by the l = 1, ml = ±1 spherical harmonics173–175.

http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG


56

b. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4′

Next, in this section, we will determine the lowest-angular-momentum magnetic atomic orbitals that transform in
single-valued coreps of Type-III single MPG 9.3.31 4′. As discussed in the text surrounding Eq. (C15), a Type-III
group Gq can be re-expressed as a coset decomposition with respect to its maximal index-2 unitary subgroup Hq.
In the case of Gq = 4′, the maximal unitary subgroup Hq is isomorphic to Type-I MPG 3.1.6 2, such that the coset
decomposition is given by:

Gq = 4′ = 2 ∪ T (41′ \ 2) = (E)2 ∪ (C4z × T )2, (E2)

where 2 and 41′ respectively refer to Type-I MPG 3.1.6 2 and Type-II SPG 9.2.30 41′. Eq. (E2) implies that, unlike the
previous example of Type-I MPG 3.1.6 2 in Appendix E 1 a, Type-III MPG 9.3.31 4′ contains antiunitary symmetries,
which comprise the coset (C4z × T )2.

Character Table for

Type-I Single

MPG 3.1.6 2

Irrep E C2z

A 1 1

B 1 −1

TABLE VII: Single-valued irreps and characters for Type-I single MPG 3.1.6 2, reproduced from CorepresentationsPG on the
BCS. For each irrep ρ and unitary symmetry in the MPG h ∈ Hq [Eq. (E3)], the table lists the character χρ(h) = Tr[∆ρ(h)],
where ∆ρ(h) is the matrix representative of h in ρ [see the text following Eq. (D22)]. Following the nomenclature established
in Appendix D 2, we use the symbol E for the identity element. Additionally, as previously emphasized in Table VI, we again
note that, because χρ[(C2z)

2] = χρ(E) for all of the single-valued ρ in this table, then the irreps ρ can only correspond to
spinless (spin-degenerate) electronic (bosonic) states.

To determine the single-valued coreps of Type-III single MPG 9.3.31 4′, we begin by examining the single-valued
irreps of the maximal unitary subgroup:

Hq = 2 =

{
E, C2z

}
, (E3)

where 2 refers to Type-I single MPG 3.1.6 2. In Table VII, we reproduce the characters for Type-I single MPG 3.1.6 2
from CorepresentationsPG on the BCS. To obtain the single-valued coreps of Gq (Type-III MPG 9.3.31 4′), we use the
characters in Table VII to calculate the indicator Jρ, adapted from the modified Frobenius-Schur indicator11,148–150

Jσ for little group small coreps discussed in the text surrounding Eqs. (D33) and (D34):

Jρ =
∑
i

χρ(g
2
A,i), (E4)

where the sum in Eq. (E4) runs over the two antiunitary elements gA,i in the coset (C4z × T )2 in Eq. (E2). For the
specific case of Type-III MPG 9.3.31 4′, Eqs. (E2), (E3), and (E4) imply that:

Jρ = χρ(C
2
4z × T 2) + χρ(C

6
4z × T 2)

= 2χρ(C2z), (E5)

where we have exploited that11 C4zC2z = C3
4z, and that T 2 = (C2z)

2 = (C4z)
4 = E for single groups. Inserting

ρ = A,B and the characters χA,B(h) from Table VII into Eq. (E5), we determine that:

JA = |Hq|, JB = −|Hq|, (E6)

where |Hq| = 2 is the number of elements [see the text following Eq. (B8)] in Type-I single MPG 3.1.6 2 [Eq. (E3)].
Following the discussion surrounding Eqs. (D30), (D31), and (D34), Eqs. (E5) and (E6) imply that, in Type-III single
MPG 9.3.31 4′, ρ = A forms an undoubled, one-dimensional corep of type (a), whereas ρ = B forms a doubled,

http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG
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two-dimensional corep of type (b). The single-valued coreps of Type-III single MPG 9.3.31 4′ are therefore given by:

ρ̃ = A, BB. (E7)

In Table VIII, we reproduce the characters for Type-III single MPG 9.3.31 4′, obtained from CorepresentationsPG on
the BCS. To obtain the lowest-angular-momentum (spin-degenerate pairs of) magnetic atomic orbitals that transform
in each corep in Table VIII, we follow the procedure previously described at the beginning of this section (Appendix E 1)
and in the previous section (Appendix E 1 a). For the corep A in Table VIII, we find that the corresponding lowest-
angular-momentum atomic orbital is a spinless (i.e. spin-degenerate pair of spinful) s orbital(s) (Fig. 20). Conversely,
there is no individual spinless magnetic atomic orbital that transforms in the corep BB in Table VIII, because BB
is two-dimensional [i.e., because χBB(E) = 2]. Instead, we find that the smallest set of magnetic atomic orbitals
with the lowest angular momenta that transform in BB are a pair of spinless p orbitals whose lobes are oriented at
C4z ×T -related angles in the xy-plane. An example of a pair of orbitals that transform in BB is one spinless px plus
one spinless py orbital, which span the same two-dimensional space (four-dimensional, including spin) as one spinless
px+ ipy orbital plus one spinless px− ipy orbital (Fig. 20). Intuitively, this can be understood by recognizing that the
lowest-angular-momentum magnetic atomic orbital that transforms in the irrep A (B) of Type-I single MPG 3.1.6 2
is a spinless s (px± ipy) orbital. Under the action of C4z×T in Eq. (E2), an s orbital is transformed to itself, whereas
a px± ipy orbital is transformed into a (py∓ ipx)∗ = i(px∓ ipy) ∝ px∓ ipy orbital. Hence, A ↑ Gq = A [i.e., the irrep
A of Hq induces a type (a) corep A in Gq, see the text surrounding Eq. (D30)], whereas B ↑ Gq = BB [i.e., the irrep
B of Hq induces a type (b) corep BB in Gq, see the text surrounding Eq. (D31)].

c. Coreps and Atomic Orbitals in Type-II Single SPG 9.2.30 41′

As a final example, in this section, we will determine the lowest-angular-momentum, nonmagnetic atomic orbitals
that transform in single-valued coreps of Type-II single SPG 9.2.30 41′, the T -symmetric supergroup of the MPGs
previously analyzed in Appendices E 1 a and E 1 b (Type-I MPG 9.1.29 4 and Type-III MPG 9.3.31 4′, respectively).
Like a Type-II SSG [Eq. (B3)], a Type-II MPG Gq can be re-expressed as a coset decomposition with respect to its
maximal index-2 unitary subgroup Hq. In the case of Gq = 41′, the decomposition is:

41′ = 4 ∪ (T )4, (E8)

where Hq = 4 refers to Type-I single MPG 9.1.29 4, which we previously analyzed in Appendix E 1 a. Hq = 4 contains
four elements (Table VI):

Hq =

{
E, C2z, C4z, C

−1
4z

}
. (E9)

Character Table for

Type-III Single

MPG 9.3.31 4′

Corep E C2z

A 1 1

BB 2 −2

TABLE VIII: Single-valued coreps and characters for Type-III single MPG 9.3.31 4′, reproduced from CorepresentationsPG on
the BCS. For each corep ρ̃ and unitary symmetry element h ∈ Hq, where Hq is the maximal unitary subgroup of MPG 9.3.31 4′

[Table VII and Eqs. (E2) and (E3)], the table lists the character χρ̃(h) = Tr[∆ρ̃(h)], where ∆ρ̃(h) is the matrix representative
of h in the corep ρ̃ [see the text following Eq. (D22)]. Following the nomenclature established in Appendix D 2, we use the
symbol E for the identity element. Because the matrix representatives of the antiunitary symmetries in Type-III MPG 9.3.31
4′ [i.e., the antiunitary elements of the coset (C4z × T )2 in Eq. (E2)] are also antiunitary, then they do not have well-defined
traces, and do not appear in the character table. In Eqs. (E5), (E6), (E7), we show that Type-III single MPG 9.3.31 4′ has two
single-valued coreps: there is one, one-dimensional, single-valued corep A, which is equivalent [defined in the text surrounding
Eq. (D30)] to an irrep (A) of Hq (Table VII), and there is one, two-dimensional, single-valued corep BB ≡ B ⊕ B, which is
equivalent [defined in the text surrounding Eq. (D31)] to two copies of the same irrep (B) of Hq.

http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/corepresentationsPG


58

Using the character table for Type-I MPG 9.1.29 4 (Table VI), we previously determined in Appendix E 1 a that the
four single-valued irreps of Hq = 4 given by ρ = A, B, 2E, 1E respectively correspond to spinless (i.e. spin-degenerate
pairs of) s, dxy, px + ipy, and px − ipy magnetic atomic orbitals.

Character Table for

Type-II Single SPG 9.2.30 41′

Corep E C2z C4z C−1
4z

A 1 1 1 1

B 1 1 −1 −1
1E 2E 2 −2 0 0

TABLE IX: Single-valued coreps and characters for Type-II single SPG 9.2.30 41′, reproduced from CorepresentationsPG on the
BCS. For each corep ρ̃ and unitary symmetry element h ∈ Hq, where Hq is the maximal unitary subgroup of SPG 9.2.30 (41′)
[Table VI and Eqs. (E8) and (E9)], the table lists the character χρ̃(h) = Tr[∆ρ̃(h)], where ∆ρ̃(h) is the matrix representative of
h in the corep ρ̃ [see the text following Eq. (D22)]. Following the nomenclature established in Appendix D 2, we use the symbol
E for the identity element. Because the matrix representatives of the antiunitary symmetries in Type-II SPG 9.2.30 41′ [i.e.,
the antiunitary elements of the coset (T )4 in Eq. (E8)] are also antiunitary, then they do not have well-defined traces, and do
not appear in the character table. In Eqs. (E11), (E12), and (E13), we show that Type-II single MPG 9.2.30 41′ has three
single-valued coreps: there are two, one-dimensional, single-valued coreps A and B, which are equivalent [defined in the text
surrounding Eq. (D30)] to irreps (A and B, respectively) of Hq (Table VI), and there is one, two-dimensional, single-valued
corep 1E 2E ≡ 1E ⊕ 2E, which is formed [defined in the text surrounding Eq. (D32)] from pairing two different irreps (1E
and 2E) of Hq. We note that, because χρ̃[(C2z)

2] = χρ̃[(C4z)
4] = χρ̃(E) for all of the single-valued ρ̃ in this table, then the

coreps ρ̃ can only correspond to 0D spinless (spin-degenerate) electronic (bosonic) states.

To determine the single-valued coreps ρ̃ of Type-II single SPG 9.2.30 41′, we again calculate the indicator Jρ
discussed in the text surrounding Eq. (E4):

Jρ =
∑
i

χρ(g
2
A,i), (E10)

where the sum in Eq. (E10) runs over the four antiunitary elements gA,i in the coset (T )4 in Eq. (E8). In the specific
case of Type-II single SPG 9.2.30 41′, Eqs. (E8), (E9), and (E10) imply that:

Jρ = χρ(T 2) + χρ(C
2
2z × T 2) + χρ(C

2
4z × T 2) + χρ(C

−2
4z × T 2)

= 2 [χρ(E) + χρ(C2z)] , (E11)

where we have exploited that11 C2
4z = C2z, and that C−2

4z = C−1
2z = C2z and T 2 = (C2z)

2 = (C4z)
4 = E for single

groups. Inserting ρ = A,B,2E,1E and the characters from Table VI into Eq. (E11), we determine that:

JA = JB = |Hq|, J2E = J1E = 0, (E12)

where |Hq| = 4 is the number of elements [see the text following Eq. (B8)] in Type-I single MPG 9.1.29 4 [Eq. (E9)].
Following the discussion surrounding Eqs. (D30), (D32), and (D34), Eqs. (E11) and (E12) imply that, in Type-II
single MPG 9.2.30 41′, ρ = A and ρ = B each form undoubled, one-dimensional coreps of type (a), whereas ρ = 2E
and ρ = 1E together form a paired, two-dimensional corep of type (c). The single-valued coreps of Type-II single
MPG 9.2.30 41′ are therefore given by:

ρ̃ = A, B, 1E 2E. (E13)

In Table IX, we reproduce the characters for Type-II SPG 9.2.30 41′, obtained from CorepresentationsPG on the
BCS. Like in Hq = 4, the maximal unitary subgroup of SPG 9.2.30 41′ [see Appendix E 1 a and Eqs. (E8) and (E9)],
the lowest-angular-momentum (spin-degenerate pairs of) atomic orbitals that transform in the single-valued coreps A
and B of Type-II SPG 9.2.30 41′ are respectively spinless s and spinless dxy orbitals (Fig. 20). Conversely, there is no
individual spinless atomic orbital that transforms in the corep 1E 2E in Table IX, because 1E 2E is two-dimensional
[i.e., because χ1E 2E(E) = 2]. Instead, we find that the smallest set of atomic orbitals with the lowest angular
momenta that together transform in 1E 2E are a Kramers pair of spinless px± ipy magnetic atomic orbitals [i.e. one
spinless px+ipy plus one spinless px−ipy orbital (Fig. 20)], which are usually denoted more succinctly in other works5

as “spinless px and py orbitals”, because they span the same two-dimensional space (four-dimensional, including spin)
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as one spinless px orbital plus one spinless py orbital. Intuitively, this can be understood by recognizing that the
lowest-angular-momentum magnetic atomic orbitals that transform in the irreps A, B, 2E, 1E of Type-I MPG 9.1.29
4 are respectively spinless s, dxy, px + ipy, and px − ipy magnetic atomic orbitals (Fig. 20). Under the action of T
symmetry in Eq. (E8), an s or dxy orbital is transformed to itself, whereas a px ± ipy orbital is transformed into a
px∓ ipy orbital. Hence, A ↑ Gq = A and B ↑ Gq = B [i.e., the irreps A and B of Hq respectively induce the type (a)
coreps A and B in Gq, see the text surrounding Eq. (D30)], whereas 1,2E ↑ Gq = 1E 2E [i.e., the irreps 1,2E of Hq

each induce a type (c) corep 1E 2E in Gq, see the text surrounding Eq. (D32)].

2. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool

Building upon the earlier definitions of site-symmetry groups [Appendix C 1], Wyckoff positions [Appendix C 2],
little groups [Appendix D 1], small (co)reps of the SSGs [Appendix D 2], and magnetic atomic orbitals that transform in
(co)reps of the site-symmetry groups [Appendix E 1], we will now in this section define the band (co)representations
of the SSGs, which are induced from exponentially localized [Wannier161,162] orbitals in position space. We will
also introduce and detail the MSITESYM tool, through which users may access the small (co)reps subduced from
each band (co)representation of each SSG. This section is largely a review of previous works that discuss induced
band (co)representations – most notably Ref. 60 – though throughout this section, we will employ a more general
terminology than in Ref. 60 that encompasses both magnetic and nonmagnetic band (co)representations. In particular,
in this section, we will introduce the term band corepresentation to refer to a band representation in an SSG with
antiunitary symmetries [i.e., a Type-II, III, or IV SSG (Appendices B 2, B 3, and B 4, respectively)]. Specific examples
demonstrating usage of the theoretical machinery established in this section are provided in Appendices E 3 a and F 2 a
for cases of magnetic band (co)representations, and are provided in Refs. 5,60,85,86 for cases of nonmagnetic band
corepresentations.

To begin, consider an infinite crystal whose unit cells are furnished with initially decoupled (magnetic) atomic
orbitals. The set of atomic orbitals respects the symmetries of the SSG of the crystal G, and, by definition, each
orbital at q occupies a site in a Wyckoff position of G with a site-symmetry group Gq ∈ G (Appendix C). As
discussed in Appendix C 2, Gq is a subgroup of G (Gq ⊂ G) that is isomorphic to a Shubnikov point group (SPG)
(Appendix C 1) containing a set of symmetries g ∈ Gq, g ∈ G. Generically, there also exist a set of symmetries:

g̃ ∈ G \Gq, (E14)

for which:

g̃q = q′, (E15)

where q′ is a different site than q in the same unit cell. The set of all sites {qα} in the same unit cell as q (including
q itself) form the Wyckoff orbit of q, where the index α on qα runs from 1 to n, where n is the multiplicity of
the Wyckoff orbit indexed by q (see Appendix C 2). We emphasize that the choice of g̃ in Eqs. (E14) and (E15) is
not generically unique – for example, in Type-I MSG 10.42 P2/m, which is generated by {I|0}, {C2y|0}, and 3D
lattice translations, the sites q = (u, 0, w) and q′ = (−u, 0,−w) are related by both g̃ = {I|0} and g̃ = {C2y|0}. We
additionally emphasize that the restriction to q′ that lie in the same unit cell as q is a convention choice that was
employed previously in TQC5,57,58,60,85,86 that we will continue to employ in MTQC to obtain MEBRs consistent
with the PEBRs previously calculated for TQC. More generally, a set of EBRs can be still be computed as long as
each q′ is unique and is not related to q or to any other q′ by an integer-valued linear combination of primitive lattice
vectors.

We will find it convenient in this section to initially restrict to the case in which the crystal is furnished by a
set of (magnetic) atomic orbitals at each site of a single Wyckoff position indexed by q that transforms in one
and only one (i.e. in an irreducible) (co)rep ρ̃q of the site-symmetry group Gq. Because reducible [composite] site-
symmetry [band] (co)representations may be expressed as direct sums of irreducible [elementary] site-symmetry [band]
(co)representations, then, at the end of this section, we will straightforwardly relax this restriction and consider the
more general case in which the unit cell contains larger sets of atomic orbitals that transform in direct sums of site-
symmetry (co)reps. In the language of Refs. 161,162, each magnetic atomic orbital at q (including spin) corresponds to
an exponentially (maximally) localized (spinful), symmetric Wannier orbital. Specifically, while maximally localized,
symmetric Wannier and magnetic atomic orbitals are not required to have the same radial parts [aside from the
Wannier orbital exhibiting exponential or sharper localization], we can establish a correspondence between Wannier
and atomic orbitals by restricting focus to the angular parts, which, for symmetrized [sets of] orbitals, necessarily
transform in (co)reps of the 122 crystallographic SPGs [see Appendix E 1 and Refs. 12,24,61,62,87–94].
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Next, because a Wyckoff position generically contains more than one site [i.e. the multiplicity of the Wyckoff
position n ≥ 1], then, given a [set of] Wannier orbital[s] that transform in a single irreducible, D-dimensional (co)rep
of the site-symmetry group Gq, in order to preserve the symmetry of the SSG G, there must additionally be D-
dimensional [sets of] Wannier orbitals on each of the n− 1 additional sites in the Wyckoff position, leading to a total
of n×D Wannier orbitals in each unit cell. For each [set of] orbital[s] at q that transforms in the (co)rep ρ̃q of Gq,
there is therefore also an orbital [or set of orbitals] at each site q′ = g̃q mod ta,b,c for each symmetry g̃ ∈ G \Gq that
transform[s] in an irreducible (co)rep ρ̃q′ of:

Gq′ = g̃Gqg̃
−1, (E16)

where Gq′ is isomorphic and conjugate to Gq. It is important to note that even though Gq′ is isomorphic to Gq,
and even though Gq and Gq′ are both isomorphic to the same Shubnikov point group (SPG, see Appendix C 1) M ,
the symmetries g̃ ∈ G \ Gq require that the orbitals [and (co)reps] at q′ are conjugate to those at q. For example,
if q and q′ are related by the symmetry {C4z|0} in an SSG G, then a px orbital at q must be accompanied by a
py = C4zpxC

−1
4z orbital at q′ in order to preserve {C4z|0} ∈ G. Employing the terminology previously established in

Refs. 5,57,58,60,85,86, this can be summarized by stating that the orbital[s] that transform in ρ̃q – along with the
orbital[s] that transform[s] in the conjugate (co)reps ρ̃q′ of each of the other n− 1 sites in the Wyckoff position of q
– occupy the Wyckoff position indexed by q. To formally define the conjugate site-symmetry (co)reps ρ̃q′ , we first
establish that, given a unitary symmetry h ∈ Hq – the maximal unitary subgroup of Gq – the matrix representative of
h in ρ̃k is denoted as ∆ρ̃q(h), for which the character of h in ρ̃k is given by Tr[∆ρ̃q(h)]. In this notation, it is clear that

the matrix representative ∆ρ̃q′ (ghg
−1) of the conjugate symmetry g̃hg̃−1 ∈ Gq′ does not generically equal ∆ρ̃q′ (h)

(which itself may not be well defined, because h is not required to be an element of both Gq and Gq′). Instead,
the matrix representatives of the conjugate symmetries g̃hg̃−1 ∈ Gq′ are conjugate to the matrix representatives of
h ∈ Gq; specifically, if g̃ is unitary, then:

∆ρ̃q′ (g̃hg̃
−1) = ∆ρ̃q(h), (E17)

and if g̃ is antiunitary, then:

∆ρ̃q′ (g̃hg̃
−1) =

[
∆ρ̃q(h)

]∗
. (E18)

The central principle of TQC, which we will here extend to MTQC, is that, when a set of of magnetic atomic
orbital[s] that transform in an irreducible site-symmetry (co)rep ρ̃q occupy the Wyckoff position of q, the orbitals
induce a (co)rep of the SSG G:

ρ̃q ↑ G = ρ̃Gq , (E19)

where ρ̃Gq is a band (co)representation [band (co)rep]. Crucially, the action of induction (↑), unlike subduction (↓),
does not preserve dimensionality (i.e. the character of the identity element E), such that χρ̃Gq (E) 6= χρ̃q(E). Instead:

χρ̃Gq (E) = χρ̃q(E)× [G : Gq] = χρ̃q(E)× n×N, (E20)

where n is the multiplicity of the Wyckoff position indexed by q and N is the number of unit cells in the crystal. We
next take N to be very large (i.e. countably infinite), reflecting our goal of applying MTQC to theoretical models
of infinite crystals to predict the topology of mesoscopic solid-state systems. The (now infinite) factor of N on the
right-hand side of Eq. (E20) originates from the infinite subgroup index [G : Gq] of Gq in G [defined in the text
surrounding Eq. (B10)], which occurs because the site-symmetry group Gq is finite, whereas the SSG G is infinite.
This can be seen by recognizing that GT 6⊂ Gq, GT ⊆ G, in which GT is the infinite group of 3D lattice translations
[Eq. (B1)].

Most importantly, as shown in Ref. 60, Eq. (E19) can be decomposed into a sum of full (co)reps:

ρ̃Gq =
⊕
k̃

Σ̃G
k̃,q
, (E21)

where the sum in Eq. (E21) instead runs over each of the points k̃ in the irreducible wedge of the first BZ179,180,

which is defined as the set of points k̃ in the first BZ containing one and only one arm of each momentum star [see

Appendix D 1]. In Eq. (E21), Σ̃G
k̃,q

is a generically reducible full [i.e. space group] (co)rep of the star of the SSG G
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indexed by k̃ [Eq. (D40)]. Hence:

Σ̃G
k̃,q

=
⊕
i

bk̃,qi Σ̃i,k̃, (E22)

where Σ̃i,k̃ is the ith irreducible full (co)rep of the star of G indexed by k̃, and where bk̃,qi is the multiplicity of Σ̃i,k̃ in

the decomposition of Σ̃G
k̃,q

[i.e., bk̃,qi is a non-negative integer that indicates the number of times that the irreducible

full (co)rep Σ̃i,k̃ appears in Σ̃G
k̃,q

, see the text surrounding Eq. (D65)]. Using Eq. (D40), Eq. (E21) can be further

re-expressed in terms of the generically reducible small (co)reps σ̃G
k̃,q

at each k point:

ρ̃Gq =
⊕
k̃

Σ̃G
k̃,q

=
⊕
k̃

km
k̃⊕

k=k̃

σ̃Gk,q =
⊕
k

σ̃Gk,q (E23)

where mk̃ is the number of arms in the star of k̃ [see the text surrounding Eq. (D15)], such that k runs from k̃ to kmk̃

for each star indexed by k̃ in the sum in the second equality, and where the sum on the right-hand side of Eq. (E23)
runs over each of the N (infinitely many) points k in the first BZ.

Further intuition for Eqs. (E20), (E21), and (E23), can be obtained by comparing the relative dimensionality of

ρ̃q, ρ̃Gq , Σ̃Gk,q, and σ̃Gk,q. First, while χρ̃Gq (E) is infinite [Eq. (E20)], the component Σ̃G
k̃,q

in the Fourier decomposition

of the band (co)rep ρ̃Gq in Eq. (E22) is finite-dimensional, and there are instead an infinite number of [generically

reducible] full (co)reps Σ̃G
k̃,q

– one at each of the infinitely many k̃ points in the irreducible wedge of the first BZ

[defined in the text following Eq. (E21)]. To see this, we compute the dimensionality of Σ̃G
k̃,q

, which is defined as the

character of the identity operation E:

χΣ̃G
k̃,q

(E) = χρ̃q(E)× n×mk̃, (E24)

in which n is the multiplicity of the Wyckoff position indexed by q (Appendix C 2), and mk̃ is the number of arms

in the star of k̃ [see the text surrounding Eq. (D15)]. Conversely, the [generically reducible] small (co)rep σ̃Gk,q in

Eq. (E23) generically has a smaller (finite) dimensionality than Σ̃G
k̃,q

. To see this, we first subduce σ̃Gk,q onto the little

group Gk:

σ̃Gk,q ↓ Gk = ς̃k,q, (E25)

where ς̃k,q is the symmetry data [see the text following Eq. (D65)] induced by the (co)rep ρ̃q of the site-symmetry
group Gq into the SSG G [Eq. (E19)] and then subduced onto the little group Gk of the point k in the first BZ.
We note that, because σ̃Gk,q is already a [generically reducible] small (co)rep of Gk [Eq. (E23)], then σ̃Gk,q ↓ Gk in

Eq. (E25) is a redundant expression. However, in this work, we will continue to employ the expression σ̃Gk,q ↓ Gk on

the left-hand side of Eq. (E25) for consistency with earlier works on TQC5,60. Next, we compute the dimensionality
of the subduced symmetry data ς̃k,q:

χς̃k,q(E) = χρ̃q(E)× n, (E26)

where n continues to be the multiplicity of the Wyckoff position indexed by q (Appendix C 2). Physically, because
the set of site-symmetry (co)reps {ρ̃qα} corresponds to χρ̃q(E)×n magnetic atomic [Wannier] orbitals [Appendix E 1]
occupying the n sites qα in the Wyckoff position of q, and therefore characterizes χρ̃q(E) × n bands in momentum
space, then the subduced symmetry data ς̃k,q [Eq. (E25)] correspond to a (set of) χρ̃q(E) × n Bloch states at k.
This can be summarized by the statement that the χρ̃q(E)× n Bloch states at k transform in ς̃k,q, analogous to the
correspondence between orbitals and position-space SPG [site-symmetry group] (co)reps established in Appendix E 1.

Though ρ̃q is an irreducible (co)rep of the site-symmetry group Gq, this does not imply that ς̃k,q = σ̃Gk,q ↓ Gk in

[Eq. (E23)] is an irreducible small (co)rep of Gk. In fact, generically, ς̃k,q is a reducible small (co)rep of Gk, such that:

σ̃Gk,q ↓ Gk = ς̃k,q =
⊕
j

ak,qj σ̃j,k, (E27)
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where σ̃j,k is the jth irreducible small (co)rep of Gk and ak,qj is a non-negative integer corresponding to the multiplicity

of σ̃j,k in the decomposition of ς̃k,q. To obtain the multiplicities ak,qj in Eq. (E27), we can re-express Eq. (E27) in

terms of the characters χς̃k,q(hi) and χσ̃j,k(hi) of each of the unitary symmetries hi ∈ |H̃k|, the maximal unitary

subset of the set of coset representatives G̃k [text preceding Eq. (D28)] of Gk with respect to the group of lattice
translations GT [Eq. (B1)]:

χς̃k,q(hi) =
∑
j

ak,qj χσ̃j,k(hi). (E28)

As we will show below, it is important to emphasize that the values of ak,qj in Eqs. (E27) and (E28) are determined by

the choice of the (co)rep ρ̃q of the site-symmetry group Gq [i.e. the (magnetic) atomic orbitals occupying the Wyckoff
position indexed by q] in Eq. (E19). This can be seen by first recognizing the values of σ̃j,k in Eqs. (E27) and (E28)
are limited to the finite set of small (co)reps of Gk, which can be obtained through the Corepresentations tool, as
previously described in Appendix D 2. Next, we recognize that ς̃k,q is a component of the Fourier decomposition of
the induced band (co)rep ρ̃Gq = ρ̃q ↑ G [Eqs. (E19) and (E23)]. Specifically, Eqs. (E19) and (E23) imply that, for a

given little group Gk, the characters χς̃k,q(hi) for each unitary symmetry hi ∈ H̃k [the maximal unitary subset of G̃k,
see the text preceding Eq. (D28)] are given by:

χς̃k,q(hi) =

n∑
α=1

χς̃k,qα (hi), (E29)

where α runs over each of the n sites qα in the Wyckoff position of q (including q itself, see Appendix C 2), and
where, as will shortly be detailed below:

χς̃k,qα (hi) =

{
e−ik·(qα−hiqα)χρ̃qα ({E|qα − hiqα}hi) , if {E|qα − hiqα}hi ∈ Gqα

0 , if {E|qα − hiqα}hi 6∈ Gqα

. (E30)

When χς̃k,qα (hi) 6= 0 in Eq. (E30), the vectors qα − hiqα are necessarily integer-valued linear combinations of lattice

vectors [i.e. {E|qα − hiqα} ∈ GT , where GT is defined in Eq. (B1)]60. This occurs because the symmetries hi ∈ H̃k

may shift the location of a site qα in the Wyckoff position of q to a site hiqα in an adjacent unit cell that only differs
from qα by a linear combination of lattice vectors (if qα − hiqα were not a lattice vector, then {E|qα − hiqα}hi
would instead be one of the symmetries {E|qα − hiqα}hi /∈ Gqα that exchanges sites within the Wyckoff position of
q, and χρ̃qα ({E|qα−hiqα}hi) in Eq. (E30) would not be well defined). The (co)reps ρ̃qα of the sites qα in Eqs. (E29)
and (E30) are determined from the site-symmetry (co)rep ρ̃q by conjugation with the symmetries g̃ ∈ G, g̃ /∈ Gq, as
described in the text surrounding Eqs. (E17) and (E18).

Finally, using Eqs. (E29) and (E30) for each of the unitary symmetries hi ∈ H̃k [Eq. (D28)], we obtain |H̃k|
equations of the form of Eq. (E28) for the multiplicities ak,qj , which can be condensed into a matrix equation in which

the summation over j in Eq. (E28) is implicit:

χς̃k,q = Gkak,q, (E31)

where χς̃k,q is an |H̃k| × 1-dimensional column vector whose ith entry is the value of χς̃k,q(hi) inherited from the site-

symmetry group (co)rep ρ̃q through Eqs. (E29) and (E30), and where ak,q is an l×1-dimensional column vector whose

jth entry is the multiplicity ak,qj of the small (co)rep σ̃j,k of the little group Gk in the decomposition of the subduced

symmetry data ς̃k,q, where l is the number of small (co)reps of Gk. In Eq. (E31), Gk is an |H̃k| × l-dimensional,
generically non-square matrix whose ijth element is given by the character of the unitary symmetry hi ∈ Gk in the
small (co)rep σ̃j,k of Gk:

[Gk]ij = χσ̃j,k(hi). (E32)

Consequently, Gk is simply the transpose of the character table for Gk (see Figs. 14, 15, and 16 and Table IV, for
example). Crucially, because the rows (and columns) of character tables are orthogonal11,173, then the columns (and
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rows) of Gk are also orthogonal. This implies that the left inverse G−1
k of Gk is simply given by:

G−1
k =

1

|H̃k|
G†k, (E33)

such that:

G†kGk = |H̃k|1, (E34)

where 1 in Eq. (E34) is the l × l identity. As a final step, we left-multiply Eq. (E31) by G−1
k [Eq. (E33)] to solve for

ak,q:

ak,q =
1

|H̃k|
G†kχς̃k,q , (E35)

thus obtaining the multiplicities ak,qj in Eqs. (E27) and (E28). We note that Eq. (E35) is in fact the matrix form of

the Schur orthogonality relation (i.e. the so-called “magic formula”)85.

For this work, we have implemented the MSITESYM tool on the BCS to output the multiplicities [ak,qj in Eqs. (E27)

and (E28)] of the small (co)reps σ̃j,k subduced in the little group Gk of each k point [Eq. (E25)] from the band (co)rep
ρ̃Gq induced into each SSG G [Eq. (E19)] from each irreducible (co)rep ρ̃q of one site-symmetry group Gq in each
Wyckoff position of G. MSITESYM subsumes the earlier DSITESYM tool (https://www.cryst.ehu.es/cgi-bin/
cryst/programs/dsitesym.pl)5,85,86, which was previously implemented for TQC to provide direct access to the
single- and double-valued small irreps subduced onto a given Gk from the band rep ρGq induced from each site-
symmetry irrep ρq in each of the 230 Type-I MSGs. In Fig. 21, we show the output of MSITESYM for Type-III MSG
75.3 P4′ at the A point in momentum space and the 1b Wyckoff position in position space.

In summary, we have demonstrated in this section how decoupled Wannier orbitals that transform in site-symmetry
(co)reps in position space induce band (co)reps [Eq. (E19)], which in turn subduce small (co)reps at each point in
momentum space that correspond to Bloch states (bands) [Eq. (E25)]. It is straightforward to see that, if additional
Wannier orbitals are added that either transform in different (co)reps of site-symmetry groups in the same Wyckoff
position, or occupy a different Wyckoff position, then additional bands will also be present in the energy spectrum,
corresponding to additional small (co)reps in the symmetry data at each k point. Therefore, we have also shown

Induced site-symmetry representations of the Magnetic space group P4' (No. 75.3)

k-vector: A: (1/2,1/2,1/2) and Wyckoff position 1b: (1/2,1/2,z)

Unitary site symmetry group for 1b: (1/2,1/2,z)

Shorthand
notation

Matrix presentation

g1
x,y,z
s+,s-

   1   0   0      0
   0   1   0      0
   0   0   1      0

 1  0

 0  1

g2
1-x,1-y,z
-is+,is-

  -1   0   0      1
   0  -1   0      1
   0   0   1      0

 -i   0

  0   i

g3
x,y,z

-s+,-s-

   1   0   0      0
   0   1   0      0
   0   0   1      0

 -1   0

  0  -1

g4
1-x,1-y,z
is+,-is-

  -1   0   0      1
   0  -1   0      1
   0   0   1      0

  i   0

  0  -i

Irreducible representations

Character table for the magnetic point group 4'

g1 g2 g3 g4

4' # 1 2001 d1 d2001

A Γ1 1 1 1 1

BB Γ2Γ2 2 -2 2 -2

1E2E Γ3Γ4 2 0 -2 0

Subduced representations

Character table for the subduced
representations (*A↓4')
for Wyckoff position 1b

Reps\Irreps g1 g2 g3 g4

*(A)E1 1 1 1 1

*(A)E2E2 2 -2 2 -2

*(A)E3E4 2 0 -2 0

Decomposition of (*A↓4')
into irreducible

representations of 4'

Reps\Irreps A BB 1E2E

*(A)E1 1 . .

*(A)E2E2 . 1 .

*(A)E3E4 . . 1

Induced representations

Induced representations for the point A of P4'

Reps\Irreps (A)E1 (A)E2E2 (A)E3E4

A 1 . .

BB . 1 .

1E2E . . 1

FIG. 21: The output of the MSITESYM tool on the BCS for Type-III MSG 75.3 P4′ at the A point in momentum space and
the 1b Wyckoff position in position space. For one k point in each momentum star (see Appendix D 1) and one site q in each
Wyckoff position in each SSG (see Appendix C 2), MSITESYM outputs the irreducible (co)reps of the site-symmetry group

Gq (see Appendix E 1), the small (co)reps of the little group Gk (see Appendix D 2), and the multiplicities ak,qj in Eqs. (E27)

and (E28). MSITESYM subsumes the earlier DSITESYM tool5,85,86, which was previously implemented for TQC to provide
direct access to the single- and double-valued small irreps subduced onto a given Gk from the band rep induced from each
site-symmetry irrep in each of the 230 Type-I MSGs.

http://www.cryst.ehu.es/cryst/msitesym
http://www.cryst.ehu.es/cryst/msitesym
https://www.cryst.ehu.es/cgi-bin/cryst/programs/dsitesym.pl
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that arbitrary sets of bands induced from Wannier orbitals transform in a linear combination of band (co)reps. In
the subsequent section, Appendix E 3, we will determine the minimal, or elementary, band (co)reps [EBRs, composed
of PEBRs in Type-II SSGs and MEBRs in Type-I, III, and IV MSGs]5,23,24,57,58,60,85,86,90,96,97 that span all linear
combinations of band (co)reps induced from maximally localized, symmetric Wannier orbitals.

3. MEBRs, Exceptional Cases, and the MBANDREP Tool

In this section, we will use the results of Appendix E 2 to determine which of the induced band (co)reps in each SSG
are elementary – which we will rigorously define in this section – thus establishing the complete theory of MTQC. We
will specifically obtain the MEBRs of the Type-III and Type-IV MSGs, which, along with the MEBRs of the Type-I
MSGs and the PEBRs of the Type-II SSGs previously tabulated in Refs. 5,60, form the complete set of EBRs of all
of the 1,651 single and double SSGs. We note that previously in TQC5,57,58,60,85,86, the Type-I MEBRs of the Type-I
MSGs were termed EBRs, to draw contrast with the PEBRs of the Type-II SSGs. However, in this work, we will
revise the previous terminology to accomodate the elementary band coreps of the Type-III and IV MSGs – in this
work, all elementary band (co)reps are in general termed EBRs, the elementary band coreps of Type-II SSGs remain
termed PEBRs, and the elementary band (co)reps of Type-I, III, and IV MSGs are respectively termed Type-I, III,
and IV MEBRs. Finally, we note that prior to this work, Evarestov Smirnov, and Egorov in Ref. 24 introduced a
method for obtaining the MEBRs of the MSGs and computed representative examples, but did not perform a large-
scale tabulation of MEBRs – the calculations performed in this section represent the first complete tabulation of the
MEBRs of the 1,421 single and double MSGs.

To begin, we previously established in Appendix E 2 that, if a set of [magnetic] atomic orbitals transforming in an
irreducible (co)rep ρ̃q,1 of a site-symmetry group Gq is placed at q in each unit cell of a crystal that is invariant under
an SSG G, then ρ̃q,1 induces a band (co)rep ρ̃Gq,1 = ρ̃q,1 ↑ G [Eq. (E19)]. From this, we may then consider the case
in which additional orbitals are subsequently added at q that transform in the (co)rep ρ̃q,2, such that the total set of
Wannier orbitals at q transforms in the reducible site-symmetry (co)rep ρ̃q,T = ρ̃q,1 ⊕ ρ̃q,2. Because representation
induction is distributive60, then it follows that:

ρ̃q,T ↑ G = (ρ̃q,1 ⊕ ρ̃q,2) ↑ G = ρ̃Gq,T , (E36)

such that:

ρ̃Gq,T = (ρ̃q,1 ↑ G)⊕ (ρ̃q,2 ↑ G) = ρ̃Gq,1 ⊕ ρ̃Gq,2. (E37)

Eq. (E37) implies that ρ̃Gq,T is a composite band (co)rep, because ρ̃Gq,T is equivalent to a sum of two other band (co)reps

[ρ̃Gq,1 and ρ̃Gq,2]. In this work, we define two band (co)reps ρ̃Gq,T and ρ̃Gq,1 ⊕ ρ̃Gq,2 to be equivalent through the existence

of a relation of the form of Eq. (E37). If two band (co)reps ρ̃Gq,1 and ρ̃Gq,2 are equivalent, then this also implies
the existence of a unitary matrix-valued function S(k, t, h) that is smooth and non-singular in k and continuous in
t that interpolates for each unitary symmetry h ∈ G between the full [space group] (co)rep matrix representatives
∆Σ̃Gk,q,T

(h) [t = 0] and ∆Σ̃Gk,q,1⊕Σ̃Gk,q,2
(h) [t = 1] in the decomposition [see the text surrounding Eqs. (D40) and (E21)

and Refs. 5,23,24,57,58,60,85,86,90,96,97 for further details]:

ρ̃Gq,T =
⊕
k

Σ̃Gk,q,T , ρ̃
G
q,1 ⊕ ρ̃Gq,2 =

⊕
k

Σ̃Gk,q,1 ⊕ Σ̃Gk,q,2. (E38)

If a band (co)rep is not equivalent to a direct sum of other band reps, then we define the band (co)rep to be elementary
[i.e., an EBR]5,60,137–139.

In order to complete the theory of MTQC, we must perform a complete enumeration of the EBRs in all of the 1,651
single and double SSGs. Specifically, because EBRs are induced from (magnetic) Wannier orbitals (Appendix E 2),
then any set of bands that transforms in a direct sum of EBRs is Wannierizable, and therefore, does not exhibit stable
or fragile53,54,56,181–190 topology5,57,58,60,85,86. With complete knowledge of the EBRs, we will then be able to identify
the bands that do not transform in linear combinations of EBRs, which, as we will show in Appendix F correspond
to stable topological (crystalline) insulators and topological semimetals.

To obtain an initial bound on the sites in each SSG from which EBRs may be induced, we first recognize that, if
a site q0 indexes a Wyckoff position that is non-maximal, then Gq0

⊂ Gq where q is a site in a maximal Wyckoff
position that is connected to the Wyckoff position containing q0 (see Appendix C 2 for definitions of connected and
maximal Wyckoff positions). Taking ρ̃q0

to be (co)rep of the site-symmetry group Gq0
, then, through the transitive
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property of induction60:

ρ̃q,0 ↑ G = ρ̃Gq,0 = ρ̃q,0 ↑ Gq ↑ G =

(
z⊕
i=1

bq0,q
i ρ̃q,i

)
↑ G =

z⊕
i=1

bq0,q
i ρ̃Gq,i, (E39)

where z is the number of unique irreducible (co)reps ρ̃q,i in Gq, bq0,q
i is a non-negative integer, and where at least

one bq0,q
i is nonzero. Eq. (E39) implies that any band (co)rep ρ̃Gq,0 induced from a site q0 in a non-maximal Wyckoff

position is equivalent to a sum of band (co)reps induced from a site q in a maximal Wyckoff position; therefore ρ̃Gq,0 is
either a composite band (co)rep, or is equivalent to an EBR induced from q. Consequently, the complete set of EBRs
is contained within the set of band (co)reps induced from the sites of the maximal Wyckoff positions of each SSG.

Hence, in this work, we will obtain the EBRs of all single and double SSGs in two steps. First, we will restrict
consideration to the band (co)reps induced by the irreducible (co)reps of the site-symmetry groups of the maximal
Wyckoff positions of each SSG. We will then in Appendix E 3 a filter out the composite band (co)reps induced from
sites in maximal Wyckoff positions, which are known as the exceptional cases60,86,137–140; the remaining band (co)reps
comprise the EBRs. In Appendix E 3 b, we will then provide additional statistics for the EBRs of all SSGs – including
the MEBRs of the Type-III and IV MSGs introduced in this work – as well as detail the MBANDREP tool on the
BCS that we have implemented for this work to access the EBRs and composite band (co)reps induced from each
Wyckoff position in each of the 1,651 single and double SSGs.

a. Exceptional Cases in the MSGs

In most cases, when a (co)rep ρ̃q of a site-symmetry group Gq in a maximal Wyckoff position [see Appendix C 2] is
induced into an SSG G, the resulting band (co)rep ρ̃Gq = ρ̃q ↑ G [Eq. (E19)] is an EBR [defined in the text following

Eq. (E37)]. However, in some exceptional cases, ρ̃Gq = ρ̃q ↑ G is instead a composite band (co)rep. In Ref. 60, it was
determined that exceptional cases specifically occur under the following conditions:

1. Two maximal Wyckoff positions indexed by q and q′ in an SSG G are both connected to the same site q0 in
a non-maximal Wyckoff position. In Ref. 60, Gq′ is termed the reducing group, and Gq0

= Gq ∩Gq′ is termed
the intersection group.

2. There exists an irreducible (co)rep ρ̃q0 of Gq0 for which ρ̃q0 ↑ Gq is equivalent to an irreducible (co)rep of Gq.

3. For the same irreducible (co)rep ρ̃q0
of Gq0

, ρ̃q0
↑ Gq′ is equivalent to a reducible (co)rep of Gq′ .

These three conditions may be summarized through the equivalence relations:

ρ̃q0 ↑ Gq ↑ G = ρ̃q ↑ G = ρ̃Gq = ρ̃q0 ↑ Gq′ ↑ G = ρ̃q′ ↑ G = ρ̃Gq′ , (E40)

in which ρ̃q′ is a reducible (co)rep of Gq′ , such that ρ̃Gq′ is a composite band (co)rep, implying that the equivalent

band (co)rep ρ̃Gq is also a composite band (co)rep, despite ρ̃q being an irreducible (co)rep of Gq.

In the Type-I and Type-II SSGs previously analyzed in TQC5,57,58,60,85,86, the exceptional cases all occurred in SSGs
with point groups that were either isomorphic to Type-I MPG 8.1.24 mmm or to MPGs with higher-fold rotation,
rotoinversion, or T symmetries [c.f. Tables S10, S11, and S12 in Ref. 5]. Conversely, in this work, we find there
are exceptional composite band coreps in some of the lowest-symmetry Type-III and Type-IV MSGs. Previously in
TQC5,57,58,60,85,86, it was specifically recognized that if two maximal Wyckoff positions in the same symmetry group
have the same multiplicity, but the band (co)reps induced from the Wyckoff positions have different dimensionality,
then it is possible that at least one of the induced band (co)reps is composite. In this section we will consider the
example of double magnetic rod group [MRG] (pc1̄)RG [Fig. 22], which we have selected because the 2a and 2b Wyckoff
positions both have a multiplicity of 2, but the band coreps induced from 2a are two-dimensional, whereas the band
corep induced from 2b is four-dimensional [and indeed exceptional-case composite].

MRG (pc1̄)RG is generated by:

{I|0}, {T |1/2}, (E41)

and is isomorphic after the addition of perpendicular lattice translations to Type-IV double MSG 2.7 PS 1̄ [see
Refs. 11,12,55,128,129 and the text following Eq. (B2)]. Using MWYCKPOS on the BCS91–94 for Type-IV MSG
2.7 PS 1̄ and restricting to Wyckoff positions with x = y = 0 in the reduced notation of MWYCKPOS, we obtain the

http://www.cryst.ehu.es/cryst/mbandrep
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
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coordinates and site-symmetry-group-isomorphic MPGs of the Wyckoff positions of MRG (pc1̄)RG:

q2a = 0, 1/2, G2a = 1̄,

q2b = 1/4, 3/4, G2b = 1̄′,

q4c = z, (1/2)− z, (1/2) + z, 1− z, G4c = 1, (E42)

where we have employed units in which az = 1 in Fig. 22. In Eq. (E42), the symbols 1̄, 1̄′, and 1 respectively refer
to Type-I MPG 2.1.3 1̄, Type-III MPG 2.3.5 1̄′, and Type-I MPG 1.1.1 1 [the trivial MPG, see the text following
Eq. (C5)]. In Eq. (E42), the 2a and 2b positions are maximal, whereas 4c is the (non-maximal) general position.
First, we will examine the site-symmetry groups of the q2a maximal Wyckoff position, which are isomorphic to Type-
I double MPG 2.1.3 1̄. G2a contains only four symmetry operations and is equal to its maximal unitary subgroup
H2a:

G2a = H2a =

{
{E|0}, {I|0}, {Ē|0}, {ĒI|0}

}
, (E43)

where E is the identity operation, and Ē = C1n is the symmetry operation of 360◦ rotation about an arbitrary axis n,
which distinguishes single-valued (spinless) and double-valued (spinful) coreps. Using the CorepresentationsPG tool
on the BCS for MPG 2.1.3 1̄, we determine that there are only two double-valued irreducible coreps of G2a:

ρ̃2a =
(
Āg
)

2a
,
(
Āu
)

2a
, (E44)

for which:

χ(Āg)
2a

(
{E|0}

)
= χ(Āu)

2a

(
{E|0}

)
= −χ(Āg)

2a

(
{Ē|0}

)
= −χ(Āu)

2a

(
{Ē|0}

)
= 1,

χ(Āg)
2a

(
{I|0}

)
= −χ(Āg)

2a

(
{ĒI|0}

)
= 1, χ(Āu)

2a

(
{I|0}

)
= −χ(Āu)

2a

(
{ĒI|0}

)
= −1, (E45)

𝑥

𝑧
𝑦

𝑎𝑧

2a 2a2b 2b

FIG. 22: An antiferromagnetic chain with magnetic rod group (MRG) (pc1̄)RG, which is generated by {I|0} and {T |1/2}
(taz/2T ) and is isomorphic after the addition of perpendicular lattice translations to Type-IV MSG 2.7 PS 1̄ [see Refs. 11,12,
55,128,129 and the text following Eq. (B2)]. There are three Wyckoff positions in MRG (pc1̄)RG – 2a, 2b, and 4c – of which
only 2a and 2b are maximal [Eq. (E42)]. The site-symmetry group G2a of sites in the maximal 2a position contains {I|0}
[Eq. (E43)], whereas the site-symmetry group G2b of sites in the maximal 2b position instead contains {I ×T |1/2} [Eq. (E46)];
the site-symmetry group G4c of sites in the general 4c position does not contain either {I|0} or {I × T |1/2} [Eq. (E50)]. Four
{I×T |1/2}-related spinful s orbitals occupying the 2b position in G = (pc1̄)RG divide into two pairs that each transform in the
two-dimensional irreducible double-valued corep

(
ĀĀ

)
2b

of G2b [Eq. (E48)], which is a necessary – but crucially not sufficient

– condition for the four-dimensional band corep
(
ĀĀ

)G
2b

=
(
ĀĀ

)
2b
↑ G to be an EBR [see Eq. (E39) and the surrounding text].

Indeed, in MRG (pc1̄)RG, we find that the four spinful s orbitals at 2b can be moved through the 4c position to 2a without
breaking a symmetry or closing a gap. When the four s orbitals are moved to 2a, the four orbitals form two pairs of spinful
bonding and antibonding orbitals that each transform in the two-dimensional reducible corep

(
Āg

)
2a
⊕
(
Āu

)
2a

of G2a [Eq. (E48)],

and induce a four-dimensional composite band corep
(
Āg

)G
2a
⊕
(
Āu

)G
2a

. Because
(
Āg

)G
2a
⊕
(
Āu

)G
2a

=
(
Ā
)G

4c
=

(
ĀĀ

)G
2b

[Eqs. (E55)

and (E57)], then we conclude that
(
ĀĀ

)G
2b

is an exceptional case of a composite band corep induced from an irreducible corep
of a site-symmetry group in a maximal Wyckoff position.

http://www.cryst.ehu.es/cryst/corepresentationsPG
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implying that the lowest-angular-momentum spinful magnetic atomic orbitals (see Appendix E 1) that transform in(
Āg
)

2a
and

(
Āu
)

2a
are spin-split (singly-degenerate) s and p orbitals, respectively. We next examine the site-symmetry

groups of the q2b maximal Wyckoff position in Eq. (E42) and Fig. 22, which are isomorphic to Type-III double MPG
2.3.5 1̄′. G2b also contains four symmetry operations:

G2b =

{
{E|0}, {I × T |1/2}, {Ē|0}, {ĒI × T |1/2}

}
, (E46)

in which only {E|0} and {Ē|0} are unitary. Hence the maximal unitary subgroup H2b of G2b is given by:

H2b =

{
{E|0}, {Ē|0}

}
, (E47)

such that H2b is isomorphic to the trivial MPG [Type-I MPG 1.1.1 1, see the text following Eq. (C5)]. As discussed
in Ref. 11, (I × T )2 = Ē in double SPGs, and χρ̃({Ē|0}) = −χρ̃({E|0}) for double-valued coreps ρ̃. From this,
in agreement with the output of the CorepresentationsPG tool on the BCS for Type-III double MPG 2.3.5 1̄′, we
determine that G2b has only one, two-dimensional, double-valued irreducible corep [see Eq. (E4) and the surrounding
text]:

ρ̃2b =
(
ĀĀ
)

2b
, (E48)

for which:

χ(ĀĀ)
2b

(
{E|0}

)
= −χ(ĀĀ)

2b

(
{Ē|0}

)
= 2, (E49)

implying that the lowest-angular-momentum spinful magnetic atomic orbitals that transform in
(
ĀĀ
)

2b
are an

{I × T |1/2}-related pair of spinful s orbitals, which are twofold-degenerate because χ(ĀĀ)
2b

([{I × T |1/2}]2) =

−χ(ĀĀ)
2b

({E|0}) = −2. Lastly, the site-symmetry groups in the q4c position in Eq. (E42) and Fig. 22 are isomorphic

to the trivial MPG [Type-I MPG 1.1.1 1, see the text following Eq. (C5)], and are thus equal to their maximal unitary
subgroups H4c:

G4c = H4c =

{
{E|0}, {Ē|0}

}
. (E50)

There is only one, one-dimensional, double-valued irreducible corep of G4c:

ρ̃4c =
(
Ā
)

4c
, (E51)

for which:

χ(Ā)
4c

(
{E|0}

)
= −χ(Ā)

4c

(
{Ē|0}

)
= 1. (E52)

Eq. (E52) implies that the lowest-angular-momentum spinful magnetic atomic orbital that transforms in
(
Ā
)

4c
is a

spin-split (singly-degenerate) s orbital.

Next, to determine if any of the band coreps induced from the maximal 2a and 2b Wyckoff positions in Eq. (E42)
and Fig. 22 are exceptional cases (i.e. composite), we induce band coreps from the intermediate 4c position that is
connected to 2a and 2b [Eq. (E40) and the surrounding text]. First, we focus on band coreps induced from 4c through
2b. Because G4c is an index-2 subgroup of G2b ([G2b : G4c] = 2, see Eqs. (B10), (E46), and (E50)), and because G4c

and G2b have isomorphic unitary subgroups H4c = H2b [Eq. (E47) and (E50)], then:(
Ā
)

4c
↑ G2b =

(
ĀĀ
)

2b
. (E53)

where
(
ĀĀ
)

2b
is the irreducible corep of G2b [Eq. (E48)]. Eq. (E53) implies that, for:

G = (pc1̄)RG, (E54)

http://www.cryst.ehu.es/cryst/corepresentationsPG
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it is possible for
(
Ā
)G

4c
=
(
Ā
)

4c
↑ G to be an EBR, because:(
Ā
)G

4c
=
(
Ā
)

4c
↑ G2b ↑ G =

(
ĀĀ
)

2b
↑ G =

(
ĀĀ
)G

2b
, (E55)

such that
(
ĀĀ
)G

2b
is a band corep induced from an irreducible corep of a site-symmetry group in a maximal Wyckoff

position [see Eq. (E39) and the surrounding text].

However, to determine if
(
ĀĀ
)G

2b
is indeed an EBR, we must also calculate the band coreps induced from 4c through

2a, which are equivalent to
(
ĀĀ
)G

2b
[Eq. (E40)]. Because G4c is an index-2 subgroup of G2a ([G2a : G4c] = 2, see

Eqs. (B10), (E43), and (E50)), because {E|0} ∈ G2a, {E|0} ∈ G4c, and because {I|0} ∈ G2a, {I|0} 6∈ G4c, then:(
Ā
)

4c
↑ G2a =

(
Āg
)

2a
⊕
(
Āu
)

2a
, (E56)

where
(
Āg
)

2a
and

(
Āu
)

2a
are the irreducible coreps of G2a [Eq. (E44)], implying that

(
Āg
)

2a
⊕
(
Āu
)

2a
is a reducible

corep of G2a. Eq. (E56) indicates that
(
Ā
)G

4c
=
(
Ā
)

4c
↑ G is not an EBR, but is instead a composite band corep,

because (
Ā
)G

4c
=
(
Ā
)

4c
↑ G2a ↑ G =

[ (
Āg
)

2a
⊕
(
Āu
)

2a

]
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⊕
(
Āu
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. (E57)

Because
(
Āg
)G

2a
⊕
(
Āu
)G

2a
=
(
Ā
)G

4c
=
(
ĀĀ
)G

2b
[Eqs. (E55) and (E57)], then we conclude that

(
ĀĀ
)G

2b
is an exceptional

case of a composite band corep induced from an irreducible corep of a site-symmetry group in a maximal Wyckoff
position.

We can gain physical intuition for why
(
ĀĀ
)G

2b
is an exceptional-case composite band corep from the orbitals

and spins depicted in Fig. 22. We begin with two {I × T |1/2}-related pairs of spin-up and spin-down s orbitals
that occupy 2b (i.e. four total spinful s orbitals separated into {I × T |1/2}-reversed pairs at each of the two sites
in the 2b position), where each pair transforms in the two-dimensional irreducible site-symmetry corep

(
ĀĀ
)

2b
.

We are then free to move the four orbitals to 2a without breaking a symmetry of (pc1̄)RG or closing a gap to
introduce additional Wannier orbitals (which, conversely, is required in the closely-related obstructed-atomic-limit
Wannier-sliding transitions discussed in Refs. 5,55,191). When the four spinful s orbitals reach 2a, the four orbitals
form two bonding and antibonding pairs that each transform in the two-dimensional reducible site-symmetry corep(
Āg
)

2a
⊕
(
Āu
)

2a
of G2a [Eq. (E44)], which induces a four-dimensional composite band corep

(
Āg
)G

2a
⊕
(
Āu
)G

2a
of

(pc1̄)RG, indicating that
(
ĀĀ
)G

2a
is an exceptional composite band corep.

In Appendix G 1, we provide a complete enumeration of all of the exceptional cases in the 1,651 single and double
SSGs. For the Type-I MSGs and Type-II SGs previously analyzed in TQC5,57,58,60,85,86, the exceptional cases listed in
Appendix G 1 agree with the previous tabulations performed in Refs. 5,60. As shown in the text following Eq. (E39),
any band (co)rep induced from an irreducible (co)rep of a site in a maximal Wyckoff position that is not listed in
the tables in Appendix G 1 is an EBR. Hence, by calculating all of the band (co)reps induced from the irreducible
(co)reps of the site-symmetry groups of the maximal Wyckoff positions of the 1,651 single and double SSGs, and
then subsequently excluding the exceptional cases listed in Appendix G 1, we obtain the complete list of single- and
double-valued EBRs of the SSGs, completing the theory of MTQC.

b. Statistics for the MEBRs and the MBANDREP Tool

In this section, we provide general statistics for the EBRs previously obtained in Appendix E 3 a [which include
the MEBRs of the Type-I MSGs and PEBRs of the Type-II SSGs previously tabulated for TQC5,57,58,60,85,86, as well
as the MEBRs of the Type-III and Type-IV MSGs calculated for the present work]. We additionally detail in this
section the MBANDREP tool on the BCS, which we have implemented for this work to access both the elementary
and non-elementary band (co)reps of all 1,651 single and double SSGs.

To begin, in Tables X and XI, we provide the number of elementary and composite band (co)reps of the 1,651 single
and double SSGs, respectively. Tables X and XI include the number of exceptional cases [Appendices E 3 a and G 1] in
which an irreducible (co)rep of a site-symmetry group of a site in a maximal Wyckoff position does not induce an EBR.
For the Type-I MSGs and Type-II SGs analyzed in TQC5,57,58,60,85,86, the band (co)rep statistics in Tables X and XI
agree with the calculations previously performed in Refs. 5,60. In Tables X and XI, we also list the number of EBRs
that can be decomposed into disconnected branches [i.e. decomposable or “split” EBRs with disconnected subgraphs,

http://www.cryst.ehu.es/cryst/mbandrep
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see Appendix D 3 and Refs. 5,6,56–58,86,141]. As shown in Refs. 5,6,57,58,141, at least one disconnected piece of
each decomposable EBR is topologically nontrivial, either in a stable or fragile sense53,54,56,181–190. In Appendix F,
we will provide a complete enumeration of the symmetry-based indicators of stable band topology7,13–15,97–101 in the
1,651 double SSGs, which can be used to diagnose the stable topological indices of the disconnected branches of the
decomposable double-valued EBRs in Table XI. Lastly, to provide complete statistics for all of the band (co)reps that
can be induced by any set of magnetic atomic orbitals in any Wyckoff position in a magnetic crystal, we additionally
list in Tables X and XI the number of composite band (co)reps that can be induced from the unique irreducible
(co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs of the same type. Specifically,
we obtain the numbers listed in the “Unique Non-Maximal Band (Co)reps” columns in Tables X and XI by summing
over the composite band (co)reps induced from each unique irreducible (co)rep of one site-symmetry group in each
non-maximal Wyckoff position in each SSG of the same type.

Single SSG Type Number of SSGs Number of EBRs Exceptional Unique Non-Maximal

[Decomposable EBRs] Cases Band (Co)reps

Type-I 230 3,383 40 1,931

[219]

Type-II 230 3,141 39 1,852

[156]

Type-III 674 7,492 151 5,279

[833]

Type-IV 517 6,190 130 4,501

[699]

Total 1,651 20,206 360 13,563

[1,907]

TABLE X: Single-valued band (co)reps of the 1,651 single SSGs. In order, the columns in this table list the type of the single
SSG (Appendix B), the number of single SSGs of each type, the total number of single-valued elementary band (co)reps [EBRs]
of the SSGs of the same type [see the text surrounding Eq. (E37)], the total number of exceptional composite single-valued
band (co)reps of the SSGs of the same type (Appendices E 3 a and G 1), and the total number of composite single-valued band
(co)reps induced from unique irreducible (co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs
of the same type.

Double SSG Type Number of SSGs Number of EBRs Exceptional Unique Non-Maximal

[Decomposable EBRs] Cases Band (Co)reps

Type-I 230 2,258 107 1,589

[355]

Type-II 230 1,616 0 1,001

[426]

Type-III 674 5,047 591 4,882

[662]

Type-IV 517 3,882 556 3,984

[639]

Total 1,651 12,803 1,254 11,456

[2,082]

TABLE XI: Double-valued band (co)reps of the 1,651 double SSGs. In order, the columns in this table list the type of the
double SSG (Appendix B), the number of double SSGs of each type, the total number of double-valued EBRs of the SSGs of
the same type [see the text surrounding Eq. (E37)], the total number of exceptional composite double-valued band (co)reps of
the SSGs of the same type (Appendices E 3 a and G 1), and the total number of composite double-valued band (co)reps induced
from unique irreducible (co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs of the same type.

Next, in Appendix G 2, we provide tables of the minimum and maximum EBR dimension in each single and double
SSG. In particular, the minimum EBR dimensions in the double SSGs in Appendix G 2 provide an upper bound on
the minimal insulating filling of each double SSG16,63,125,131,152,154,192,193, which is defined as the set of electronic
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Band co-representations of the Magnetic Double Space Group P6/m'm'm' (No. 191.241)

and Wyckoff position 2d:(1/3,2/3,1/2)

Unitary subgroup: P622 (No. 177) in its standard setting.

Magnetic point group isomorphic to the site-symmetry group of the Wyckoff position: 6'm'2
and unitary subgroup: 32

The second column gives the coordinates of the k-vectors in the standard setting of the unitary subgroup.

Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

Band-rep. A1↑G(2) A2↑G(2) E↑G(4) 1E↑G(2) 2E↑G(2) E1↑G(4)

Band-type elementary elementary elementary elementary elementary elementary

Decomposable
\Indecomposable

Indecomposable Indecomposable Decomposable Indecomposable Indecomposable Decomposable

Γ:(0,0,0) Γ:(0,0,0) Γ1(1) ⊕ Γ4(1) Γ2(1) ⊕ Γ3(1) Γ5(2) ⊕ Γ6(2) Γ7(2) Γ7(2) Γ8(2) ⊕ Γ9(2)

A:(0,0,1/2) A:(0,0,1/2) A2(1) ⊕ A3(1) A1(1) ⊕ A4(1) A5(2) ⊕ A6(2) A7(2) A7(2) A8(2) ⊕ A9(2)

H:(1/3,1/3,1/2) H:(1/3,1/3,1/2) H3(2) H3(2) H1(1) ⊕ H2(1) ⊕ H3(2) H6(2) H6(2) H4H5(2) ⊕ H6(2)

K:(1/3,1/3,0) K:(1/3,1/3,0) K3(2) K3(2) K1(1) ⊕ K2(1) ⊕ K3(2) K6(2) K6(2) K4K5(2) ⊕ K6(2)

L:(1/2,0,1/2) L:(1/2,0,1/2) L2(1) ⊕ L3(1) L1(1) ⊕ L4(1) L1(1) ⊕ L2(1) ⊕ L3(1) ⊕ L4(1) L5(2) L5(2) 2 L5(2)

M:(1/2,0,0) M:(1/2,0,0) M1(1) ⊕ M4(1) M2(1) ⊕ M3(1) M1(1) ⊕ M2(1) ⊕ M3(1) ⊕ M4(1) M5(2) M5(2) 2 M5(2)

FIG. 23: The output of the MBANDREP tool for the 2d Wyckoff position in Type-III MSG 191.241 P6/m′m′m′. Similar
to the earlier BANDREP tool implemented for TQC5,57,58,60,85,86, MBANDREP allows users to choose between the EBRs
of each SSG and the band (co)reps induced from each Wyckoff position in the SSG. When the Wyckoff position option is
selected in MBANDREP, users can additionally select non-maximal Wyckoff positions to access the unique composite band
(co)reps discussed in Tables X and XI and the surrounding text [though we have only shown the output of MBANDREP
for a maximal Wyckoff position in this figure]. Specifically, to generate this figure, we have selected the Wyckoff position
option in MBANDREP for the 2d position in Type-III MSG 191.241 P6/m′m′m′. For each irreducible (co)rep ρ̃q of one
site-symmetry group Gq in each Wyckoff position in each SSG, MBANDREP outputs whether the induced band (co)rep
ρ̃Gq = ρ̃q ↑ G is elementary, indicates whether ρ̃Gq is decomposable5,6,56–58,86,141, and lists the subduced small (co)reps in

σ̃Gk,q ↓ Gk [Eq. (E27)] for each maximal k vector [Eq. (D16) and the surrounding text] in the notation of the Corepresentations
tool introduced in this work [see Appendix D 2]. If an EBR is decomposable, users may click on the “Decomposable” button
in MBANDREP to access a list of the allowed decompositions [branches] of the band (co)rep.

fillings at which a short-range-entangled insulating phase is permitted for arbitrarily strong, SSG-symmetry-preserving
interactions, analogous to the Lieb-Schultz-Mattis filling constraints for a 1D spin chain194. In the cases in which
the minimum-dimension EBRs in an SSG are decomposable, a tighter bound on the minimal insulating filling can
be further obtained by determining the minimum disconnected branch dimension of each decomposable EBR141,193.
Hence, the minimum double-valued EBR dimensions of the Type-III and Type-IV MSGs listed in Appendix G 2
provide upper bounds on the minimal electronic fillings at which short-range-entangled magnetic insulating phases
are permitted in each Type-III and Type-IV MSG – at fillings that violate these bounds, any gapped, MSG-symmetric
insulator must therefore exhibit long-range-entangled, magnetic topological order. Due to complications arising from
the antiunitary symmetries of Type-III and Type-IV MSGs (see Appendices B 3 and B 4, respectively), the search
for T -breaking, long-range-entangled MSG-symmetric, insulating topological phases has thus far only been addressed
from the perspective of minimal insulating filling in a handful of recent works16,125,195. For each single and double
SSG, we have specifically confirmed that the minimum EBR dimension listed in Appendix G 2 is consistent with
the minimum atomic insulator dimension previously calculated in Ref. 16. In summary, the Type-III and Type-IV
MEBRs computed in this work provide new information – including small (co)rep characters [Appendix D 2] and

http://www.cryst.ehu.es/cryst/mbandrep
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compatibility relations [Appendix D 3] – applicable to the search for novel long-range-entangled topological phases
with magnetic crystal symmetries.

Finally, for this work, we have implemented the MBANDREP tool on the BCS to access both the elementary and
non-elementary band (co)reps of all the 1,651 single and double SSGs. MBANDREP thus subsumes the earlier BAN-
DREP tool (https://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl)5,85, which was previously imple-
mented for TQC5,57,58,60,85,86 to access the band (co)reps of the Type-I and Type-II SSGs. Unlike the earlier BAN-
DREP tool, MBANDREP does not provide separate options for accessing band (co)reps with and without T symmetry,
which are instead separately listed in MBANDREP under Type-II and Type-I SSGs, respectively [see Appendices B 2
and B 1, respectively]. In Fig. 23, we reproduce the output of MBANDREP for the 2d Wyckoff position in Type-III
MSG 191.241 P6/m′m′m′.

Appendix F: Symmetry-Indicated Magnetic Topological Bands

In the previous sections of this supplement, we established the theory of MTQC. The building blocks of MTQC are
topologically trivial bands that transform in direct sums of EBRs [defined in the text surrounding Eq. (E37)], and,
consequently, can be inverse-Fourier-transformed into (magnetic) Wannier orbitals in position space [see Appendix E 1].
Generically, however, energetically isolated bands [specifically, bands that satisfy the insulating compatibility relations
along all high-symmetry BZ lines and planes, see Appendix D 3] are not required to be equivalent [defined in the text
following Eq. (E37)] to integer-valued linear combinations of EBRs. As we will show in this section, if a band B
is not equivalent to an integer linear combination of EBRs, then B either corresponds to a topological semimetal
whose nodal points lie away from the high-symmetry BZ lines and planes (along which bands satisfy the insulating
compatibility relations)99,196, or is the Fourier-transformed description of a stable topological insulator or topological
crystalline insulator (TI or TCI, respectively)19,20,28,29,98,165,197–201.

When unitary crystal symmetries – such as spatial inversion (I) or fourfold rotoinversion (C4 ×I) – are present in
the SSG of the 3D bulk, then the stable topology of a set of energetically-isolated bands (along all high-symmetry BZ
lines and planes) may be diagnosed using symmetry eigenvalues through a symmetry-based indicator (SI) formula. By
exhaustion, it has been demonstrated7,14,15,17–19,27–29,31–36,98,202,203 that T -symmetric, symmetry-indicated, stable 3D
TIs and TCIs necessarily exhibit anomalous 2D surface and 1D hinge states crossing the bulk gap, where the surface
and hinge states are respectively protected by the symmetries of Type-II surface wallpaper groups and hinge frieze
or line groups131,132,204,205. The quintessential SI formula in 3D is the Fu-Kane parity (I) criterion for diagnosing
3D T -symmetric TIs28. More recently, it was shown in Refs. 7,13–15,19,97–101 that the compatibility relations and
EBRs in an SSG can be used to generate a set of linearly independent SI formulas for stable topological bands that
respect the symmetries of the SSG. The procedure introduced in Refs. 7,13,98 returns the SI group (e.g. Z4 × Z3

2) as
well as the SI formula for the SSG in an arbitrary basis. Previously, in Ref. 16, the authors derived the SI groups of
all 1,651 single and double SSGs, but not the SI formulas or the physical interpretation (i.e. the bulk topology and
anomalous boundary states) of the magnetic bands with nontrivial SIs.

In the sections below, restricting consideration to the double-valued (co)reps of the 1,651 double SSGs, which
characterize spinful electronic states in solid-state materials11, we will go beyond the analysis in Ref. 16 and generate
the SI formulas in a consistent and physically-motivated basis. In the physical SI formula basis introduced in this
work, all previously identified nonmagnetic double SI formulas correspond to established nonmagnetic semimetallic,
TI, and TCI phases. Additionally, in the physical SI formula basis, the SIs of symmetry-indicated TIs and TCIs with
the same bulk topology (e.g. 3D TIs and AXIs with the common nontrivial axion angle θ = π) are related by intuitive
SI subduction relations. We will also introduce layer constructions14,206,207 in the minimal double SSGs (defined in
Appendix F 4) for each TCI phase that admits a decomposition into layered 2D Chern insulators, TIs and mirror
TCIs, which we will then use to determine symmetry-respecting bulk and anomalous surface and hinge states for
all topological bands in the minimal double SSGs. First, in Appendix F 1, we will review the method employed in
Refs. 13–15,19,36 in which the multiplicities of small (co)reps are used to determine the symmetry-indicated topology
of energetically isolated bands. Next, in Appendix F 2, we will introduce the Smith normal form208 decomposition
of the EBR matrix of an SSG G, through which one can infer the SIs in G. Then, in Appendix F 3, we will detail a
procedure for obtaining a set of minimal SIs on which the SIs in all 1,651 double SSGs are dependent. In the following
section – Appendix F 4 – we will then compute the minimal SI formulas for spinful topological phases in the 34 minimal
double SSGs containing the minimal SIs in the self-consistent, physical basis described above. In Appendix F 4, we will
also formulate layer constructions – where possible – for the symmetry-indicated TI and TCI phases in the minimal
double SSGs. We have confirmed that the spinful SI groups obtained in this work agree with the previous tabulation
of magnetic and nonmagnetic SI groups in the 1,651 double SSGs performed in Ref. 16. The results of the calculations
that we will perform in Appendix F 4 will be summarized in Appendix F 5. Lastly, in Appendix F 6, we will further
detail the helical (i.e. non-axionic) magnetic higher-order TCI (HOTI) phases7,14,15,18–20,34–36,98,102 discovered in this
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work through the SI calculations performed in Appendix F 4. For the spinful helical magnetic HOTI phases discovered
in this work, we will specifically detail symmetry-enhanced fermion doubling theorems18,35,63,74 in Appendix F 6 a,
and will provide tight-binding models in Appendix F 6 b.

1. Diagnosing Band Topology from Symmetry Eigenvalues

In this section, we will review the procedure by which a symmetry data vector B [see Refs. 6,82 and the text following
Eq. (D65)] derived from the band structure of a material or model can be evaluated for nontrivial topology. The discus-
sion in this section is largely a review of previous works on stable6–9,14,15,82,97,99–101 and fragile53,54,56–58,181–184,186–190

topology. To begin, in a given SSG G, if a set of bands is energetically isolated from all of the other bands in the
spectrum at all high-symmetry k points and along all high-symmetry BZ lines and planes, then we may extract the
symmetry data Bk at each point k. As discussed in Appendix D 3, the symmetry data Bk is composed of the mul-
tiplicities of the irreducible small (co)reps of the little group Gk that correspond to the set of energetically isolated
Bloch eigenstates at k [see the text following Eq. (E26)]. Given symmetry data Bk at a point k, the symmetry data
Bk′ at a point k′ that is connected to k [defined in the text following Eq. (D15)] is fully determined by Bk through the

compatibility relations mk,k′ [Eq. (D67)] if the bands that transform in the symmetry data vector B are energetically
isolated at all high-symmetry k points and along all high-symmetry BZ lines and planes. Hence, we may summarize
the complete set of Bk in B with the symmetry data at a smaller number of k vectors consisting of one point k within
each of the maximal momentum stars in G [defined in the text surrounding Eq. (D16)]:

B = (m(σ̃1,k1
),m(σ̃2,k1

), · · · ,m(σ̃1,k2
),m(σ̃2,k2

), · · · )T , (F1)

where m(σ̃l,kn) denotes the multiplicity of the lth small (co)rep of Gkn , and where B contains NB entries. The
multiplicities m(σ̃l,kn) in B must obey a set of linear constraints imposed by the compatibility relations CR, such
that:

CR ·B = 0, (F2)

in which each row of CR provides a linear constraint on B, and where the entries in CR are given by mk,k′(mk′′,k′)−1

taken over all pairs k and k′′ of maximal k vectors in G and all symmetry-unrelated k vectors k′ that are mutually
connected [defined in the text following Eq. (D15)] to k and k′′. We emphasize that (mk′′,k′)−1, like (ck

′
)−1 in

Eq. (D76), is guaranteed to exist (though not necessarily be unique) through Frobenius reciprocity85,159, because the

elements of mk′′,k′ are defined through subduction in Eq. (D66) [see the text surrounding Eqs. (D67) and (D74)].

In particular, the symmetry data of an EBR contain the multiplicities of small coreps that are induced from site-
symmetry coreps in position space [see the text surrounding Eq. (E19)]. For each SSG G, we may define an EBR
matrix :

EBR = (Bρ̃1,q1 , Bρ̃2,q1 , · · ·Bρ̃1,q2 , Bρ̃2,q2 , · · · ), (F3)

in which each column Bρ̃j,qi contains the symmetry data vector of the EBR of G induced from the jth (co)rep ρ̃j,qi of
the site-symmetry group Gqi in the maximal Wyckoff position indexed by qi (see Appendix C 2). In the SSG G, we
define the number of EBRs as NEBR, such that EBR in Eq. (F3) is an NB×NEBR-dimensional matrix. By definition,
an EBR must correspond to a set of Bloch states that are energetically isolated at all high-symmetry k points and
along all high-symmetry BZ lines and planes, such that each Bρ̃j,qi in Eq. (F3) satisfies the compatibility relations:

CR · EBR = 0. (F4)

We find that, in each of the 1,651 single and double SSGs, the rank of EBR is always equal to the dimension of the
kernel of CR over the rational numbers, implying that the columns of EBR are at least a complete – and are in general
an overcomplete – basis set of the kernel of CR.

Given a set of bands that is energetically isolated at all high-symmetry k points and along all high-symmetry BZ
lines and planes, the symmetry data vector B of the bands can be expressed in terms of EBR:

[B]a =
∑
b

[EBR]abpb(B) = [EBR · p(B)]a, (F5)
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in which p(B) is a vector of EBR multiplicities:

p(B) = (p(ρ̃1,q1
), p(ρ̃2,q1

), · · · p(ρ̃1,q2
), p(ρ̃2,q2

), · · · )T , (F6)

where p(ρ̃j,qi) indicates the multiplicity of the EBR symmetry data vector Bρ̃j,qi in B [see the text folowing Eq. (F3)],
and where each p(ρ̃j,qi) is rational, but not necessarily integer-valued. For all possible symmetry data vectors B that
satisfy the compatibility relations, a decomposition of the form of Eqs. (F5) and (F6) is always permitted, because
the symmetry data of the EBRs spans the set of symmetry data vectors that satisfy the compatibility relations in
each SSG [i.e. because EBR spans the kernel of CR, see Eq. (F4) and the surrounding text]6–9,14,60,82,86. When
rank(EBR) = NEBR, the multiplicities p(ρ̃j,qi) in Eq. (F6) are unique; however, when rank(EBR) < NEBR, then p(B)
is not unique.

As discussed in several previous works6–9,13,14,53,54,56–58,60,82,86,97–101,181,183,184,186–190, the values of p(ρ̃j,qi) can be
used to infer the topology of the bands that transform in B. Specifically, given a symmetry data vector B that satisfies
the compatibility relations, there are three possibilities for the components of p(B) in Eq. (F6):

1. In each of the possible p(B)-vector solutions to Eq. (F5), at least one of the multiplicities p(ρ̃j,qi) is not an
integer (but is still rational)7.

2. There exists at least one solution to Eq. (F5) in which all of the multiplicities p(ρ̃j,qi) ∈ Z, though there do not
exist solutions in which all of the multiplicities p(ρ̃j,qi) ∈ {Z+, 0}; therefore, at least one p(ρ̃j,qi) is negative in
the solution in which p(ρ̃j,qi) ∈ Z for all i and j.

3. There exists at least one solution to Eq. (F5) in which all of the multiplicities p(ρ̃j,qi) ∈ {Z+, 0}.

In case 3, B contains the same small (co)reps as a direct sum of EBRs, such that the bands that transform in B exhibit
the same symmetry eigenvalues as a trivial insulator. We note that this does not exclude the possibility that the
bands that transform in B exhibit non-symmetry-indicated topology19,20,55,58,169,191. In case 2, it is possible to add
EBRs to the bands that transform in B until the direct sum of the bands that transform in B and the added EBRs
realizes a set of bands with a symmetry data vector B′ classified by case 3. Therefore, as shown in Refs. 53,54,56–
58,181–184,186–190, in case 2, the bands that transform in B exhibit symmetry-indicated fragile topology. In the
nomenclature of Refs. 6,82,209, the symmetry data vectors in cases 2 and 3 correspond to “linear combinations of
EBRs” [LCEBR]. Finally, in case 1, there does not exist an integer-valued linear combination of EBRs that can be
added to the bands that transform in B to produce a set of bands with integer-valued p(ρ̃j,qi). Consequently, as shown
in Refs. 6–9,14,15,82,209, the bands that transform in B in case 1 are not Wannierizable, and either correspond to a
topological semimetal that satisfies the compatibility relations99, or to a symmetry-indicated stable TI or TCI with
anomalous surface or hinge states.

2. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form

In this section, we will introduce the method employed in this work to calculate the SI groups and formulas for
spinful stable topological phases in all 1,651 double SSGs. In Appendix F 2 a, we will then as an example provide an
explicit calculation of the SI groups and formulas for double-valued irreps in Type-I double MSG 3.1 P2. Variants
of the method described in this section were previously introduced in Refs. 7,13–15,19,97–101. We will leave the
enumeration of the symmetry-indicated fragile bands in the 1,651 single and double SSGs for future works. To begin,
if the entries of a matrix are integer-valued, then the matrix carries a unique Smith normal form208. Consequently,
given an SSG G, the EBR matrix EBR [defined in Eq. (F3)] – whose entries are the integer-valued multiplicities of
induced small (co)reps – can be decomposed into the Smith normal form:

EBR = LEBRΛEBRREBR, (F7)

where LEBR is an NB ×NB-dimensional unimodular matrix with integer-valued entries, REBR is an NEBR ×NEBR-
dimensional unimodular matrix, and ΛEBR is an NB × NEBR-dimensional (i.e. generically non-square) matrix with
integer-valued entries [ΛEBR]ij for which:

[ΛEBR]ij = 0 if i 6= j. (F8)
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Consequently, ΛEBR – which is the Smith normal form of EBR – generically appears as:

ΛEBR =



λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · λr 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0


, (F9)

in which 1 ≤ λ1 ≤ λ2 ≤ · · ·λr are positive integers and r = rank(EBR). We note that, in contrast to ΛEBR, LEBR
and REBR in Eq. (F7) are not unique. For example, given EBR and ΛEBR, for any choice of LEBR and REBR,
L′EBR = −LEBR and R′EBR = −REBR always also satisfy the decomposition in Eq. (F7).

Next, we consider all possible bands that transform in the most general symmetry data vector B in G that satisfies
the compatibility relations [Eq. (F2)]:

B = (m(σ̃1,k1),m(σ̃2,k1), · · · ,m(σ̃1,k2),m(σ̃2,k2), · · · )T , (F10)

where m(σ̃l,kn) denotes the multiplicity of the lth small (co)rep of the little group Gkn . Previously, in the text
following Eq. (F6), we described a procedure for diagnosing whether bands that satisfy the compatibility relations
exhibit symmetry-indicated stable topology. In the following text, we will now additionally describe a method for
classifying stable band topology, which we will accomplish by parameterizing the space of solutions to Eq. (F5). First,
we act on both sides of Eq. (F5) with the left inverse L−1

EBR, which is guaranteed to exist, because LEBR is an integer,
unimodular matrix [see the text following Eq. (F7)]:

L−1
EBRB = ΛEBRREBR · p(B). (F11)

Because only the first r rows of ΛEBR are nonzero, then, in order for a solution p(B) to exist in Eq. (F11), the (r+1)th

to the N th
EBR rows of L−1

EBRB must be zero. However, the (r+ 1)th to the N th
EBR rows of L−1

EBRB are guaranteed to be
zero, because EBR spans the kernel of CR [defined in Eq. (F2)], and because B satisfies the compatibility relations.
Hence, we obtain a solution for p(B) in Eq. (F11).

For each nonzero λi in Eq. (F9), we next construct an r-dimensional vector y(B) by multiplying B by L−1
EBR and

the pseudoinverse of ΛEBR [Eq. (F9)]:

[y]i(B) =
1

λi
[L−1
EBR ·B]i = [REBR · p(B)]i, i = 1 · · · r, (F12)

in which the entries [y]i(B) are rational numbers. We then re-express B in terms of y(B) using Eq. (F12):

[B]j =

r∑
i=1

[LEBR]ji[y]i(B)λi. (F13)

Because LEBR is unimodular, then the correspondance between the components of B and y(B) is one-to-one. Con-
versely, the correspondence between y(B) and p(B) is generically one-to-many. Specifically, given y(B), the most
general solution for p(B) takes the form:

p(B) = R−1
EBR · (y1(B), y2(B), · · · , yr(B), k1, k2, · · · , kNEBR−r)T , (F14)

in which ki are rational-valued free parameters.

To diagnose the stable topology of bands whose symmetry data satisfy the compatibility relations in G, we therefore
restrict focus to the first r components of p(B). Because REBR is a unimodular matrix, then the components of p(B)
are integer-valued if and only if yi(B) and ki are integer-valued for all i, which reduces to the requirement that the
values of yi(B) are integer-valued, because the values of ki are free parameters in Eq. (F14). Finally, using the values
of yi(B), we define:

zi(B) = (yi(B)λi) mod λi = [L−1
EBR ·B]i mod λi, i = i0 · · · r, (F15)

in which we have defined i0 to be the smallest value of i for which λi0 > 1, and where each yi(B) is integer-valued
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if and only if zi(B) = 0. When B is expressed in terms of the most general small (co)rep multiplicities that satisfy
the compatibility relations [i.e. in the form of Eq. (F10)], then the zi(B) – which are implicitly functions of the small
(co)rep multiplicities m(σ̃l,kn) – are known as the SI formulas of G7,13. Correspondingly, the representative Bi vector

for each i is defined as the ith column of LEBR for which zi(Bi) = (L−1
EBR · LEBR)ii mod λi = 1.

Next, given a specific symmetry data vector B′ with fixed values of m(σ̃l,kn) that satisfy the compatibility relations,
we may calculate the values zi(B

′), which necessarily satisfy {zi(B′) ∈ Z|0 ≤ zi(B
′) ≤ λi − 1}. Hence, given B′, the

appearance of nonzero zi(B
′) in Eq. (F15) implies that the components of y(B′) and p(B′) are not integer-valued,

and that the bands that transform in B′ exhibit stable topology. From this, we define the SI vector of B′ as:

zG(B′) = (zi0(B′), zi0+1(B′), · · · , zr(B′))T , (F16)

where zi(B
′) ∈ Zλi . Notably, the SI vectors of the representative Bi vectors satisfy zGj (Bi) = (L−1

EBRLEBR)ji mod λj =
δji mod λj . Lastly, using the values of λi obtained from Eqs. (F9), (F14), and (F15), we define the SI group of G:

ZG =

r⊗
i=i0

Zλi . (F17)

Consequently, in G, the bands that transform in the representative Bi vectors may be summed with each other and
with the EBRs of G to generate |ZG|−1 classes of stable topological bands that are not related by linear combinations

of EBRs, as well as one class of (generically trivial) bands whose symmetry data vectors B̃ map to the trivial (identity)

element of the SI group [zG(B̃) = 0 in Eqs. (F15) and (F16)]. Specifically, the SI group is spanned by summing the
representative topological bands (e.g. 2Bi = Bi ⊕ Bi), such that zGi (nBi) = n mod λi where n ∈ Z+. One stable
topological band from each of the |ZG|−1 classes of stable topological bands and one integer-valued linear combination

of EBRs that transforms in one B̃ vector together form a nonunique set of |ZG| bands that we designate in this work
as the SI topological bands.

Using the method described in this section, we have obtained the SI formulas and groups for the double-valued
(co)reps of all 1,651 double SSGs, which we term the double SIs. We have confirmed that the SI groups obtained in
our calculations agree with the previous tabulation performed in Ref. 16. However, in general, both the SI formulas
and the representative Bi vectors are computed in an arbitrary basis that is generically not the natural (physical)
basis for classifying topological phases. Specifically, additional bulk- and boundary-state15,98 or layer-construction14

calculations must be performed to determine the semimetallic, TI, or TCI phases that correspond to each possible
value of zi(B). Later, in Appendices F 3, G 3, and F 4, we will determine a self-consistent, physically motivated basis
and the corresponding bulk topology for the double SIs in all 1,651 double SSGs.

a. Double SI Group and Formulas in Type-I Double MSG 3.1 P2

As an example of the Smith normal form calculation described in Refs. 7,13–15,19,97–101 and in the text following
Eq. (F7), we will in this section calculate the double SI group and formulas of Type-I double MSG 3.1 P2.

kx

ky

kz

Z(0�0)

E(���)

D(0��)

C(���)

x

y

z

1a (0,y,0) ������

1b (0,y,1/2)

1c (1/2,y,0)

1d (1/2,y,1/2)

FIG. 24: The unit cell and BZ of Type-I MSG 3.1 P2. (Left panel) The unit cell of MSG 3.1 P2 with the maximal Wyckoff
positions [Eq. (F23)] labeled with red lines. (Right panel) The BZ of MSG 3.1 P2 with the maximal k vectors in Eq. (F19), as
well as the Γ point [kΓ = (0, 0, 0)], labeled with black circles.
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First, using MGENPOS on the BCS91–94, we determine that MSG 3.1 P2 is generated by:

{C2y|000}, {E|100}, {E|010}, {E|001}. (F18)

Next, using the MKVEC tool (see Appendix D 1), we determine that there are four maximal momentum stars in
M = P2 [defined in the text surrounding Eq. (D16)]. Using MCOMPREL (see Appendix D 3), we then find that, due
to the compatibility relations, the small irrep multiplicities throughout the BZ of M are entirely determined by the
irrep multiplicities at only one of the high-symmetry points in each of the four maximal momentum stars (Fig. 24):

kZ = 2π(0, 1/2, 0), kE = 2π(1/2, 1/2, 1/2), kD = 2π(0, 1/2, 1/2), kC = 2π(1/2, 1/2, 0). (F19)

At each of the four k points in Eq. (F19), there are only two double-valued small irreps σ̄
± 1

2

k for which:

χ
σ̄
∓ 1

2
k

({C2y|0}) = ±i. (F20)

In the notation of the Corepresentations tool on the BCS (Appendix D 2):

σ̄
1
2

k = Z3, E3, D3, and C3 for k = kZ , kE , kD, and kC , respectively,

σ̄
− 1

2

k = Z4, E4, D4, and C4 for k = kZ , kE , kD, and kC , respectively, (F21)

such that the most general symmetry data vector B that satisfies the compatibility relations of M is given by:

B = (m(Z3),m(Z4),m(E3),m(E4),m(D3),m(D4),m(C3),m(C4))T . (F22)

To calculate the Smith normal form of M described in the text surrounding Eq. (F7), we next determine the
symmetry data vectors of the EBRs of M . Using MWYCKPOS on the BCS91–94, we find that M has four, multiplicity-
1 maximal Wyckoff positions (defined in Appendix C 2), which are indexed by the sites (Fig. 24):

q1a = (0, y, 0), q1b = (0, y, 1/2), q1c = (1/2, y, 0), q1d = (1/2, y, 1/2), (F23)

where y ∈ [−1/2, 1/2), such that each of the sites in Eq. (F23) lies along a line of {C2y|0} symmetry (modulo integer
lattice translations). At each of the four sites in Eq. (F23), the site-symmetry group Gq is isomorphic to Type-I
double MPG 3.1.6 2, which is generated by C2y. Using the CorepresentationsPG tool (Appendix E 1), we determine

that each site-symmetry group Gq in M has two double valued irreps (1E)q and (2E)q, where:

χ(1E)q
(C2y) = i, χ(2E)q

(C2y) = −i. (F24)

To obtain the symmetry data vectors of the EBRs of M , we use the MBANDREP tool introduced in this work
[Appendix E 3, see also Eqs. (E19) and (E30)], the output of which is reproduced below in the condensed notation of
Refs. 20,185:

(2E)1a ↑M = Z3 ⊕ E3 ⊕D3 ⊕ C3, (1E)1a ↑M = Z4 ⊕ E4 ⊕D4 ⊕ C4,

(2E)1b ↑M = Z3 ⊕ E4 ⊕D4 ⊕ C3, (1E)1b ↑M = Z4 ⊕ E3 ⊕D3 ⊕ C4,

(2E)1c ↑M = Z3 ⊕ E4 ⊕D3 ⊕ C4, (1E)1c ↑M = Z4 ⊕ E3 ⊕D4 ⊕ C3,

(2E)1d ↑M = Z3 ⊕ E3 ⊕D4 ⊕ C4, (1E)1d ↑M = Z4 ⊕ E4 ⊕D3 ⊕ C3. (F25)

https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_gen.pl
http://www.cryst.ehu.es/cryst/mkvec
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cryst/corepresentationsPG
http://www.cryst.ehu.es/cryst/mbandrep
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Using Eq. (F25), we next construct the EBR matrix [Eq. (F3)]:

EBR = (B(2E)1a , B(1E)1a , B(2E)1b , B(1E)1b , B(2E)1c , B(1E)1c , B(2E)1d , B(1E)1d),

EBR =



1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0


, (F26)

in which the eight columns respectively correspond to the eight EBR symmetry data vectors of M given in the order
of Eq. (F25), and the eight rows respectively correspond to small irrep multiplicities given in the order of Eq. (F22).

EBR in Eq. (F26) admits a Smith normal decomposition [Eq. (F7)]:

LEBR =



1 −1 0 −1 −1 0 0 0

0 1 1 1 1 0 0 0

1 0 1 −1 0 0 0 0

0 0 0 1 0 0 0 1

1 −1 1 0 0 0 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0


,ΛEBR =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


, REBR =



1 0 1 0 0 1 0 1

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 1 1 0 1 0 0 1

0 −1 −1 0 −1 0 −1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0


,

(F27)
in which the left inverse of LEBR is given by:

L−1
EBR =



1 1 0 0 0 0 0 −1

1 1 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

1 1 −1 0 0 0 0 0

−2 −1 1 0 1 0 0 −1

−1 −1 0 0 0 0 1 1

−1 −1 0 0 1 1 0 0

−1 −1 1 1 0 0 0 0


. (F28)

As described in the text surrounding Eq. (F15), we first examine the nonzero values in ΛEBR to isolate the rows of
L−1
EBR that contain SI formulas for M . There is only a single entry λi > 1 in ΛEBR in Eq. (F27): λ5 = 2. This implies

that the double SI group of M [Eq. (F17)] is:

ZM = Z2, (F29)

and that the fifth row of L−1
EBR contains the formula for a Z2-valued double SI:

z2R(B) = −2m(Z3)−m(Z4) +m(E3) +m(D3)−m(C4) mod 2, (F30)

which can be re-expressed using the modulo 2 operation as:

z2R(B) = m(Z4) +m(E3) +m(D3) +m(C4) mod 2. (F31)

Recognizing that z2R(B′) = 0 for any EBR symmetry data vector B′, we next add the symmetry data vectors
(1E)1a ↑M and (2E)1b ↑M from Eq. (F25) to Eq. (F31) to rotate z2R(B) into a more recognizable form:

z2R(B) = m(Z3) +m(E3) +m(D3) +m(C3) mod 2. (F32)
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Specifically, using the small irrep label substitution in Eq. (F21), we recognize z2R(B) as the formula from Refs. 198,203
for the Chern number modulo 2 in the ky = π plane:

z2R =
∑

K=Z,E,D,C

n
1
2

K mod 2, (F33)

in which we have substituted k → K for notational consistency with previous works14,99. Because {C2y|0} is a
symmetry of every BZ plane of constant ky (see Fig. 24), then in an insulating phase, the compatibility relations
require that the {C2y|0} eigenvalues of the occupied bands along each of the {C2y|0}-invariant lines kx,y = 0, π are
the same at each ky. Hence z2R = 1 implies that the ky = π and ky = 0 planes both exhibit odd Chern numbers, such
that the occupied bands either correspond to a 3D quantum anomalous Hall (QAH) insulator with an odd number
of chiral modes per ky on surfaces whose normal vectors point in the xz-plane, or to a Weyl semimetal with an even
number of Weyl points between ky = 0, π.

3. Minimal Double SIs in the 1,651 Double SSGs

Because there are 805 double SSGs G for which the double SI group |ZG| > 1 (see Table XII), then individually
calculating the bulk and anomalous surface and hinge states and physical basis for each stable topological symmetry
data vector in each SSG is a practically intractable task. However, in this section, we will detail a procedure for
identifying a considerably smaller set of minimal SSGs with minimal double SIs, on which the double SIs in all 1,651
double SSGs are dependent. Specifically, by recognizing that the symmetry-indicated spinful topological semimetals,
TIs, and TCIs in non-minimal double SSGs are indicated by the same bulk symmetries as spinful topological semimet-
als, TIs, and TCIs in the minimal double SSGs, we will reduce the calculation of the physical double-SI-formula bases
and symmetry-respecting bulk and boundary states to a smaller, tractable problem.

Statistics of the Double SIs

Type SSGs with |ZG| > 1 Minimal SSGs

Type-I 126 18

Type-II 117 5

Type-III 286 11

Type-IV 276 0

Total 805 34

TABLE XII: Statistics for the double SIs of the 1,651 double SSGs. In order, each row of this table contains the type of the
double SSG [see Appendix B], the number of double SSGs with nontrivial double SI groups [|ZG| > 1, see Eq. (F17) and the
surrounding text], and the number of minimal double SSGs with minimal double SIs.

To begin, consider a double SSG G and a subgroup M of G that is isomorphic to an SSG. Using the procedure
detailed in Appendix F 2, we then calculate the double SI groups ZG,M , double SI formulas (in their original, arbitrary
bases), and the symmetry data vectors BGi and BMj of the SI topological bands in G and M , respectively. We next

restrict consideration to the case in which the double SI groups ZG,M are both nontrivial (i.e. |ZG,M | 6= 1|). Lastly,
we determine whether the SI topological bands in G subduce to inequivalent SI topological bands in M , in which case,
we consider the double SIs in G to be dependent on the double SIs in M . Specifically, for an SSG G and a subgroup
M of G that is isomorphic to an SSG (but not necessarily an SSG with the same Bravais lattice as G), the double
SIs in G are dependent on the double SIs in M if and only if:

1. |ZG| ≤ |ZM |.

2. For each SI topological band in G with a symmetry data vector BGi [defined in the text following Eq. (F17)], the
subduced SI vector zM (BGi ↓M) [Eq. (F16)] exhibits a distinct value for each choice of i. Specifically, given any
two SI topological bands BGi1 and BGi2 in G for which zG(BGi1) 6= zG(BGi2), the SIs in G can only be dependent

on the SIs in M if zM (BGi1 ↓M) 6= zM (BGi2 ↓M) for all choices of BGi1 and BGi2 .

The above requirements indicate the conditions under which the double SIs in G are dependent on the double SIs
in M . However, there may also exist subgroups M ′ of M where the double SIs in both G and M are dependent on
the double SIs in M ′. Hence, given an SSG M for which |ZM | > 1, if there does not an exist a subgroup M ′ of M
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for which the double SIs in M are dependent on the double SIs in M ′, then we define M as a minimal double SSG.
Correspondingly, we define the minimal double SIs of the 1,651 double SSGs as the double SIs of the minimal double
SSGs.

We note that in this work, we have employed a more narrow definition than in other previous works14,99 for minimal
SIs. Specifically, in Refs. 14,99 the authors considered cases in which the SIs in G in are neither dependent on the SIs
in the subgroups M ⊂ G and M ′ ⊂ G (where M is not isomorphic to M ′), but where the SIs in G are still spanned by
the combined SIs in M and M ′. As we will show below, using our narrower definition of minimal SIs, we still obtain
a manageable number of minimal double SSGs.

Next, given a minimal SSG M and an SSG G in which the SIs are dependent on the SIs in M , it follows that all of
the symmetry-indicated stable topological semimetals, TIs, and TCIs in G are indicated by the same bulk symmetries
that indicate the bulk topology in M . Specifically, this dependency occurs because the set of SI topological bands in
G subduced onto M is spanned by the SI topological bands in M modulo EBRs of M , and because the EBRs of M
do not exhibit topological bulk, surface, or hinge states14,15,20, as they are Wannierizable5,57,58,60,85,86.

Conversely, if the bulk bands of a symmetry-indicated TI or TCI in G are subduced onto an SSG M where the SIs
in G are dependent on the SIs in M , the subduced topological insulating phase in M may exhibit different anomalous
boundary states. For example, when symmetry-indicated 3D TIs – such as an insulator with z2 = 1 in Type-II double
SG 81.34 P 4̄1′ (see Ref. 14) – are subduced to magnetic axion insulator (AXI)19,20,29,68,103–121 phases in minimal
MSGs (in this case, Type-I double MSG 81.33 P 4̄, see Appendix G 3), the twofold surface Dirac cones of the parent
3D TI become gapped on surfaces in which the Dirac cones are only protected by T symmetry (see Refs. 20,33–
35,210), revealing a symmetric-sample-spanning network of chiral hinge modes. More generally, given a TI or TCI
that respects the symmetries in the bulk SSG G, the anomalous 2D surface states on a surface with a Miller index
vector n̂ are necessarily protected by the symmetries of a wallpaper subgroup of G131,132 that leaves n̂ invariant.
However, when the occupied topological bands are subduced onto a subgroup M ⊂ G where M is isomorphic to an
SSG, it is not generically guaranteed that the 2D surface states on the n̂-normal surface are still gapless, because
the n̂-normal surface only respects the symmetries of a wallpaper subgroup of M . Nevertheless, we find that a finite
(0D) geometry can in many cases be chosen for a symmetry-indicated TI or TCI that respects the symmetries of a
bulk SSG G such that, upon subducing the bulk bands onto a subgroup M ⊂ G, the boundary states do not become
gapped. Importantly, 3D TIs that subduce to magnetic AXIs27–30 represent a notable exception, because all 2D
surfaces of 3D TIs exhibit odd numbers of twofold Dirac cones, whereas there do not exist magnetic AXIs in which
all 2D surfaces are gapless19,20,29,68,103–121.

Furthermore, we note that it is also possible for an SI topological band BGi in G to correspond to a gapless
(semimetallic) phase even if a subduced SI topological band BGi ↓ M corresponds to a gapped (TI or TCI) phase.
An example occurs in Type-IV double MSG 75.5 PC4 and its minimal double subgroup Type-I MSG 75.1 P4. As we
will show below in Appendix F 4 e, all of the double SIs in M = P4 are compatible with rotation-symmetry-indicated
QAH states. However, because:

G = PC4 = P4 ∪ {T |tc/2}P4, (F34)

then G contains the antiunitary symmetry {C2z×T |tc/2}, which enforces the presence of gapless (Weyl) points in the
kz = 0, π planes for all nontrivial values of the SIs in G14,35,211. This can be seen by recognizing that {C2z ×T |tc/2}
symmetry can protect gapless points in 2D systems (e.g. high-symmetry BZ-planes), and that the Chern numbers of
the occupied bands in {C2z × T |tc/2}-invariant planes (e.g. kz = 0, π) are required by symmetry to vanish. After
the submission of this work, the authors of Ref. 84 performed a complete enumeration of the cases in which an SI
topological band BGi in G corresponds to a gapless phase while the SI topological band BGi ↓ M in the subgroup
M ⊂ G is compatible with a gapped topological phase.

In this work, we have exhaustively calculated the double SI groups and formulas of all 1,651 double SSGs, and have
determined that, remarkably, there are only 34 minimal double SSGs (see Table XII):

1. Minimal Type-I Double MSGs (18 MSGs): 2.4 P 1̄, 3.1 P2, 10.42 P2/m, 47.249 Pmmm, 75.1 P4, 77.13 P42,
81.33 P 4̄, 83.43 P4/m, 84.51 P42/m, 88.81 I41/a, 123.339 P4/mmm, 143.1 P3, 147.13 P 3̄, 168.109 P6, 174.133
P 6̄, 175.137 P6/m, 176.143 P63/m, 191.233 P6/mmm.

2. Minimal Type-II Double SGs (5 SGs): 2.5 P 1̄1′, 83.44 P4/m1′, 87.76 I4/m1′ 175.138 P6/m1′ 176.144 P63/m1′.

3. Minimal Type-III Double MSGs (11 MSGs): 27.81 Pc′c′2, 41.215 Ab′a′2, 54.342 Pc′c′a, 56.369 Pc′c′n, 60.424
Pb′cn′, 83.45 P4′/m, 103.199 P4c′c′, 110.249 I41c

′d′, 130.429 P4/nc′c′, 135.487 P4′2/mbc
′, 184.195 P6c′c′.

Interestingly, we observe that there are no minimal Type-IV double MSGs (see Table XII). As discussed in the
main text, this implies that symmetry-indicated spinful topological phases in Type-IV MSGs are actually enforced
by the symmetries of lower-symmetry Type-I or Type-III double MSGs. For example, we find that the inversion-
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(I-) symmetric antiferromagnetic (AFM) TCIs introduced in Ref. 76, which respect the symmetries of Type-IV
MSGs containing {I|0}, in fact subduce to I-symmetric AXIs19,20,29,68,103–121 in Type-I double MSG 2.4 P 1̄ (see
Appendix F 4 a for the double SI group and formulas of double MSG 2.4 P 1̄). Previously, in Ref. 14, the authors
determined that the double SIs in all Type-II double SGs are dependent on the double SIs in one of six Type-II
double SGs: 2.5 P 1̄1′, 81.34 P 4̄1′, 83.44 P4/m1′, 174.134 P 6̄1′, 175.138 P6/m1′, and 176.144 P63/m1′. However, in
this work, we find that Type-II SGs 81.34 P 4̄1′ and 174.134 P 6̄1′ are no longer minimal double SSGs after including
magnetic subgroups of Type-II SGs, because their double SIs are respectively dependent on the double SIs in Type-I
double MSGs 83.33 P 4̄ and 174.133 P 6̄. Additionally, for the purposes of this work, we have included Type-II SG
87.76 I4/m1’ in our list of minimal double SSGs, because its double SI formulas can only be spanned by subducing
SI topological bands onto two different minimal double SSGs (Type-II SGs 2.5 P 1̄1′ and 83.44 P4/m1′), rather than
one. In the Supplementary Table in Appendix G 3, we provide a complete enumeration of the minimal double SSGs
with the minimal double SIs on which the double SIs in each double SSGs are dependent.

4. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs

Previously, in Appendix F 3, we determined that the SIs in each of the 1,651 double SSGs are fully dependent on
the minimal double SIs in one of 34 minimal double SSGs (the minimal double SSG associated to each double SSG is
listed in the Supplementary Table in Appendix G 3). In this section, we will present the minimal double SIs in all 34
minimal double SSGs, and hence, the minimal double SIs of spinful band topology in all 1,651 double SSGs. We will
additionally transform the double SI formulas into a unified basis – which we term a physical basis – in which the double
SIs for previously established spinful topological semimetals (SMs), TIs, and TCIs17,18,27–29,31–33,35,40,64–66,202,212 take
the same form as the double SIs introduced in previous works7,13–15,19,34,36,97–101,203. In a physical basis, the SIs for
topological phases with the same response theories [e.g. a z8 = 1 3D TI in Type-II SG 123.340 P4/mmm1′ and an
η4I = 2 magnetic AXI in MSG 2.4 P 1̄, see Ref. 14 and Appendix F 4 a] are related through simple relations obtained
from group-subgroup subduction [e.g. the relation η4I = 2(z8 mod 2) introduced in this work].

Below, for each minimal double SSG G, we will list the SI group ZG [Eq. (F17)] and the SI formula(s). We will
additionally formulate layer constructions for the gapped (TI and TCI) phases, where admitted (see Refs. 14,207 for
further discussions of cases in which TI and TCI phases do not admit layer constructions). For the symmetry-indicated
3D QAH phases that we identify in the 34 minimal double SSGs, the anomalous boundary states are chiral modes along
surfaces perpendicular to the Chern-layer stacking direction16,64,212. We will show that the remaining 3D symmetry-
indicated, spinful, gapped topological phases in the 34 minimal double SSGs are 3D TI and TCI phases – which we
will show to consist of AXIs19,20,29,68,103–121 with chiral hinge states, 3D TIs with twofold-degenerate, T -symmetry-
protected surface Dirac cones27–30, helical mirror TCIs with mirror-protected surface states32,202, and higher-order
TCIs (HOTIs) with mirror- or T -protected helical hinge states7,14,15,18–20,34–36,98,102. We emphasize that, employing
the convention of Refs. 18,34, a 2D crystal surface can only respect the symmetries of a wallpaper group, whereas
a 1D hinge may either respect the symmetries of a frieze group or a line group [defined in Refs. 131,132,204,205],
depending on how the finite sample is cut from an infinite crystal. In this work, we define a helical (i.e. non-axionic)
TCI phase to be higher-order topological if the TCI phase, when cut into a nanorod geometry, exhibits anomalous
helical states that run along nanorod edges that are parallel to bulk rotation axes, where each edge is left invariant
under a frieze or line group that contains either T symmetry or a mirror line parallel to the nanorod edge.

For each of the 34 minimal double SSGs, we will additionally identify the minimal layer constructions necessary
to span the subset of SI topological bands [defined in the text following Eq. (F17)] corresponding to gapped (TI and
TCI) phases; however, as we will detail below, we find that some of the symmetry-indicated spinful TI and TCI phases
in the 34 minimal double SSGs are not layer-constructable. Specifically, as demonstrated in Ref. 14, a large subset of
the previously identified TI and TCI phases in each Type-II SG G can be modeled by placing decoupled, flat layers of
Chern insulators, 2D TIs, and 2D TCIs in each unit cell of a crystal that respects the symmetries of G. In this work,
we find that a subset of the AXI phases in the minimal double SSGs cannot be constructed from layers of 2D TIs and
TCIs. We conjecture that the AXI phases without layer constructions can still be constructed using the “topological
crystal” framework discussed in Ref. 207, which incorporates cell complexes of 2D TIs and TCIs.

Throughout this section, we will obtain the properties of each minimal double SSG using tools on the BCS. Specifi-
cally, we will obtain the generators for each minimal double SSG using the MGENPOS tool91–94, the maximal Wyckoff
positions using the MWYCKPOS tool91–94, the maximal momentum stars using the MKVEC tool (see Appendix D 1),
the small (co)reps using the Corepresentations tool (see Appendix D 2), and the EBRs using the MBANDREP tool
(see Appendix E 3).

In this work, we will provide each double SI formula in the notation of Appendix F 2 a and Refs. 14,99. For
centrosymmetric SSGs (i.e. SSGs that contain {I|0} in at least one definition of the unit cell origin), we will use

https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_gen.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/mbandrep


81

the symbols n±K to respectively indicate the number of Bloch eigenstates at the inversion-invariant point k = K with
the parity ({I|0}) eigenvalues ±1 in a given energy range (which is typically runs over the occupied bands). For
SSGs that contain rotation symmetries of the form {Cn|0} or screw symmetries of the form {Cnl|tl/b} in at least

one definition of the unit cell origin, we will use the symbol njK to indicate the number of Bloch eigenstates at the

Cn-rotation(or screw)-invariant point k = K with the rotation eigenvalue e−i
2π
n j in a given energy range. Because

we are restricting focus in this work to the double SIs of spinful band topology in the 1,651 SSGs, the factor of j in
each rotation eigenvalue e−i

2π
n j is half-integer-valued; in this work, we term j the angular momentum (taken modulo

n) of the rotation- or screw-invariant Bloch eigenstates at K. Next, for SSGs that contain fourfold rotoinversion
symmetries of the form {S4|0} = {C4 × I|0} (but not fourfold rotation symmetries of the form {C4|0}) in at least

one definition of the unit cell origin, we will use the symbol njK to indicate the number of Bloch eigenstates at the

S4-invariant point k = K with the {S4|0} rotoinversion eigenvalues e−i
2π
4 j in a given energy range. Generically, njK

(j = ± 1
2 ,±

3
2 ) is defined using {S4|0} eigenvalues only if the point K is {S4|0}-invariant, but not {C4|0}-invariant.

Conversely, if K is {C4|0}-invariant, then njK (j = ± 1
2 ,±

3
2 ) is always defined using the eigenvalues of {C4|0}. Lastly,

for SSGs that contain both mirror symmetries of the form {ml|0} and rotation symmetries of the form {Cnl|0} or

screw symmetries of the form {Cnl|tl/b} in at least one definition of the unit cell origin, we will use the symbols nj,±iK
to respectively indicate the number of Bloch eigenstates at the rotation- or screw-invariant point k = K with the
rotation or screw eigenvalue e−i

2π
n j and the mirror eigenvalue ±i in a given energy range.

Before we will derive the double SIs in the 34 minimal double SSGs, we will first summarize our labeling convention
for double SIs. First, for double SIs that have the same SI formulas as the nonmagnetic double SIs introduced in
Refs. 14, we have followed the labeling convention established in Ref. 14:

1. z2w,i (i = 1, 2, 3) are the weak TI SIs in the ki = π planes, or the weak mirror Chern numbers modulo 2 in the
ki = π planes in the absence of {T |0} symmetry.

2. znm,k (n = 4, 3, 6, k = 0, π) are the mirror Chern numbers (modulo n) in the kz = k plane indicated by rotation
eigenvalues in SSGs 83.44 P4/m1′, 174.134 P 6̄1′, 175.138 P6/m1′ for n = 4, 3, 6, respectively. In this work,
we will use the symbol z±nm,k to represent the Chern numbers of sets of bands with mirror eigenvalues ±i,
respectively.

3. z4, z2, z8, z12, and z′12 indicate strong 3D TIs and helical TCIs and HOTIs in SSGs 2.5 P 1̄1′, 81.34 P 4̄1′, 83.44
P4/m1′, 175.138 P6/m1′, 176.144 P63/m1′, respectively. Odd values of z4, z2, z8, z12, and z′12 correspond to
strong TIs. z4 = 2, z8 = 4, z12 = 6, z′12 = 6 correspond to non-axionic HOTI phases with helical hinge states or
mirror TCIs with even mirror Chern numbers (see Appendices F 4 s through F 4 w and Ref. 14).

If the double SIs in a Type-II SSG G continue to indicate stable topological phases in a magnetic subgroup M of G,
then we will use the same double SI labels and formulas in G and M .

We additionally find that there are Type-I and Type-III double MSGs with new double SIs that are not subduced
from Type-II SSGs (see Table XII). For these minimal magnetic double SIs, we have adopted a convention in which:

1. znR (n = 2, 3, 4, 6) represent Chern numbers (modulo n) indicated by rotation eigenvalues.

2. z′nR and z′′nR (n = 2, 3, 4, 6) represent doubled Chern numbers indicated by rotation eigenvalues [i.e. z′nR =
(C/2) mod n] in nonsymmorphic MSGs.

3. η4I is defined in MSG 2.4 P 1̄. Odd values of η4I correspond to Weyl semimetals, and η4I = 2 corresponds to
an AXI provided that the net Chern numbers are zero and there are no Weyl points in the BZ interior. We use
the symbol “η” rather than “z” to distinguish η4I from the double SI z4 in the minimal double SSGs 2.5 P 1̄1′,
47.249 Pmmm, and 83.45 P4′/m and from the double SI z′4 in double MSG 135.487 P4′2/mbc

′.

4. z2I,i (i = 1, 2, 3) are defined in double MSG 2.4 P 1̄, and respectively represent the Chern numbers modulo 2 in
the ki = π planes indicated by I (parity) eigenvalues. We have used the subscript “I” to distinguish z2I,i from
z2R (the Chern number modulo 2 indicated by C2 rotation eigenvalues) and z2w,i (the weak TI and TCI parity
indices discussed above).

5. η′2I = 1
2η4I represents a doubled variant of η4I that is present in SSGs in which symmetry requires η4I to be

even.

6. δnm (n = 2, 3, 4, 6) represent the differences between the mirror Chern numbers in the kz = 0, π planes (modulo
n).
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7. z4S and δ2S are defined in MSG 81.33 P 4̄. Respectively, z4S and δ2S represent the total Chern number (modulo
4) in the kz = π plane and twice the difference of the total Chern numbers in the kz = 0, π planes (i.e.
δ2S = [(Ckz=π − Ckz=0)/2] mod 2).

8. z′4 in MSG 135.487 P4′2/mbc
′ represents a different Z4-valued doubled variant of the double SI η4I than the

double SI z4 discussed above [e.g. η4I = (2z′4) mod 4].

9. For all of the symbols of the double SIs, the first number (n) in the subscript indicates that the corresponding
double SI takes integer values in the range [0, n− 1].

a. Double SIs in Type-I Double MSG 2.4 P 1̄

The double MSG 2.4 P 1̄ is generated by {E|100}, {E|010}, {E|001}, and {I|0}. The SIs of MSG 2.4 P 1̄ were
previously analyzed in Refs. 16,213; the previous analyses performed in Refs. 16,213 agree with the analysis performed
in this section.

Double SIs – The double MSG 2.4 P 1̄ has the SI group Z4 × Z3
2. We define the four SIs of double MSG 2.4 P 1̄ to

be (η4I , z2I,1, z2I,2, z2I,3), and we define the four SI formulas to be:

η4I =
∑
K

n−K mod 4 =
∑
K

1

2
(n−K − n

+
K) mod 4, (F35)

and:

z2I,i=1,2,3 = Cki=π mod 2 =
∑

K,Ki=π

n−K mod 2, (F36)

where K runs over the eight I-invariant momenta in the first BZ, and n±K are the number of Bloch states with
±1 parity (I) eigenvalues at K in the group of bands under consideration (typically the occupied bands). We find
that z2I,i indicates the parity of the momentum-space Chern number in the ki = π plane, in agreement with the
Chern number SI formulas previously introduced in Refs. 198,203. Correspondingly, we find that η4I mod 2 is the
parity of the difference between the Chern numbers in the kz = 0 and kz = π planes. Because a 3D |C| = 1 Weyl
point is equivalent to the quantum critical point64 between 2D Chern insulating phases with |∆C| = 1, then this
implies that η4I = 1, 3 correspond to Weyl SM (WSM) phases that satisfy the insulating compatibility relations (see
Appendix D 3), similar to the WSM and nodal-line SM phases previously analyzed in Refs. 19,64,99,113,196,214,215.
The boundary states of the η4I = 1, 3 WSM phases differ from each other by a chiral hinge state or gapless surface
states, because, as we will show below, the SI difference ∆η4I = 3− 1 = 2 either corresponds to an AXI or a 3D QAH
state. In this work, we refer to symmetry-indicated SM phases that satisfy the insulating compatibility relations as
Smith-index SMs (SISMs).

Layer constructions – We will now formulate layer constructions of the symmetry-indicated spinful TI and TCI
phases in double MSG 2.4 P 1̄. In each unit cell, we will use the relative 3D coordinates (x, y, z) to index layer
positions, where the unit cell is defined as lying within 0 ≤ x, y, z < 1. In position space, an I center at (0, 0, 0)
transforms the coordinates (x, y, z) to (−x,−y,−z). For a position r to be considered I-invariant, we require that:

Ir = r mod (1, 0, 0) mod (0, 1, 0) mod (0, 0, 1). (F37)

Consequently, the eight maximal Wyckoff positions (i.e. the I centers) in MSG 2.4 P 1̄ lie at x, y, z = 0, 1/2.
We next study the layer constructions of the insulating subset of the SI topological bands (i.e. the symmetry-

indicated topological phases that do not correspond to Weyl SISMs with odd η4I indices). We first introduce the
layer construction generators, each of which is equivalent to a 3D QAH insulator16,104,105,212, where the double SIs
for each layer construction are given in the order (η4I , z2I,1, z2I,2, z2I,3):

1. An x̂-normal Chern layer with Cx = ±1 in the x = 0 plane has the SIs (2100).

2. An x̂-normal Chern layer with Cx = ±1 in the x = 1
2 plane has the SIs (0100).

3. A ŷ-normal Chern layer with Cy = ±1 in the y = 0 plane has the SIs (2010).

4. A ŷ-normal Chern layer with Cy = ±1 in the y = 1
2 plane has the SIs (0010).

5. A ẑ-normal Chern layer with Cz = ±1 in the z = 0 plane has the SIs (2001).

6. A ẑ-normal Chern layer with Cz = ±1 in the z = 1
2 plane has the SIs (0001).
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For the double SIs of the above layer constructions, we have adopted the convention used in Refs. 14,99 in which
commas are suppressed for specific values of the SIs [e.g. (η4I , z2I,1, z2I,2, z2I,3) = (2100)]. Below, we will detail the
explicit calculations that we have performed to calculate the SIs of each layer construction, focusing on the cases of
ẑ-normal Chern layers with Cz = 1 respectively placed at z = 0 and z = 1

2 . In this work, we will only consider layer
constructions of stable topological phases (as opposed to fragile phases, see Appendix F 1 and Refs. 53,54,56–58,181–
184,186–190), which do not depend of the positions of layers with trivial 2D stable topological invariants [i.e. layers of
2D fragile phases or (obstructed) atomic limits]14. Hence, for stable topological phases that admit layer constructions,
the stable SIs are fully determined by the positions, orientations, and 2D stable topology of the layers.

First, we consider a crystal in double MSG 2.4 P 1̄ that is constructed of layered, ẑ-normal Chern insulators with
Cz = 1 that lie at z = 0 in each unit cell. We assume, without loss of generality, that each Chern insulator originates
from placing one valence (occupied) spinful s orbital at (x, y) = (0, 0), placing one conduction (unoccupied) spinful p
orbital at (x, y) = (0, 0), and then inverting bands at (kx, ky) = (0, 0), resulting in the occupied parity eigenvalues:

λ′(0, 0) = −1, λ′(π, 0) = 1, λ′(0, π) = 1, λ′(π, π) = 1. (F38)

As shown in Refs. 198,203 the Chern number Cz of each layer satisfies:

(−1)Cz =
∏
K

∏
n∈occ

λ′n(K), (F39)

where K runs over the four I-invariant momenta in Eq. (F38), and λ′K,n is the parity eigenvalue of the nth energetically

isolated band at K [though for the specific case that we are discussing, there is only one isolated (valence) band n = 1].
The parity eigenvalues shown in Eq. (F38) indicate that each layer carries a nontrivial Chern number Cz mod 2 = 1.

Next, we express the occupied band of each Chern layer in a basis of hybrid Wannier functions161,162 in which
states within the layers are exponentially localized in z and depend on the crystal momenta kx,y. We then return to
momentum space by Fourier-transforming the z component of the hybrid Bloch-Wannier wavefunction of the occupied
band:

|ψk〉 =
1√
Nz

∑
z=0,±1···

e−izkz |ψkx,ky,z〉, (F40)

in which Nz is the number of unit cells in the crystal in the z-direction. In the hybrid basis of (kx, ky, z):

I(kx, ky, z) = (−kx,−ky,−z), (F41)

and hybrid coordinates h are considered to be I-invariant if:

Ih = h mod (2π, 0, 0) mod (0, 2π, 0) mod (0, 0, 1). (F42)

However, it is important to emphasize that the hybrid wavefunction |ψkx,ky,z〉 of each layer, unlike the Bloch
wavefunction |ψk〉, is generically not an eigenstate of I:

I|ψkx,ky,z〉 = λ′(kx, ky)|ψkx,ky,−z〉, (F43)

in which λ′(kx, ky) is the parity eigenvalue of the occupied band in the 2D BZ of a single Chern insulator. For a
crystal in double MSG 2.4 P 1̄ furnished by ẑ-normal, Cz = 1 Chern layers in the z = 0 plane of each cell, this implies
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that the parity eigenvalues at the I-invariant k points are given by:

I|ψk〉 =
1√
Nz

∑
z=0,±1···

e−izkzI|ψkx,ky,z〉

=
1√
Nz

∑
z=0,±1···

e−izkzλ′(kx, ky)|ψkx,ky,−z〉

= λ′(kx, ky)

[
1√
Nz

∑
z=0,±1···

eizkz |ψkx,ky,z〉

]

= λ′(kx, ky)

[
1√
Nz

∑
z=0,±1···

e−izkz
[
eikz

]2z |ψkx,ky,z〉
]

= λ′(kx, ky)

[
1√
Nz

∑
z=0,±1···

e−izkz |ψkx,ky,z〉

]
= λ′(kx, ky)|ψk〉, (F44)

where in the fifth line, we have used the relation [eikz ]2z = 1 for I-invariant momenta kz = 0, π and z ∈ Z. Through
Eq. (F44), we determine that the 3D parity eigenvalues λ(kx, ky, kz) satisfy λ(kx, ky, kz) = λ′(kx, ky). From the parity
eigenvalues of each layer listed in Eq. (F38), this implies that:

λ(0, 0, 0) = −1, λ(π, 0, 0) = 1, λ(0, π, 0) = 1, λ(π, π, 0) = 1,

λ(0, 0, π) = −1, λ(π, 0, π) = 1, λ(0, π, π) = 1, λ(π, π, π) = 1. (F45)

Substituting the parity eigenvalues from Eq. (F45) into Eqs. (F35) and (F36), we obtain the SIs (2001) for a 3D
crystal in double MSG 2.4 P 1̄ with ẑ-normal Cz = 1 Chern insulators placed at z = 0 in each cell.

We next consider the case in which the 3D crystal is furnished with layers of ẑ-normal, Cz = 1 Chern insulators
that lie at z mod 1 = 1

2 . The Bloch wavefunction of the occupied band of the 3D crystal takes the form:

|ψk〉 =
1√
Nz

∑
z=± 1

2 ,±
3
2 ···

e−izkz |ψkx,ky,z〉. (F46)

Unlike previously in Eq. (F44), for a crystal in double MSG 2.4 P 1̄ furnished by ẑ-normal, Cz = 1 Chern insulator in
the z = 1

2 plane of each unit cell, the parity eigenvalues at the I-invariant k points are given by:

I|ψk〉 =
1√
Nz

∑
z=± 1

2 ,±
3
2 ···

e−izkzI|ψkx,ky,z〉

=
1√
Nz

∑
z=± 1

2 ,±
3
2 ···

e−izkzλ′(kx, ky)|ψkx,ky,−z〉

= λ′(kx, ky)

 1√
Nz

∑
z=± 1

2 ,±
3
2 ···

eizkz |ψkx,ky,z〉


= λ′(kx, ky)

 1√
Nz

∑
z=± 1

2 ,±
3
2 ···

e−izkz
[
eikz

]2z |ψkx,ky,z〉


= λ′(kx, ky)eikz

 1√
Nz

∑
z=± 1

2 ,±
3
2 ···

e−izkz |ψkx,ky,z〉


= λ′(kx, ky)eikz |ψk〉, (F47)

where in the fifth line, we have exploited that the summation is taken over half-integer values of z. Eq. (F47) implies
that the 3D parity eigenvalues λ(kx, ky, kz) satisfy λ(kx, ky, kz) = eikzλ′(kx, ky). From the parity eigenvalues of each
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layer listed in Eq. (F38), this indicates that:

λ(0, 0, 0) = −1, λ(π, 0, 0) = 1, λ(0, π, 0) = 1, λ(π, π, 0) = 1,

λ(0, 0, π) = 1, λ(π, 0, π) = −1, λ(0, π, π) = −1, λ(π, π, π) = −1. (F48)

Substituting the parity eigenvalues from Eq. (F48) into Eqs. (F35) and (F36), we obtain the SIs (0001) for a 3D
crystal of ẑ-normal Cz = 1 Chern insulators placed at z = 1

2 in double MSG 2.4 P 1̄.
For the remainder of this work, we will not explicitly calculate the 3D symmetry eigenvalues that are implied by

each layer construction. However, because the unitary symmetries of magnetic crystals are drawn from the same
set as the unitary symmetries of nonmagnetic crystals [i.e. because the unitary subgroups of both Type-II SGs and
Type-III and IV MSGs are isomorphic to Type-I MSGs, see Appendix B], then the symmetry eigenvalues of the
magnetic layer constructions introduced in this work can be extrapolated from the analogous analyses of nonmagnetic
layer constructions in Ref. 14.

The inversion Z2 invariant and AXIs – We find that η4I = 2 if and only if the I-center at the origin (000) is occupied
by a layer with an odd Chern number. For 3D QAH states (i.e. 3D insulators with nonzero Chern numbers), the
η4I = 0, 2 phases have the same bulk response. For example, layer constructions 1 and 2 for double MSG 2.4 P 1̄ –
which exhibit η4I = 2, 0, respectively – are related by a shift of origin from (000) to (00 1

2 ). Nevertheless, the boundary
states of insulators with η4I = 0, 2 are distinct. For a finite-size sample with an I center at (000), the state with
η4I = 2 has a single Chern layer passing through the I center, and pairs of Chern layers at positions (00,±z). In the
finite sample, the total Chern number is therefore odd, and there is an I-symmetric chiral hinge (or surface) mode
surrounding the sample guaranteed by the net-odd Chern number. However, in the state with η4I = 0, all of the
Chern layers appear in pairs at the positions (00,±z), such that the total Chern number is even. This implies the
possibility of a completely gapped finite sample (i.e. a total sample Chern number of zero).

For 3D insulators with vanishing Chern numbers, η4I = 0, 2 correspond to trivial insulators and AXIs, respectively.
For example, the TCI constructed by one Cz = 1 layer in the z = 0 plane and one Cz = −1 layer in the z = 1

2 plane

is an AXI with the double SIs (2000)16,108,114,115,118,119,213. The chiral hinge states of the AXI can be understood
by observing that the chiral modes on the boundary of the layered crystal alternate in direction, and can hence
pairwise annihilate – when the finite-sized crystal is I-symmetric, there is an unpaired chiral mode that is equivalent
to a boundary-encircling chiral hinge state. Specializing to the even sector of η4I , this implies that an inversion Z2

invariant may be defined as:

η′2I =
1

2
η4I mod 2. (F49)

We emphasize that it is η4I – as opposed to η′2I – that is returned by the Smith normal form calculation (see
Appendix F 2) for double MSG 2.4 P 1̄. The non-minimal index η′2I is integer-valued only for 3D insulators or WSMs
with even numbers of Weyl points in each half of the bulk BZ. Nevertheless, as we will show below, in many higher-
symmetry double SSGs in which the SIs depend on the SIs in double MSG 2.4 P 1̄ (see Appendix G 3), the Smith
normal form calculation does return η′2I . From previous works19,20,29,68,103–121, we recognize that η′2I = 1 is related
to the axion angle θ = π:

θ mod 2π = πη′2I . (F50)

However, it is crucial to note that the axion angle θ = π does not always indicate an axionic band-insulating phase
(i.e. an AXI or 3D TI, see Refs. 19,20,27–29,68,103–121). For example, consider the case of a crystal in MSG 2.4 P 1̄
furnished by one Cz = 1 layer in the z = 0 plane and one Cz = 1 layer in the z = 1

2 plane – the bulk topological
phase is not an AXI, but is instead a 3D QAH insulator with Cz = 2 per unit cell. For the Cz = 2 QAH insulator,
the SIs [(2000)] are the same as those of the AXI discussed in the text surrounding Eqs. (F49) and (F50), indicating
that θ = πη′2I = π, despite the fact that the bulk is not an AXI. This can be understood by recognizing that the
axion θ angle is origin-dependent when the Z-valued, non-symmetry-indicated Chern numbers of a 3D crystal do
not vanish108,118,119,216,217, and hence θ can still be nonzero in a 3D QAH phase depending on the choice of origin.
Therefore, in order for Eq. (F50) to indicate the origin-independent θ angle of an AXI, it is additionally required
that the total Chern numbers Cx,y,z vanish in each unit cell. Lastly, we note that Eq. (F50) differs by π from the
definition of θ as a “Chern number polarization” employed in Refs. 108,118,216. Hence, in 3D insulators with non-
vanishing position-space Chern numbers (i.e. nonzero total Chern numbers in any direction summed across the layers
in each position-space unit cell) and origin- (i.e. convention-) dependent θ angles, the SIs introduced in this work [e.g.
Eq. (F50)] return values of θ that are shifted from the values in Refs. 108,118,216 by π. Importantly, however, both
Eq. (F50) and the Chern number polarization in Refs. 108,118,216 correctly diagnose the convention-independent
bulk θ angle of AXIs to be θ = π.
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Relationship with the SIs in other double SSGs – As shown in Refs. 7,14,15, the double SIs in double SG 2.5 P 1̄1′

take the same form as Eqs. (F36) and (F35) under the replacement of n−K with n−K/2 [i.e. the number of energetically
isolated Kramers pairs of Bloch states at K]. The SI topological bands in double SG 2.5 P 1̄1′ subduced onto double
MSG 2.4 P 1̄ imply the double SI dependencies:

(z4, z2w,1, z2w,2, z2w,3)P 1̄1′ → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2(z4 mod 2), 000)P 1̄. (F51)

b. Double SIs in Type-I Double MSG 3.1 P2

The double MSG 3.1 P2 is generated by {E|100}, {E|010}, {E|001}, and {C2y|0}, and has the double SI group
Z2. We first recall the formula established in Refs. 104,198,203 for the parity of the Chern number in a ŷ-normal 2D
insulator with {C2y|00} symmetry:

(−1)Cy =
∏
n∈occ

∏
K

ζn(K), (F52)

where Cy is the Chern number in the y-direction, ζn(K) is the {C2y|00} eigenvalue of the nth energetically isolated
state at K, and K runs over the four {C2y|00}-invariant momenta in 2D. Using Eq. (F52), we define the double SI
z2R of MSG 3.1 P2 to be the parity of the Chern number Cy in the ky = π plane:

z2R = Cky=π mod 2 =
∑

K=Z,D,C,E

n
1
2

K mod 2, (F53)

where n
1
2

K is the number of energetically isolated states with the {C2y|0} eigenvalue −i [corresponding to an angular
momentum (modulo 2) of j = 1

2 ] at K. For 3D insulating phases, the Chern numbers in all of the BZ planes of
constant ky for −π ≤ ky < π must be the same (otherwise, there would be bulk Weyl points, and the bulk would not
be an insulator). Hence, a 3D insulator with z2R = 1 is a 3D QAH state with Cy mod 2 = 1.

If the symmetry operation {T |0} were added, a crystal in double MSG 3.1 P2 would become invariant under Type-
II double SG 3.2 P21′. In P21′, states at the four TRIM points K in Eq. (F53) form Kramers pairs with opposite

{C2y|0} eigenvalues, causing n
1
2

K to be even, and z2R to be zero. This agrees with the absence of double SIs in Type-II
double SG 3.2 P21′ (see Appendix G 3), and the requirement that the position-space Chern numbers Cx,y,z vanish in
a nonmagnetic (T -symmetric) crystal67,218.

c. Double SIs in Type-I Double MSG 10.42 P2/m

The double MSG 10.42 P2/m is generated by {E|100}, {E|010}, {E|001}, {C2y|0}, and {my|0}.
SIs – The double MSG 10.42 P2/m has the SI group Z3

2. In the physical basis, the three double SIs of double MSG
10.42 P2/m (δ2m, z

+
2m,π, z

−
2m,π) have the respective SI formulas:

δ2m = C+
π − C−0 mod 2 =

∑
K=Z,D,C,E

n
1
2 ,+i

K −
∑

K=Γ,A,B,Y

n
1
2 ,−i
K mod 2, (F54)

z+
2m,π = C+

π mod 2 =
∑

K=Z,D,C,E

n
1
2 ,+i

K mod 2, (F55)

z−2m,π = C−π mod 2 =
∑

K=Z,D,C,E

n
1
2 ,−i
K mod 2, (F56)

where nj,±iK is the number of occupied states with angular momentum j, the {C2y|0} eigenvalue e−iπj , and the {my|0}
eigenvalue ±i. Because the matrix representative of {my|0} commutes with the matrix representative of {C2y|0} in
all double-valued small irreps at each of the I-invariant k points in double MSG 10.42 P2/m, then z±2m,π, respectively

indicate the Chern number parities in the mirror sector of the ky = π plane with {my|0} eigenvalue ±i. As discussed
in Appendix F 2 a, if the bulk is a 3D insulator, then the occupied states in the ky = 0, π planes have the same total
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Chern numbers (i.e the sum of the Chern numbers over the two mirror sectors in each of the ky = 0, π planes is the
same), because the insulating compatibility relations require that the occupied bands in the ky = 0, π planes have the
same {C2y|0} eigenvalues.

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ
the layer construction method. We denote the Chern numbers of the occupied bands in each mirror sector – which
we term the mirror sector Chern numbers – as (C+

ky=0, C
−
ky=0, C

+
ky=π, C

−
ky=π). The insulating compatibility relations

require that C+
ky=0 +C−ky=0 mod 2 = C+

ky=π +C−ky=π mod 2. We emphasize that the double SIs in Eqs. (F54), (F55),

and (F56) are fully determined by the above mirror sector Chern numbers (C+
ky=0, C

−
ky=0, C

+
ky=π, C

−
ky=π). We next

calculate the minimal double SIs of double MSG 10.42 P2/m in the order (δ2m, z
+
2m,π, z

−
2m,π), as well as the subduced

double SIs (η4I , z2I,1, z2I,2, z2I,3)P 1̄ in the subgroup double MSG 2.4 P 1̄ for a physical comparison and to identify
symmetry-indicated AXI phases in MSG 10.42 P2/m.

1. A ŷ-normal layer with C+
y = 1, C−y = 0 in the y = 0 plane has the mirror sector Chern numbers =(1010) and

the SIs (110). The subgroup SIs are (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2010)P 1̄.

2. A ŷ-normal layer with C+
y = 0, C−y = 1 in the y = 0 plane has the mirror sector Chern numbers (0101) and the

SIs (101). The subgroup SIs are (2010)P 1̄.

3. A ŷ-normal layer with C+
y = 1, C−y = 0 in the y = 1

2 plane has the mirror sector Chern numbers (1001) and the
SIs (001). The subgroup SIs are (0010)P 1̄.

4. A ŷ-normal layer with C+
y = 0, C−y = 1 in the y = 1

2 plane has the mirror sector Chern numbers (0110) and the
SIs (010). The subgroup SIs are (0010)P 1̄.

Relationship with the SIs in other double SSGs – To identify the AXI phases in double MSG 10.42 P2/m, we
subduce the SIs onto the SIs of double MSG 2.4 P 1̄:(

δ2m, z
+
2m,π, z

−
2m,π

)
P2/m

→ (η4I , z2I,1, z2I,2, z2I,3)P 1̄ =
(
2δ2m, 0, z

+
2m,π + z−2m,π, 0

)
P 1̄
. (F57)

We find that both the (100) and (111) states in double MSG 10.42 P2/m are consistent with AXI phases [but may
also, for example, be 3D QAH phases, see Appendix F 4 a]. We label the four layer constructions as L1,2,3,4. The
(100) and (111) states in double MSG 10.42 P2/m can be constructed as L1 − L4 and L1 − L3, respectively. Lastly,
−L3 (−L4) has the same construction as L3 (L4), except for a difference in the position-space mirror sector Chern
number C+

y = −1 (C−y = −1).
Lastly, Type-II double SSG 10.43 P2/m1′ – the double SSG that results from adding {T |0} symmetry to Type-I

double MSG 10.42 P2/m – has the SI group Z4 × Z3
2. The subduction relations between the double SIs in double

SSG 10.43 P2/m1′ and double MSG 10.42 P2/m are given by:

(z4, z2w,1, z2w,2, z2w,3)P2/m1′ → (δ2m, z
+
2m,π, z

−
2m,π)P2/m = (z4 mod 2, z2w,2, z2w,2)P2/m. (F58)

d. Double SIs in Type-I Double MSG 47.249 Pmmm

The double MSG 47.249 Pmmm is generated by {E|100}, {E|010}, {E|001}, {mx|0}, {my|0}, and {I|0}.
SIs – The double MSG 47.249 Pmmm has the SI group Z4 ×Z3

2. In double-valued small irreps of the little groups
at the I-invariant k points, the matrix representatives of perpendicular mirror symmetries (e.g. {mx|0} and {my|0})
anticommute. Hence, Bloch states at the eight I-invariant momenta must be at least twofold degenerate (and in fact
are exactly twofold degenerate in double MSG 47.249 Pmmm). The double SIs can be chosen to be the same as
the double SIs of SSG 47.250 Pmmm1′, because the addition of T symmetry to double MSG 47.249 Pmmm does
not change the dimensions and characters of the small irreps at the high-symmetry BZ points or the compatibility
relations between the high-symmetry-point small irreps. In the physical basis, the Z4 double SI is:

z4 =
∑
K

1

4
(n−K − n

+
K) mod 4, (F59)

where K indexes all I-invariant momenta and n±K is the number of occupied states with ±1 parity (I) eigenvalues
at K. z4 has the same form as η4I [Eq. (F35)], but carries an additional prefactor of 1/2. The extra factor of 1/2
in Eq. (F59) can be understood from the double degeneracy of the Bloch states at the I-invariant TRIM points,
where the two states in each doublet have the same parity eigenvalues and complex-conjugate pairs of spinful mirror
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eigenvalues ±i, due to the anticommutation relations discussed above. Hence, the SI formula for z4 [Eq. (F59)] is
simply one half of the SI formula for η4I [Eq. (F35)] (before applying the modulo 4 operation). The three Z2 SIs are
the mirror Chern number parities in the k1,2,3 = π planes:

z2w,i=1,2,3 =
∑

K,Ki=π

1

2
n−K mod 2. (F60)

Specifically, because an in-plane mirror operation reverses the sign of a 2D Chern number, and because all of the
mirror planes in the bulk BZ have additional in-plane mirror symmetries (e.g. the Hamiltonian in each BZ mirror
plane must respect the symmetries of magnetic layer group12,18,63,128,129,131 pmmm), then the net Chern number in
each BZ mirror plane in double MSG 47.249 Pmmm must vanish. For a group of bands in a mirror-invariant BZ
(position-space) plane for which C+

ki
= −C−ki (C+ = −C−), we then define the mirror Chern number32,202 to be |C+

ki
|

(|C+|).
Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ

the layer construction method. In the layer constructions below, C+ = −C− due to the net-zero Chern numbers
enforced by the mirror symmetries. Hence, we will omit C− in further discussions of the topology in double MSG
47.249 Pmmm. The layer constructions for the double SIs (z4, z2w,1, z2w,2, z2w,3) of MSG 47.249 Pmmm are given
by:

1. An x̂-normal mirror Chern layer with C+
x = 1 in the x = 0 plane has the mirror sector Chern numbers

(C+
kx=0, C

+
kx=π) = (11) and the SIs (2100).

2. An x̂-normal mirror Chern layer with C+
x = 1 in the x = 1

2 plane has the mirror sector Chern numbers

(C+
kx=0, C

+
kx=π) = (1,−1) and the SIs (0100).

3. A ŷ-normal mirror Chern layer with C+
y = 1 in the y = 0 plane has the mirror sector Chern numbers

(C+
ky=0, C

+
ky=π) = (11) and the SIs (2010).

4. A ŷ-normal mirror Chern layer with C+
y = 1 in the y = 1

2 plane has the mirror sector Chern numbers

(C+
ky=0, C

+
ky=π) = (1,−1) and the SIs (0010).

5. A ẑ-normal mirror Chern layer with C+
z = 1 in the z = 0 plane has the mirror sector Chern numbers

(C+
kz=0, C

+
kz=π) = (11) and the SIs (2001).

6. A ẑ-normal mirror Chern layer with C+
z = 1 in the z = 1

2 plane has the mirror sector Chern numbers

(C+
kz=0, C

+
kz=π) = (1,−1) and the SIs (0001).

The layer-construction calculations in this section parallel with the previous calculations in Appendix F 4 a of the
layer constructions of the insulating phases in double MSG 2.4 P 1̄. Hence, we will only consider layer construction 5
as an example of the generalization from the layer constructions and bulk topology in double MSG 2.4 P 1̄ to that in
double MSG 47.249 Pmmm.

In layer construction 5, we take each layer to consist of a ẑ-normal 2D mirror Chern insulator (C+
z = −C−z = 1)

with the occupied parity (I) eigenvalues λ′1,2(kx, ky) = −−,++,++,++ at (kx, ky) = (00), (0π), (π0), (ππ), respec-
tively. The subscripts 1, 2 on λ′1,2(kx, ky) represent the {mz|0} eigenvalue sectors i and −i, respectively. Apply-
ing the Fourier transformation in Eq. (F40), we find that the parity eigenvalues of the 3D system are given by
λ1,2(kx, ky, kz) = λ′1,2(kx, ky) [Eq. (F44)]. This implies that λ1,2(kx, ky, kz) = −−,++,++,++,−−,++,++,++ for
(kx, ky, kz) = (000), (0π0), (π00), (ππ0), (00π), (0ππ), (π0π), (πππ), respectively. Substituting the parity eigenvalues
of layer construction 5 into Eqs. (F59) and (F60), we obtain the SIs (2001).

Axion insulators – We find that states with odd z4 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z4. First, as we will show below, (1000) and (3000) subduce to (2000)P 1̄ in MSG 2.4 P 1̄. Hence, if the (1000)
and (3000) phases in double MSG 47.249 Pmmm are insulating, then the bulk insulator must either be an AXI or
a 3D QAH state. Because the net Chern numbers Cx,y,z = 0 must vanish if the bulk is gapped, due to the mirror
symmetries of double MSG 47.249 Pmmm, then the (1000) and (3000) states must be AXIs. This result can also be
understood by subducing from a T -symmetric SSG. Specifically, because (1000) and (3000) in MSG 47.249 Pmmm can
respectively be subduced from (1000)Pmmm1′ and (3000)Pmmm1′ in Type-II SG 47.250 Pmmm1′, which correspond
to T -symmetric 3D TIs with θ = π7,14,15, then (1000) and (3000) are compatible with bulk-gapped states. Hence, we
conclude that 3D insulators with (1000) and (3000) in double MSG 47.249 Pmmm are AXIs, without ambiguity. We
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FIG. 25: Surface Dirac points protected by mirror Chern numbers. In this figure, we respectively depict the surface states
of insulators with the bulk mirror Chern numbers C+ = −C− = 1, 2, 3, where C± respectively refer to the Chern number in
the mirror sector with eigenvalue ±i. In each panel, we depict a topological surface band structure along a mirror-invariant
surface BZ line, where the red and blue lines respectively indicate bands with the mirror eigenvalues i and −i. At half-filling,
the number of twofold surface Dirac points is given by the mirror Chern number |C+|, where |C+| = |C−|.

conjecture that the (1000) and (3000) AXIs in MSG 47.249 Pmmm can be constructed using the topological crystal
method207, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Helical HOTI phases protected by mirror – First, the double SIs (2000)Pmmm1′ of Type-II double SSG 47.250
Pmmm1′ correspond to a helical (non-axionic, i.e. θ mod 2π = 0) HOTI protected by I and T symmetries. In the
I- and T -symmetric HOTI phase, an odd number of helical modes encircle a finite sample with I-symmetry. Because
double SSG 47.250 Pmmm1′ contains {mx,y,z|0} symmetries, then a single helical hinge mode on a boundary must
also be pinned to the hinge projection of a bulk mirror plane, and must indicate a bulk mirror Chern number Cm = 2
(because a mirror-invariant hinge is a 1D domain wall between two 2D surfaces with two massive twofold Dirac cones
with oppositely-signed masses related by mirror symmetry, see Refs. 14,18,34).

Returning to the magnetic subgroup Type-I MSG 47.249 Pmmm of Type-II SG 47.250 Pmmm1′, we denote the six
layer constructions introduced in this section as La (a = 1 · · · 6), respectively. Without loss of generality, we consider
(2n+1)L1⊕(2m+1)L2. We next consider a 90◦ hinge of a z-directed, mmm-invariant rod that lies between x+y > 0,
x− y < 0, where the rod is centered at the origin. On the 1D hinge, (2n+ 1)L1, which has the mirror sector Chern
numbers C+

x = −C−y = 2n + 1 and has 2D TCI layers at x = 0,±1 · · · , will contribute 2n + 1 helical modes to the
hinge at x = y = 0.

We next note that the bulk mirror Chern numbers (C+
kx=0, C

+
kx=π) are (2n+ 2m+ 2, 2n−2m). If n−m mod 2 = 0,

then C+
kx=0 mod 4 = 2 and C+

kx=π mod 4 = 0, and if n−m mod 2 = 1, then C+
kx=0 mod 4 = 0 and C+

kx=π mod 4 = 2.

In general, the SIs (2000) can be constructed as (2n + 1)L1 ⊕ (2m + 1)L2, or (2n + 1)L3 ⊕ (2m + 1)L4, or
(2n+ 1)L5⊕ (2m+ 1)L6 (m,n ∈ Z), or through any superposition of an odd number of the aforementioned layer con-
structions. Hence, there exists a direction i ∈ {x, y, z} such that the mirror Chern numbers in the i direction are either
(C+

ki=0 mod 4, C+
ki=π

mod 4) = (2, 0) or (C+
ki=0 mod 4, C+

ki=π
mod 4) = (0, 2). Therefore, the bulk of the (2000) is a

mirror TCI. Nevertheless, in this work, we refer to the (2000) phase in double MSG 47.249 Pmmm as a helical HOTI,
because the (2000) phase of double MSG 47.249 can be connected to a (z4, z2w,1, z2w,2, z2w,3)Pmmm1′ = (2000)Pmmm1′

mirror TCI phase in the T -symmetric supergroup Type-II double SG 47.250 Pmmm1′ without closing a bulk or surface
gap. In turn, the (2000)Pmmm1′ TCI phase subduces to an I- and T -protected (z4, z2w,1, z2w,2, z2w,3)P 1̄1′ = (2000)P 1̄1′

helical HOTI in Type-II double SG 2.5 P 1̄1′ [see Appendix F 4 s and Refs. 7,14,15,19]. To summarize, there exists at
least one mirror-symmetric surface in the (2000) HOTI state that has 2 + 4n (n ∈ {Z+, 0}) twofold Dirac points, in
agreement with nontrivial even bulk mirror Chern number. We depict the anomalous surface and hinge states of the
(2000) HOTI phase in Fig. 26(a).

For completeness, we next consider the boundary states of the layer construction (2n + 1)L1 ⊕ (2m + 1)L2. The
Chern numbers in the {mx|0} mirror sectors are C+

kx=0 = −C−kx=0 = 2n+ 2m+ 2, C+
kx=π = −C−kx=π = 2n− 2m. We

consider either a ŷ- or a ẑ-normal surface, either of which preserves {mx|0} mirror symmetry. In the 2D surface BZ,
the bulk Chern number C+

kx=0 mandates the presence of |2n + 2m + 2| twofold Dirac points on the kx = 0 line (see

Fig. 25), and C+
kx=π mandates the presence of |2n − 2m| Dirac points on the kx = π line. Hence the total number

of twofold surface Dirac points is |2n + 2m + 2| + |2n − 2m| mod 4 = 2. Similarly, (2n + 1)L3 ⊕ (2m + 1)L4 and
(2n + 1)L5 ⊕ (2m + 1)L6 will exhibit 2 + 4n (n ∈ {Z+, 0}) twofold Dirac points on {my|0}- and {mz|0}-preserving
surfaces, respectively. In Appendix F 6 a, we will prove that, on surfaces of the (2000) state that respect the symmetries
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FIG. 26: The boundary states of the non-axionic magnetic HOTI phases in double MSGs (a) 47.249 Pmmm, (b) 123.339
P4/mmm, (c) 191.233 P6/mmm. In the top panel, we show the mirror-protected surface twofold Dirac cones and side-surface
helical hinge modes of each non-axionic magnetic HOTI (see Appendix F 6 for further details). The symmetry groups of the
top (ẑ-normal) surfaces are Type-I magnetic wallpaper groups (a) pmm, (b) p4m, and (c) p6m (see Refs. 18,35,63,131,132 and
Appendix F 6). We note that, in this work, we have labeled wallpaper groups – which are also sometimes termed plane groups –
using the short notation previously employed in Refs. 18,55,131; in the long notation of the Get Plane Gen tool on the BCS61,62,
the magnetic wallpaper groups in (a-c) pmm, p4m, and p6m are respectively labeled by the symbols p2mm, p4mm, and p6mm.
In (a-c), the helical hinge states are pinned to the hinge projections of the bulk mirror planes, and therefore originate from
nontrivial bulk mirror Chern numbers. In the middle and bottom panels, we depict two possible configurations of anomalous
twofold Dirac points in the top-surface BZ, where the dashed lines represent the top-surface projections of bulk mirror planes.
In Appendix F 6 a, we will introduce magnetic Dirac fermion doubling theorems for 2D insulators with the magnetic wallpaper
groups of the top surfaces in (a-c). The fermion doubling theorems for the top-surface wallpaper groups in (a-c) are respectively
circumvented by the non-axionic magnetic HOTI phases discovered in this work.

of Type-I double magnetic wallpaper group18,35,63,131,132 pmm, the presence of 2 + 4n (n ∈ {Z+, 0}) twofold surface
Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group
pmm.

Relationship with the SIs in other double SSGs – To identity the AXI phases, we subduce the SIs onto double MSG
2.4 P 1̄. As explained in the text following Eq. (F59), because each doublet of Bloch states at an I-invariant k point
in MSG 47.249 Pmmm has the same parity eigenvalues (and complex-conjugate mirror eigenvalues), then z4 is simply
a doubling of η4I . Hence η4I = 2z4 mod 4. Similarly, z2I,i = 2z2w,i mod 2 = 0. In summary:

(z4, z2w,1, z2w,2, z2w,3)Pmmm → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2z4 mod 4, 000)P 1̄. (F61)

Hence, the (1000) and (3000) states in double MSG 47.249 Pmmm, if gapped, correspond to AXIs.

Lastly, the correspondence between the double SIs of Type-I double MSG 47.249 Pmmm and the double SIs of
Type-II double SSG 47.250 Pmmm1′ is one-to-one.

e. Double SIs in Type-I Double MSG 75.1 P4

The double MSG 75.1 P4 is generated by {E|100}, {E|010}, {E|001}, and {C4z|0}.
The double SI group of double MSG 75.1 P4 is Z4. To determine the physical basis for the double SIs, we first

https://www.cryst.ehu.es/plane/get_plane_gen.html
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recall the formula for the Chern number in the presence of fourfold rotation symmetry203:

iC = (−1)Nocc

∏
n∈occ

ξn(00)ξn(ππ)ζn(0π), (F62)

where ξn(K) is the {C4z|0} eigenvalue of the nth occupied state at K, and ζn(K) is the {C2z|0} eigenvalue of the nth

occupied state at K. We can define the SI as the Chern number in the kz = π plane modulo 4:

z4R = Ckz=π mod 4 = 2Nocc +
∑

K=Z,A

(
−1

2
n

1
2

K +
1

2
n
− 1

2

K − 3

2
n

3
2

K +
3

2
n
− 3

2

K

)
− n

1
2

R + n
− 1

2

R mod 4

=
∑

K=Z,A

(
−1

2
n

1
2

K +
1

2
n
− 1

2

K − 3

2
n

3
2

K +
3

2
n
− 3

2

K

)
+ n

1
2

R − n
− 1

2

R mod 4, (F63)

where n
1
2 ,−

1
2 ,

3
2 ,−

3
2

Z,A are the number of occupied states with {C4z|0} eigenvalues e−i
π
4 , ei

π
4 , e−i

3π
4 , ei

3π
4 , respectively,

and n
1
2 ,−

1
2

R are the number of occupied states with {C2z|0} eigenvalues e−i
π
2 , ei

π
2 , respectively. In deriving Eq. (F63),

we have used the relation Nocc = n
1
2

R + n
− 1

2

R .

Due to the compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a
momentum-space Chern number, a 3D insulator must satisfy Ckz=π = Ckz for all kz. Hence, we may have equivalently
defined the SI z4R using the occupied {C4z|0} and {C2z|0} eigenvalues in kz = 0 plane, or in any other BZ plane of
constant kz. In general, in this work, in order to match the convention employed in Ref. 14, we will use the rotation
eigenvalues in the ki = π plane to define double SIs in the physical basis. To summarize, if a 3D system is insulating
and exhibits z4R 6= 0, then the system is in a 3D QAH state with Ckz=0 = Ckz=π and z4R = Ckz=0 mod 4.

Because the physical meaning of the double SIs is straightforward (i.e. the nontrivial phases are 3D QAH states
composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 75.1 P4.

If we impose T -symmetry, then the position-space Chern numbers must vanish, which enforces z4R to be zero.
Furthermore, if we add T symmetry to a system that respects double MSG 75.1 P4, we specifically find that the SI
group becomes trivial.

f. Double SIs in Type-I Double MSG 77.13 P42

The double MSG 77.13 P42 is generated by {E|100}, {E|010}, {E|001}, and {C4z|00 1
2}.

The SI group of double MSG 77.13 P42 is Z2. We can define the SI as half of the Chern number C0 in the kz = 0
plane modulo 2 (where we will show below that C0 is always even due to the screw symmetry {C4z|00 1

2}):

z′2R =
C0

2
mod 2

=Nocc −
1

4
n

1
2

Γ +
1

4
n
− 1

2

Γ − 3

4
n

3
2

Γ +
3

4
n
− 3

2

Γ − 1

4
n

1
2

M +
1

4
n
− 1

2

M − 3

4
n

3
2

M +
3

4
n
− 3

2

M − 1

2
n

1
2

X +
1

2
n
− 1

2

X mod 2, (F64)

where n
1
2 ,−

1
2 ,

3
2 ,−

3
2

Γ,M are the number of occupied states with {C4z|00 1
2} eigenvalues e−i

π
4 , ei

π
4 , e−i

3π
4 , ei

3π
4 , respectively,

and n
1
2 ,−

1
2

X are the number of occupied states with {C2z|0} eigenvalues e−i
π
2 , ei

π
2 , respectively. For Chern number

SIs determined by screw symmetry eigenvalues, we note that we may, in general, either define the SI using the screw
eigenvalues in the ki = 0 plane or the eigenvalues in the ki = π plane. However, as we will shortly see in the case of
double MSG 84.51 P42/m in Appendix F 4 i, if a mirror symmetry is also present whose matrix representatives do
not commute with those of screw symmetry at all k points where both symmetries are in the little group Gk, then
additional constraints are imposed on the small (co)rep characters of screw. Hence, in this work, we will only use
screw eigenvalues in the ki = 0 plane to define double SIs.

Due to the monodromy of small (co)reps in nonsymmorphic SSGs [see Appendix D 3], the overall sign of each
eigenvalue of {C4z|00 1

2} changes when kz is advanced through a period of the reciprocal lattice. This implies the

compatibility relations: n
1
2

Γ = n
− 3

2

Γ , n
− 1

2

Γ = n
3
2

Γ , n
1
2

M = n
− 3

2

M , n
− 1

2

M = n
3
2

M . Imposing the compatibility relation
constraints on Eq. (F63) [and substituting Γ,M,X for Z,A,R, respectively], we find that the Chern number C0 is
always even.
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We therefore define (C0/2) mod 2 [as opposed to C0 mod 4] to be the SI z′2R of double MSG 77.13 P42. Using

Nocc = n
1
2

X + n
− 1

2

X , and the compatibility relations, we then simplify Eq. (F64) to be:

z′2R = −1

2
n

3
2

Γ +
1

2
n
− 3

2

Γ − 1

2
n

3
2

M +
1

2
n
− 3

2

M +
1

2
n

1
2

X −
1

2
n
− 1

2

X mod 2. (F65)

If an insulating state has z′2R = 1, then the state is a 3D QAH phase with C0 mod 4 = 2 in the z-direction.
We can also understand the even Chern number from the perspective of layer constructions. Specifically, if a Chern

layer is placed in the z = z0 plane, then, because of the {C4z|00 1
2} symmetry, there must be another Chern layer with

the same Chern number in the z = z0 + 1
2 plane.

If we impose T symmetry then the position-space Chern numbers must vanish, which enforces z′2R to be zero.

g. Double SIs in Type-I Double MSG 81.33 P 4̄

The double MSG 81.33 P 4̄ is generated by {E|100}, {E|010}, {E|001}, and {S4z|0}.
SIs – The double MSG 81.33 P 4̄ has the SI group Z4 × Z2

2. We choose the Z4 SI to be the Chern number in the
kz = π plane modulo 4:

z4S = Ckz=π mod 4 = −1

2
n

1
2

Z +
1

2
n
− 1

2

Z − 3

2
n

3
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Z +
3

2
n
− 3

2
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2
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1
2

A +
1

2
n
− 1

2

A − 3

2
n

3
2

A +
3

2
n
− 3

2

A + n
1
2

R − n
− 1

2

R mod 4, (F66)

where n
1
2 ,−

1
2 ,

3
2 ,−

3
2

Z,A are the number of occupied states with {S4z|0} eigenvalues e−i
π
4 , ei

π
4 , e−i

3π
4 , ei

3π
4 , respectively, and

n
1
2 ,−

1
2

R are the number of occupied states with {C2z|0} eigenvalues e−i
π
2 , ei

π
2 , respectively. Due to the compatibility

relations, the occupied bands in the kz = 0, π planes must have the same {C2z|0} rotation eigenvalues; hence, the
Chern numbers Ckz=0 and Ckz=π have the same parity (Ckz=0 mod 2 = Ckz=π mod 2). We define the first Z2 SI to
be half of the difference between the Chern numbers in the kz = 0, π planes, taken modulo 2:

δ2S =
Ckz=π − Ckz=0

2
mod 2
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X +
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2
n
− 1
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X mod 2. (F67)

Next using the relations:

n
1
2

Γ,M + n
− 3

2

Γ,M = n
1
2

Z,A + n
− 3

2

Z,A, n
− 1

2

Γ,M + n
3
2

Γ.M = n
− 1

2

Z,A + n
3
2

Z,A, n
1
2

X = n
1
2

R, n
− 1

2

X = n
− 1

2

R , (F68)

we simplify δ2S :

δ2S = −n
3
2

Z + n
− 3

2

Z − n
3
2

A + n
− 3

2

A + n
3
2

Γ − n
− 3

2

Γ + n
3
2

M − n
− 3

2

M mod 2. (F69)

Because of the difference of 2 (modulo 4) in the Chern numbers in the kz = 0, π planes indicated by δ2S = 1, we deduce
that δ2S = 1 indicates a WSM with 2 + 4n (n ∈ {Z+, 0}) Weyl points between kz = 0 and kz = π. Additionally, the
Chern number in the kz = 0 plane (modulo 4) is completely determined by the compatibility relations and the SIs –
specifically, Ckz=0 mod 4 = z4S − 2δ2S mod 4. We note that during the preparation of this work, an SI equivalent to
δ2S was introduced in Ref. 211 as an intermediate quantity relevant to the high-throughput numerical identification
of nonmagnetic solid-state WSMs.

The second Z2 SI in double MSG 81.33 P 4̄ is given by:

z2 =
∑

K=Γ,M,Z,A

n
1
2

K − n
− 3

2

K

2
mod 2. (F70)

Below, we will show that z2 is in one-to-one correspondence with the WSM and 3D TI invariant (z2)P 4̄1′ in the
Type-II double SSG 81.34 P 4̄1′ generated by adding {T |0} symmetry to double MSG 81.33 P 4̄, where (z2)P 4̄1′ was
previously introduced in Ref. 14. Hence, we will show below that a gapped state with z2 = 1 is compatible with a
fourfold-rotoinversion- (S4) -protected AXI phase if z4S = δ2S = 0.
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Layer constructions – We next employ the layer construction method to diagnose the topology of the symmetry-
indicated topological insulating phases in double MSG 81.33 P 4̄, where the double SIs of each layer construction are
given in the order (z4S , δ2S , z2):

1. A ẑ-normal Chern layer with Cz = 1 in the z = 0 plane can be realized by a 3D insulator whose occupied bands
transform in the small irreps 1

2 ,
3
2 ,−

1
2 ,

1
2 ,

3
2 , and − 1

2 at Γ,M,X,Z,A, and R (Nocc = 1), respectively. The SIs
of this layer construction are (101).

2. A ẑ-normal Chern layer with Cz = 1 in the z = 1
2 plane can be realized by a 3D insulator whose occupied bands

transform in the small irreps 1
2 ,

3
2 ,−

1
2 ,−

3
2 ,−

1
2 , and − 1

2 at Γ,M,X,Z,A, and R (Nocc = 1), respectively. The
SIs of this layer construction are (100).

Both of the layer constructions are 3D QAH states with C = 1 in the z-direction. Because S4z = IC−1
4z , and I leads

to an additional minus sign in the occupied S4z = IC−1
4z eigenvalue in the kz = π plane contributed by the layer z = 1

2

(i.e. e−i
2π
4 j → −e−i 2π

4 j , see Appendix F 4 a), then the {S4z|0} eigenvalues at Z and A in the z = 1
2 layer construction

have opposite signs compared to the occupied {S4z|0} eigenvalues at Γ and M , respectively. We additionally note
that the occupied C2z eigenvalues are required to be the same at R and X due to the compatibility relations.

The S4 Z2 invariant and axion insulators – When the total Chern number is zero and the bulk is insulating, the
axion angle θ is given by θ mod 2π = πz2, where z2 is termed the S4 Z2 invariant. We may construct an AXI phase
by placing a Chern layer with Cz = 1 in the z = 0 plane and a Chern layer with Cz = −1 in the z = 1

2 plane. The
AXI phase has the SIs (001). However, we emphasize that the total Chern number cannot be completely determined
by the SIs. For example, the 3D QAH state consisting of a Chern layer with Cz = 3 in the z = 0 plane and a Chern
layer with Cz = 1 in the z = 1

2 plane also has the SIs (001).
Relationship with the SIs in other double SSGs – Double SSG 83.34 P 4̄1′, which is the double SSG that results from

adding {T |0} symmetry to Type-I double MSG 81.33 P 4̄ – has the SI group Z2. The Z2 double SI in double SSG
83.34 P 4̄1′ either corresponds to a T -invariant WSM, or to a T -symmetric 3D TI14. Consequently, a 3D TI phase in
double SSG 83.34 P 4̄1′ must subduce to an AXI in double MSG 83.33 P 4̄ if {S4z|0} and primitive lattice translation
symmetries are preserved while breaking T , because both insulators share the common nontrivial axion angle θ = π.
Hence, the double SI subduction relations are given by:

(z2)P 4̄1′ → (z4S , δ2S , z2)P 4̄ = (00, z2)P 4̄. (F71)

h. Double SIs in Type-I Double MSG 83.43 P4/m

The double MSG 83.43 P4/m is generated by {E|100}, {E|010}, {E|001}, {C4z|0}, and {mz|0}.
SIs – The double MSG 83.43 P4/m has the SI group Z3

4. We choose the three Z4-valued SIs to be:

δ4m =− C+
kz=π + C−kz=0 mod 4

=−
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K

)
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1
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+
∑
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2
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)
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1
2 ,−i
X + n
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2 ,−i

X mod 4, (F72)

z+
4m,π = C+

kz=π mod 4 =
∑

K=Z,A

(
−1

2
n

1
2 ,+i

K +
1

2
n
− 1

2 ,+i

K − 3

2
n

3
2 ,+i

K +
3

2
n
− 3

2 ,+i

K

)
+ n

1
2 ,+i

R − n−
1
2 ,+i

R mod 4, (F73)

z−4m,π = C−kz=π mod 4 =
∑

K=Z,A

(
−1

2
n

1
2 ,−i
K +

1

2
n
− 1

2 ,−i
K − 3

2
n

3
2 ,−i
K +

3

2
n
− 3

2 ,−i
K

)
+ n

1
2 ,−i
R − n−

1
2 ,−i

R mod 4, (F74)

where the ±i superscripts indicate the signs of the mirror eigenvalues. In Eqs. (F72), (F73), and (F74), we have defined
δ4m to be −C+

kz=π +C−kz=0, rather than C+
kz=π−C

−
kz=0, such that the double SI z8 in double MSG 123.339 P4/mmm,

which we will shortly define in Appendix F 4 k, is related to δ4m through the subduction relation δ4m = z8 mod 4.
Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs

(δ4m, z
+
4m,π, z

−
4m,π), we employ the layer construction method. We denote the Chern number in each mirror sec-
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tor in the kz = 0, π planes as (C+
kz=0, C

−
kz=0, C

+
kz=π, C

−
kz=π), respectively. We will also calculate the subduced SIs in

the subgroups double MSG 2.4 P 1̄ and double MSG 81.33 P 4̄, which we will shortly use to determine the double SI
subduction relations. The layer constructions for Type-I double MSG 83.43 P4/m are given by:

1. A ẑ-normal layer with C+
z = 1, C−z = 0 in the z = 0 plane has the mirror sector Chern numbers (1010) and the

SIs (310). The subduced subgroup SIs are (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2001)P 1̄, (z4S , δ2S , z2)P 4̄ = (101)P 4̄.

2. A ẑ-normal layer with C+
z = 0, C−z = 1 in the z = 0 plane has the mirror sector Chern numbers (0101) and the

SIs (101). The subduced subgroup SIs are (2001)P 1̄, (101)P 4̄.

3. A ẑ-normal layer with C+
z = 1, C−z = 0 in the z = 1

2 plane has the mirror sector Chern numbers (1001) and the
SIs (001). The subduced subgroup SIs are (0001)P 1̄, (100)P 4̄.

4. A ẑ-normal layer with C+
z = 0, C−z = 1 in the z = 1

2 plane has the mirror sector Chern numbers (0110) and the
SIs (010). The subduced subgroup SIs are (0001)P 1̄, (100)P 4̄.

We emphasize that Chern insulators whose normal vectors lie in the xy-plane are disallowed by {mz|0} symmetry.
Relationship with the SIs in other double SSGs – In order to identify the AXI phases, we will subduce the SIs in

double MSG 83.43 P4/m onto the SIs in double MSG 2.4 P 1̄ and double MSG 81.33 P 4̄. The subduction relations
are given by:(

δ4m, z
+
4m,π, z

−
4m,π

)
P4/m

→ (η4I , z2I,1, z2I,2, z2I,3)P 1̄ =
(
2(δ4m mod 2), 0, 0, z+

4m,π + z−4m,π mod 2
)
P 1̄
, (F75)

(
δ4m, z

+
4m,π, z

−
4m,π

)
P4/m

→ (z4S , δ2S , z2)P 4̄ =
(
z+

4m,π + z−4m,π mod 4, 0, δ4m mod 2
)
P 4̄
, (F76)

which imply that η′2I = 1
2η4I = z2 = δ4m mod 2 [see Eqs. (F49) and (F70)]. In MSG 2.4 P 1̄ and MSG 81.33 P 4̄,

we previously found in Appendices F 4 a and F 4 g that the η′2I = 1 and z2 = 1 states are AXIs protected by {I|0}
and {S4z|0}, respectively (provided that the non-symmetry-indicated net Chern numbers are zero). Hence, the AXI
phases in MSG 83.43 P4/m are simultaneously protected by {I|0} and {S4z|0}.

Lastly, we will study the effects of imposing T symmetry. Adding {T |0} symmetry to Type-I double MSG 83.43
P4/m generates the Type-II double SSG 83.44 P4/m1′, which has the SI group Z8×Z4×Z2. The SIs in double SSG
83.44 P4/m1′ are related to the SIs in double MSG 83.43 P4/m through the subduction relations:

(z8, z4m,π, z2w,1)P4/m1′ →
(
δ4m, z

+
4m,π, z

−
4m,π

)
P4/m

= (z8 mod 4,−z4m,π, z4m,π)P4/m . (F77)

The subduction relations imply that strong 3D TIs in double SSG 83.44 P4/m1′ indicated by odd z8 and mirror
TCIs indicated by z8 mod 4 and z4m,π will continue to exhibit symmetry-indicated nontrivial topology if {T |0} is
broken while preserving the symmetries of double MSG 83.43 P4/m. Conversely, the weak TI phases indicated by
z2w,1 and the rotation-anomaly HOTI indicated by z8 = 4 in double SSG 83.44 P4/m1′ no longer exhibit symmetry-
indicated stable topology when subduced onto double MSG 83.43 P4/m. Specifically, the SIs (400)P4/m1′ correspond

to either a mirror TCI phase with C+
kz=0 mod 4 = 8 or C+

kz=π mod 8 = 4 or a HOTI with vanishing mirror Chern

numbers14. The HOTI phase has a gapless top (ẑ-normal) surface35 with 4 + 8n (n ∈ {Z+, 0}) twofold Dirac cones
that are locally protected by {C2z × T |0} symmetry and are anomalous due to surface and bulk {C4z|0} symmetry
(see Appendix F 6 a and Ref. 35). The HOTI phase, when cut into a 4/m1′-symmetric rod geometry, exhibits 4 + 8n
helical hinge states that are locally protected by T symmetry and globally protected by {C4z|0} symmetry. If T
symmetry is relaxed, then the HOTI hinge states must become gapped, because there are no side-surface mirror lines
to protect helical spectral flow in the absence of T symmetry in MSG 83.33 P4/m (see Appendix F 6). We leave the
finer question of whether any non-symmetry-indicated crystalline topology in MSG 83.33 P4/m is subduced from the
(400)P4/m1′ HOTI phase in double SSG 83.44 P4/m1′ for future works.
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i. Double SIs in Type-I Double MSG 84.51 P42/m

The double MSG 84.51 P42/m is generated by {E|100}, {E|010}, {E|001}, {C4z|00 1
2}, and {mz|0}.

SIs – The double MSG 84.51 P42/m has the SI group Z4 × Z2. We define the two SIs to be:

z+
4m,0 =C+

kz=0 mod 4

=
∑

K=Γ,M

(
−1

2
n

1
2 ,+i

K +
1

2
n
− 1

2 ,+i

K − 3

2
n

3
2 ,+i

K +
3

2
n
− 3

2 ,+i

K

)
+ n

1
2 ,+i

X − n−
1
2 ,+i

X mod 4, (F78)

δ2m = C+
kz=π − C

−
kz=0 mod 2, (F79)

where an explicit formula for δ2m was previously provided in Eq. (F54). Because the matrix representatives of
{C4z|00 1

2} and {mz|0} do not commute in all of the small irreps at the k points in the kz = π plane at which

{C4z|00 1
2} and {mz|0} are both elements of the little group, then we cannot determine the mirror sector Chern

numbers (modulo 4) in the kz = π plane using {C4z|00 1
2} eigenvalues. Conversely, because the matrix representatives

of {C2z|0} and {mz|0} commute in all of the small irreps at the k points in the kz = π plane at which {C2z|0} and
{mz|0} are both elements of the little group, then we can determine the mirror sector Chern numbers (modulo 2) in the
kz = π plane using the occupied {C2z|0} eigenvalues. We thus specifically determine that δ2m = C+

kz=π−C
−
kz=0 mod 2.

Layer constructions – We find that all of the double SIs in double MSG 84.51 P42/m can be realized by layer
constructions. Before introducing the layer constructions, we first note that the mirror planes in double MSG 84.51
P42/m lie at z = 0, 1

2 . However, the I centers lie in the z = 0, 1
2 planes, whereas, conversely, the S4 centers lie in the

z = 1
4 ,

3
4 planes. For each layer construction, we also compute the subduced SIs in the subgroup MSG 2.4 P 1̄, which

we will shortly use to determine the SI subduction relations. The layer constructions of the double SIs (z+
4m,0, δ2m)

in double MSG 84.51 P42/m are given by:

1. A ẑ-normal layer with C+
z = 1, C−z = 0 in the z = 0 plane. Due to the {C4z|00 1

2} symmetry, there is

another C+
z = 1, C−z = 0 layer in the z = 1

2 plane. The mirror sector Chern numbers in momentum space are

(C+
kz=0, C

−
kz=0, C

+
kz=π, C

−
kz=π) = (2011), where the subscripts 0 and π indicate values of kz. The SIs are (21).

The subduced subgroup SIs are (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2000)P 1̄, (z4S , δ2S , z2)P 4̄ = (200)P 4̄.

2. A ẑ-normal layer with C+
z = 0, C−z = 1 in the z = 0 plane. Due to the {C4z|00 1

2} symmetry, there is

another C+
z = 0, C−z = 1 layer in the z = 1

2 plane. The mirror sector Chern numbers in momentum space are

(C+
kz=0, C

−
kz=0, C

+
kz=π, C

−
kz=π) = (0211). The SIs are (01). The subduced subgroup SIs are (2000)P 1̄, (200)P 4̄.

3. A ẑ-normal layer with Cz = 1 in the z = 1
4 plane. Due to the {C4z|00 1

2} symmetry, there is another Cz = 1 layer

in the z = 3
4 plane. The mirror sector Chern numbers in momentum space are (C+

kz=0, C
−
kz=0, C

+
kz=π, C

−
kz=π) =

(1111). The SIs are (10). The subduced subgroup SIs are (0000)P 1̄, (201)P 4̄.

Relationship with the SIs in other double SSGs – In order to later identify the AXI phases, we subduce the SIs onto
double MSG 2.4 P 1̄ and double MSG 81.33 P 4̄:

(z+
4m,0, δ2m)P42/m → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2δ2m, 000)P 1̄, (F80)

(z+
4m,0, δ2m)P42/m → (z4S , δ2S , z2)P 4̄ = (2z4m,0 − 2δ2m mod 4, 0, z+

4m,0 mod 2)P 4̄. (F81)

We next study the effects of imposing T symmetry. The double SSG 84.52 P42/m1′ – the SSG generated by adding
{T |0} symmetry to MSG 84.51 P42/m – has the SI group Z4 × Z2. The Z4 SI is the parity index z4 (i.e. the I z4

index), and the Z2 SI is the I z2w,1 index. Hence, the subduction relations are given by:

(z4, z2w,1)P42/m1′ → (z+
4m,0, δ2m)P42/m = (z4, z4 mod 2)P42/m, (F82)

implying that adding {T |0} to an insulating phase in double MSG 84.51 P42/m results in an insulator with the SIs
δ2m = z4 mod 2. Furthermore, in an insulator, it is required that C+

kz=0 +C−kz=0 = C+
kz=π +C−kz=π = 2C+

kz=π. {T |0}
further enforces C+

kz=π = 0, C+
kz=0 = −C−kz=0, such that δ2m = C+

kz=π − C
−
kz=0 mod 2 = C+

kz=0 mod 2 = z4 mod 2.
Axion insulators – Because the S4 centers in position space do not coincide with the I centers in MSG 84.51

P42/m, then the S4 invariant z2 = z+
4m,0 mod 2 is free to differ from the I invariant η′2I = δ2m. An AXI phase
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must have vanishing position-space Chern numbers, as well as z2 = η′2I = 1, due to the definitions θ mod 2π = πη′2I
and θ mod 2π = πz2 (see Appendices F 4 a and F 4 g, respectively). Thus, in order to guarantee that the net Chern
numbers vanish, we may, for example, only construct an AXI phase with C = 1 layers at z = 0, 1

2 if C = −1 layers

are additionally placed at z = 1
4 ,

3
4 . In this example of an AXI, the C = 1 (C = −1) Chern layers occupy the I (S4

centers).

j. Double SIs in Type-I Double MSG 88.81 I41/a

The double MSG 88.81 I41/a is generated by {E| − 1
2 ,

1
2 ,

1
2}, {E|

1
2 ,−

1
2 ,

1
2}, {E|

1
2 ,

1
2 ,−

1
2}, {C4z| 34

1
4

1
4}, and {I|0}.

SIs – The double MSG 88.81 I41/a has the SI group Z2
2. As we will explicitly derive later in this section, the first

Z2 SI η′2I is related by subduction to the I invariant η′2I in double MSG 2.4 P 1̄ [Eq. (F49)]:

η′2I =
η4I

2
mod 2 =

1

2
n−Γ +

1

2
n−M +

1

2
n−X +

1

2
n+
X +

3

2
n−N +

1

2
n+
N mod 2. (F83)

The second Z2 SI z2 is related by subduction to the S4 invariant z2 in double MSG 81.33 P 4̄ [Eq. (F70)]:

z2 =
n

1
2

Γ − n
− 3

2

Γ

2
+
n

1
2

P − n
− 3

2

P + n
3
2

P − n
− 1

2

P

2
. (F84)

Layer constructions – The double MSG 88.81 has a body-centered lattice generated by:

a1 = (−1

2
,

1

2
,

1

2
), a2 = (

1

2
,−1

2
,

1

2
), a3 = (

1

2
,

1

2
,−1

2
). (F85)

There are two types of maximal Wyckoff positions: I centers:

8c : (0, 0, 0), (
1

2
, 0,

1

2
), (

3

4
,

1

4
,

1

4
), (

3

4
,

3

4
,

3

4
), (F86)

8d : (0, 0,
1

2
), (

1

2
, 0, 0), (

3

4
,

1

4
,

3

4
), (

3

4
,

3

4
,

1

4
), (F87)

and S4 ({S4z| 14
3
4

3
4} = {C4z| 14

3
4

3
4}{I|0}) centers:

4a : (0,
1

4
,

1

8
), (

1

2
,

1

4
,

3

8
), (F88)

4b : (0,
1

4
,

5

8
), (

1

2
,

1

4
,

7

8
), (F89)

using the notation of the MWYCKPOS tool on the BCS91–94, and where all coordinates are given in the conventional
cell. We consider the following layer constructions:

1. A ẑ-normal Chern layer with Cz = 1 in the z = 0 plane. The screw symmetry operation additionally generates
Chern layers with Cz = 1 in the z = 1

4 ,
1
2 ,

3
4 · · · planes. All of the I centers are occupied, all of the S4 centers

are unoccupied, and the total Chern number in each unit cell is Cz = 2, such that η′2I = 1, z2 = 0.

2. A ẑ-normal Chern layer with Cz = 1 in the z = 1
8 plane. The screw symmetry operation additionally generates

Chern layers with Cz = 1 in the z = 3
8 ,

5
8 ,

7
8 · · · planes. All of the I centers are unoccupied, all of the S4 centers

are occupied, and the total Chern number in each unit cell is Cz = 2, such that η′2I = 0, z2 = 1.

Axion insulators – Because the S4 centers do not coincide with the I centers in position space in double MSG 88.81
I41/a, then the S4 invariant z2 is free to differ from the I invariant η′2I . An AXI phase must have vanishing position-
space Chern numbers, as well as z2 = η′2I = 1, due to the definitions θ mod 2π = πη′2I and θ mod 2π = πz2 (see
Appendices F 4 a and F 4 g, respectively). Hence, to generate an AXI with vanishing position-space Chern numbers
by placing C = 1 layers at z = 0, 1

4 ,
1
2 ,

3
4 , we must also place C = −1 layers at z = 1

8 ,
3
8 ,

5
8 ,

7
8 , such that the Chern

layers with C = 1 (C = −1) occupy the I (S4) centers.

https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
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Relationship with the SIs in other double SSGs – We will now study the effects of imposing T symmetry. The
double SSG 88.82 I41/a1′ – which is generated by adding {T |0} to Type-I double MSG 88.81 I41/a – has the SI
group Z4. The subduction relations for the double SIs are given by:

(z4)I41/a1′ → (η′2I , z2)I41/a = (z4 mod 2, z4 mod 2)I41/a. (F90)

Hence, a symmetry-indicated 3D TI in I41/a1′ will necessarily become an I- or S4-protected AXI if T symmetry
is relaxed while preserving the symmetries of MSG 88.81 I41/a, because infinitesimal T -breaking in a 3D insulator
cannot change the momentum-space Chern numbers of the occupied bands in any 2D BZ plane.

Subduction of η′2I onto double MSG 2.4 P 1̄ – In MSG 88.81 I41/a, the reciprocal lattice is generated by:

b1 = (0, 2π, 2π), b2 = (2π, 0, 2π), b3 = (2π, 2π, 0). (F91)

There are four inequivalent, I-invariant momenta:

Γ(0, 0, 0), M(2π, 0, 0), X(π, π, 0), N(π, 0, π), (F92)

where the equivalence between k points is defined in Eq. (D5) and the surrounding text, and where the coordinates
of Γ, M , X, and N in Eq. (F92) are given in the conventional cell.

The star of X has two arms – X1(π, π, 0) and X2(π,−π, 0), which are related by the screw operation {C4z| 34
1
4

1
4}.

If |ψX1
〉 is a Bloch state at X1, then |ψX2

〉 = {C4z| 34
1
4

1
4}|ψX1

〉 is a state at X2. Taking |ψX1
〉 to have the parity (I)

eigenvalue ξ, we will now determine the parity eigenvalue of |ψX2
〉. Because:

{I|0}{C4z|
3

4

1

4

1

4
}{I|0}−1 = {E| − 3

2
,−1

2
,−1

2
}{C4z|

3

4

1

4

1

4
}, (F93)

then:

{I|0}|ψX2
〉 = {E| − 3

2
,−1

2
,−1

2
}ξ|ψX2

〉 = −ξ|ψX2
〉. (F94)

Hence, taking the parity eigenvalue of |ψX1
〉 to be ξ, the parity eigenvalue of |ψX2

〉 is −ξ.

Next, the star of N has four arms: N1(π, 0, π), N2(0, π, π), N3(−π, 0, π), and N4(0,−π, π), which are related to N1

by the operations, {E|0}, {C4z| 34
1
4

1
4}, {C2z| 120 1

2}, and {C−1
4z | 34

3
4

3
4}, respectively. Because:

{I|0}{C4z|
3

4

1

4

1

4
}{I|0}−1 = {E| − 3

2
,−1

2
,−1

2
}{C4z|

3

4

1

4

1

4
}, (F95)

{I|0}{C2z|
1

2
0

1

2
}{I|0}−1 = {E| − 1, 0,−1}{C2z|

1

2
0

1

2
}, (F96)

{I|0}{C−1
4z |

3

4

3

4

3

4
}{I|0}−1 = {E| − 3

2
,−3

2
,−3

2
}{C−1

4z |
3

4

3

4

3

4
}, (F97)

then the extra phase factor in the SI for the occupied parity eigenvalue at kNα is given by e−itα·kNα (α = 2, 3, 4),
where tα is the extra translation determined above, and where kNα is the momentum Nα. The parity SI phases at
N2, N3, and N4 are thus −1, 1, and 1, respectively.

To determine the I double SI η4I , we apply Eq. (F35) to the parity eigenvalue multiplicities at the eight I-invariant
momenta Γ, M , X1,2, and N1,2,3,4, respectively:

η4I = n−Γ + n−M + n−X + n+
X + 3n−N + n+

N mod 4. (F98)

We find that the parity eigenvalues enforce that η4I mod 2 = 0. Hence, the I double SI in MSG 88.81 I41/a is
η′2I = 1

2η4I [Eq. (F49)].

Subduction of z2 onto double MSG 81.33 P 4̄ – There are three inequivalent S4-invariant momenta:

Γ(0, 0, 0), M(2π, 0, 0), P (π, π, π). (F99)
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First, the star of P has two arms – P1(π, π, π) and P2(−π,−π,−π), which are related by I. Because,

{S4z|
1

4

3

4

3

4
}{I|0}{S4z|

1

4

3

4

3

4
}−1 = {E|1

2
,

3

2
,

3

2
}{I|0}, (F100)

and:

exp

(
i

(
1

2
,

3

2
,

3

2

)
· (−π,−π,−π)

)
= exp

(
i
π

2

)
, (F101)

then, if P1 has a Bloch state with the {S4z| 14 ,
3
4 ,

3
4} eigenvalue e−i

π
2 j , P2 is required to have a Bloch state with the

{S4z| 14 ,
3
4 ,

3
4} eigenvalue e−i

π
2 (j−1). We thus conclude that:

njP1
= nj−1

P2
. (F102)

To determine the S4 double SI z2, we apply Eq. (F70) to the {S4| 14
3
4

3
4} eigenvalue multiplicities at the four

{S4| 14
3
4

3
4}-invariant momenta Γ, M , and P1,2:

z2 =
n

1
2

Γ − n
− 3

2

Γ

2
+
n

1
2

M − n
− 3

2

M

2
+
n

1
2

P − n
− 3

2

P + n
3
2

P − n
− 1

2

P

2
mod 2. (F103)

Using the Corepresentations, MCOMPREL, and MBANDREP tools on the BCS introduced in this work (see Appen-

dices D 2, D 3, and E 3, respectively), we find that n
1
2

M = n
− 3

2

M is required in any insulating state in double MSG 88.81

I41/a. Hence, the factor of
n

1
2
M−n

− 3
2

M

2 can be omitted in Eq. (F103), leading to a final expression:

z2 =
n

1
2

Γ − n
− 3

2

Γ

2
+
n

1
2

P − n
− 3

2

P + n
3
2

P − n
− 1

2

P

2
mod 2. (F104)

k. Double SIs in Type-I Double MSG 123.339 P4/mmm

The double MSG 123.339 P4/mmm is generated by {E|100}, {E|010}, {E|001}, {C4z|0}, {mx|0}, and {I|0}.
SIs – The double MSG 123.339 P4/mmm has the SI group Z8×Z4×Z2. In double-valued small irreps of the little

groups at the I-invariant k points, the matrix representatives of perpendicular mirror symmetries (e.g. {mx|0} and
{my|0}) anticommute. Hence, Bloch states at the eight I-invariant momenta must be at least twofold degenerate
(and in fact are exactly twofold degenerate in double MSG 123.339 P4/mmm). The double SIs can be chosen to be
the same as the double SIs of SSG 123.340 P4/mmm1′ (previously introduced in Refs. 14,15,98), because the addition
of T symmetry to double MSG 123.339 P4/mmm does not change the dimensions and characters of the small irreps
at the high-symmetry BZ points or the compatibility relations between the high-symmetry-point small irreps. In the
physical basis, the Z8 double SI is:

z8 =
3

2
n

3
2 ,+ − 3

2
n

3
2 ,− − 1

2
n

1
2 ,+ +

1

2
n

1
2 ,− mod 8, (F105)

nj,± =
∑

K=Γ,M,Z,A

nj,±K +
∑

K=X,R

n
1
2 ,±
K , (F106)

where nj,±K is the number of states with parity (I) eigenvalue ±1 and angular momentum j (modulo 4) at the

momentum K, which corresponds to the {C4z|0} eigenvalue e−i
2π
4 j at K = Γ,M,Z,A, and the {C2z|0} eigenvalue

e−i
π
2 j at K = X,R. The Z4 SI is z−4m,π, which indicates the Chern number in the negative mirror sector in the kz = π

plane z−4m,π, and is related by subduction to the same SI (z−4m,π) in double MSG 83.43 P4/m [Eq. (F74)]. The Z2 SI

corresponds to the weak TCI I invariant z2w,1 for the mirror Chern number (modulo 2) in the kx,y = π planes, and
is related by subduction to the same SI (z2w,1) in double MSG 47.249 Pmmm [Eq. (F60)].

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the
layer construction method. In the layer constructions below, C+ = −C− due to the net-zero Chern numbers enforced
by the mirror symmetries. Hence, we will omit C− in further discussions of the topology in double MSG 123.339

http://www.cryst.ehu.es/cryst/corepresentations
https://www.cryst.ehu.es/cryst/mcomprel
http://www.cryst.ehu.es/cryst/mbandrep
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P4/mmm. The layer constructions for the double SIs (z8, z
+
4m,π, z2w,1) in MSG 123.339 P4/mmm are given by:

1. A ẑ-normal layer with C+
z = 1 in the z = 0 plane has the SIs (230).

2. A ẑ-normal layer with C+
z = 1 in the z = 1

2 plane has the SIs (010).

3. An x̂-normal layer with C+
x = 1 in the x = 0 plane has the SIs (401). We emphasize that, in this layer

construction, there is also a superposed ŷ-normal layer with C+
y = 1 in the y = 0 plane implied by the {C4z|0}

rotation symmetry.

4. An x̂-normal layer with C+
x = 1 in the x = 1

2 plane has the SIs (001). We emphasize that, in this layer

construction, there is also a superposed ŷ-normal layer with C+
y = 1 in the y = 1

2 plane implied by the {C4z|0}
rotation symmetry.

5. An (x̂ + ŷ)-normal layer with C+
x+y = 1 in the x + y = 0 plane has the SIs (400). We emphasize that, in this

layer construction, there is also a superposed (x̂− ŷ)-normal layer with C+
x−y = 1 in the x−y = 0 plane implied

by the {C4z|0} rotation symmetry.

Axion insulators – We find that states with odd z8 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z8. First, as we will show below, (100), (300), (500), and (700) subduce to (2000)P 1̄ in MSG 2.4 P 1̄. Hence, if the
(100), (300), (500), and (700) phases in double MSG 123.339 P4/mmm are insulating, then the bulk insulator must
either be an AXI or a 3D QAH state. Because the net Chern numbers Cx,y,z = 0 must vanish if the bulk is gapped,
due to the mirror symmetries of MSG 123.339 P4/mmm, then the (100), (300), (500), and (700) states must be AXIs.
This result can also be understood by subducing from a T -symmetric SSG. Specifically, because (100), (300), (500),
and (700) in double MSG 123.339 P4/mmm can respectively be subduced from (100)P4/mmm1′ , (300)P4/mmm1′ ,
(500)P4/mmm1′ , and (700)P4/mmm1′ in Type-II SG 123.340 P4/mmm1′, which correspond to T -symmetric 3D TIs

with θ = π7,14,15, then (100), (300), (500), and (700) are compatible with bulk-gapped states. Hence, we conclude
that 3D insulators with (100), (300), (500), and (700) in double MSG 123.349 P4/mmm are AXIs, without ambiguity.
We conjecture that (100), (300), (500), and (700) AXIs in double MSG 123.349 P4/mmm can be constructed using
the topological crystal method207, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and
TCIs.

Helical HOTI phases protected by mirror and C4 rotation symmetry – First, the double SIs (400)P4/mmm1′ of
Type-II double SSG 123.340 P4/mmm1′ either correspond to a rotation-anomaly (non-axionic, i.e. θ mod 2π = 0)
HOTI protected by C4 and T symmetries, or a mirror TCI with Cmz mod 8 = 4 (c.f. Table 7 in the Supplementary
Material of Ref. 14). In the C4- and T -symmetric HOTI phase, there are 4 + 8n (n ∈ {Z+, 0}) helical hinge modes on
a z-directed, C4- and T -symmetric rod, and 4 + 8n twofold Dirac points on the top (ẑ-normal) rod surface that are
locally protected by mirror symmetry (see Appendix F 6). Because double SSG 123.340 P4/mmm1′ contains {mx,y|0}
symmetries, then four of the helical hinge modes on the boundary of a 4/mmm1′-symmetric sample must also be
pinned to the hinge projections of bulk mirror planes whose normal vectors lie in the xy-plane, and must be indicated
by bulk mirror Chern numbers. Hence, when T symmetry is relaxed in a fourfold rotation-anomaly (400)P4/mmm1′

HOTI phase in Type-II double SSG 123.340 P4/mmm1′ while preserving the symmetries of MSG 123.339 P4/mmm,
the surface and hinge states will remain gapless and anomalous [see Fig. 26(b) and Appendix F 6 b].

We will next prove that there are 4 + 8n twofold Dirac points on the top surface of a 4/mmm-symmetric nanorod
of the (400) fourfold rotation-anomaly magnetic HOTI phase in double MSG 123.339 P4/mmm introduced in this
work. We denote the five layer constructions as La (a = 1 · · · 5), respectively. The fourfold rotation-anomaly HOTI
phase can be constructed as (2n+ 1)L3 ⊕ (2m+ 1)L4, or (2n+ 1)L5, or through any superposition of odd number of
the aforementioned layer constructions. Adding 4n′L1 or 4m′L2, which have the SIs (000), to the layer-constructed
HOTI phase will not change the top surface spectrum, because L1 and L2 consist of horizontal (i.e. ẑ-normal) layers,
and hence only contribute surface and hinge states on boundaries whose normal vectors lie in the xy-plane.

We will thus focus on the top surface spectra of the (2n+ 1)L3 ⊕ (2m+ 1)L4 and (2n+ 1)L5 layer constructions.
We first consider (2n + 1)L3 ⊕ (2m + 1)L4. The Chern numbers in the mx mirror sectors are C+

kx=0 = −C−kx=0 =

2n+ 2m+ 2, C+
kx=π = −C−kx=π = 2n− 2m. Due to the C4 symmetry, the Chern numbers in the my mirror sectors are

C+
ky=0 = −C−kx=0 = 2n+ 2m+ 2, C+

ky=π = −C−kx=π = 2n− 2m. In the 2D top surface BZ, C+
kx=0 (C+

ky=0) mandates

the presence of |2n + 2m + 2| twofold Dirac points on the kx = 0 (ky = 0) line, and C+
kx=π (C+

ky=π) mandates the

presence of |2n − 2m| twofold Dirac points on the kx = π (ky = π) line. Hence, the total number of Dirac points is
2|2n+ 2m+ 2|+ 2|2n− 2m| mod 8 = 4.

Lastly, we consider the layer construction (2n+1)L5. As shown in Supplementary Note 5 in Ref. 14 and in Table 6 of
the Supplementary Material of Ref. 14, the mirror sector Chern numbers are given by C+

kx+ky=0 = −C−kx+ky=0 = 4n+2,
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C+
kx−ky=0 = −C−kx−ky=0 = 4n + 2, and C+

kx±ky=π = −C−kx±ky=π = 0. To understand this result, one can enlarge the

unit cell to a supercell with the lattice vectors (1, 1, 0) and (1,−1, 0). We emphasize that mirror (sector) Chern
numbers do not change upon enlarging the unit cell if the number of layers per cell does not change; hence we can
compute the mirror sector Chern numbers in the supercell. We define x′ = 1

2x+ 1
2y, y′ = 1

2x−
1
2y, and correspondingly

define k′x = kx + ky, k′y = kx − ky. As shown in Appendix F 4 a, the Chern numbers of the layers at x′ = 0 (y′ = 0)

and x′ = 1
2 (y′ = 1

2 ) contribute with the same signs towards C+
k′x=0 = −C−k′x=0 (C+

k′y=0 = −C−k′y=0) and with opposite

signs towards C+
k′x=π = −C−k′x=π (C+

k′y=π = −C−k′y=π). Hence, C+
k′x=0 = −C−k′x=0 = 4n + 2, C+

k′x=π = −C−k′x=π = 0,

C+
k′y=0 = −C−k′y=0 = 4n+ 2, and C+

k′y=π = −C−k′y=π = 0. In the 2D top surface BZ, C+
kx+ky=0 (C+

kx−ky=0) mandates the

presence of |4n+ 2| Dirac points on the kx + ky = 0 (kx − ky = 0) line. We additionally note that the mirror sector
Chern numbers C+ = −C− mandate the presence of |C+| twofold Dirac points on the surface, as shown in Fig. 25.
In summary, the total number of top-surface twofold Dirac points in the first surface BZ is 2|4n+ 2| mod 8 = 4.

In Appendix F 6 a, we will prove that, on the top surface of the (400) HOTI state – which respects the symmetries
of Type-I double magnetic wallpaper group18,35,63,131,132 p4m – the presence of 4 + 8n (n ∈ {Z+, 0}) twofold surface
Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group
p4m.

Relationship with the SIs in other double SSGs – To identify the AXI phases, we subduce the SIs onto double MSG
2.4 P 1̄:

(z8, z
+
4m,π, z2w,1)P4/mmm → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2(z8 mod 2), 000)P 1̄. (F107)

Because the AXI I SI η2I′ = 1
2η4I = z8 mod 2 [Eq. (F49)], then we conclude that insulators with odd z8 SIs in double

MSG 123.339 P4/mmm are AXIs.

l. Double SIs in Type-I Double MSG 143.1 P3

The double MSG 143.1 P3 is generated by {E|100}, {E|010}, {E|001}, and {C3z|0}, where the angle between the
{E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} rotation symmetry.

The double MSG 143.1 P3 has the SI group Z3. To determine the physical basis for the double SIs, we first recall
the formula for the 2D Chern number in the presence of threefold rotation symmetry203:

ei
2π
3 C = (−1)Nocc

∏
n∈occ

θn(Γ)θn(K)θn(KA), (F108)

where θn(Γ,K,KA) is the {C3z|0} eigenvalue of the nth occupied state at the corresponding momentum (where it
is important to distinguish the {C3z|0} eigenvalues θn from the axion angle θ). We can define the SI as the Chern
number in the kz = π plane modulo 3:

z3R = Ckz=π mod 3 =
3

2
Nocc +

∑
K=A,H,HA

(
−1

2
n

1
2

K +
1

2
n
− 1

2

K +
3

2
n

3
2

K

)
mod 3, (F109)

where the superscripts j = − 1
2 ,

1
2 ,

3
2 represent the {C3z|0} eigenvalues e−i

2π
3 j= e−i

π
3 , ei

π
3 ,−1, respectively, and Nocc is

the number of occupied bands. Because 3
2Nocc =

∑
K=A,H,HA

1
2n
− 1

2

K + 1
2n

1
2

K + 1
2n

3
2

K , then Eq. (F109) can be simplified:

z3R =
∑

K=A,H,HA

(
n
− 1

2

K − n
3
2

K

)
mod 3. (F110)

Due to the compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a
momentum-space Chern number, a 3D insulator must satisfy Ckz=π = Ckz for all kz. Hence, we may have equivalently
defined the SI z3R using the occupied {C3z|0} eigenvalues in kz = 0 plane, or in any other BZ plane of constant kz.
To summarize, if a 3D system is insulating and exhibits z3R 6= 0, then the system is in a 3D QAH state with
Ckz=0 = Ckz=π and z3R = Ckz=0 mod 3.

Because the physical meaning of the double SIs is straightforward (i.e. the nontrivial phases are 3D QAH states
composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 143.1 P3.

If we impose T -symmetry, then the position-space Chern numbers must vanish, which enforces z3R to be zero.
Furthermore, if we add T symmetry to a system that respects double MSG 143.1 P3, we specifically find that the SI
group becomes trivial.
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m. Double SIs in Type-I Double MSG 147.13 P 3̄

The double MSG 147.13 P 3̄ is generated by {E|100}, {E|010}, {E|001}, {C3z|0}, and {I|0}, where the angle be-
tween the {E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} rotation symmetry.

SIs – The double MSG 147.13 P 3̄ has the SI group Z12 × Z2 ∼ Z4 × Z3 × Z2. We find that the Z4, Z3, and Z2

double SIs in double MSG 147.13 P 3̄ all subduce to previously introduced double SIs. First, the Z4 SI subduces to
η4I in double MSG 2.4 P 1̄ [Eq. (F35)], where, as shown in Appendix F 4 a, η4I = 1, 3 indicate WSM phases, η4I = 2
indicates that an insulator is either an AXI or in a 3D QAH state, and η4I = 0 indicates that an insulator is either
topologically trivial or in a 3D QAH state. The Z3 SI subduces to z3R in double MSG 143.1 P3 [Eq. (F110)]. In
insulating states, z3R indicates the Chern number modulo 3 in BZ planes of constant kz. Lastly, the Z2 SI subduces
to z2I,3 in double MSG 2.4 P 1̄ [Eq. (F36)], where z2I,3 indicates the Chern number modulo 2 in the kz = π plane. In
summary, the double SIs in double MSG 147.13 P 3̄ in the physical basis are given by the previously-defined double
SIs (η4I , z3R, z2I,3).

Layer constructions – In Cartesian coordinates (x, y, z), the primitive lattice translation vectors in double MSG

147.13 P 3̄ – {E|100}, {E|010}, and {E|001} – respectively correspond to t1 = (0,−1, 0), t2 = (
√

3
2 ,

1
2 , 0), and

t3 = (0, 0, 1). We consider the following four layer constructions, where the double SIs of each layer construction are
given in the order (η4I , z3R, z2I,3):

1. A ẑ-normal Chern layer with Cz = 1 in the z = 0 plane has the SIs (211).

2. A ẑ-normal Chern layer with Cz = −2 in the z = 0 plane has the SIs (010).

3. A ẑ-normal Chern layer with Cz = 1 in the z = 1
2 plane has the SIs (011).

4. An x̂-normal Chern layer with Cx = 1 in the x = 0 plane has the SIs (200). We emphasize that, in this
layer construction, there are also |C| = 1 Chern layers in the C3zx̂ and C2

3zx̂ directions implied by the {C3z|0}
rotation symmetry.

We label the four layer constructions as L1,2,3,4, respectively. We note that −2L1 and −2L3 exhibit the same
symmetry-indicated topology as L2, where −L1 (−L3) has the same construction as L1 (L3), except for a sign change
in the Chern number Cz → −Cz.

Total Chern number modulo 6 – The Chern number at kz = π can be determined modulo 6:

Ckz=π mod 6 = −2z3R + 3z2I,3 mod 6. (F111)

Eq. (F111) takes the same form as the SI introduced in Ref. 203 for the Chern number in a 2D insulator with sixfold
rotation symmetry, which occurs because the point group of double MSG 147.13 P 3̄ (isomorphic to Type-I MPG
17.1.62 P 3̄) exhibits sixfold symmetry generated by C3z and I11,89. In general, we find that, if η4I = 0, 2, then the
Chern number of the occupied bands in the kz = 0 plane is the same as the Chern number of the occupied bands in
the kz = π plane (modulo 6). Lastly, if η4I = 1, 3, then the Chern number of the occupied bands in the kz = 0 plane
differs from the Chern number of the occupied bands in the kz = π plane by 3 (modulo 6), implying the presence of an
odd number of Weyl points in the BZ between kz = 0, π, in agreement with the odd value of η4I (see Appendix F 4 a).

Relationship with the SIs in other double SSGs – The double SSG 147.14 P 3̄1′ – which is generated by adding
{T |0} symmetry to double MSG 147.13 P 3̄ – has the double SI group Z4 × Z2. The SIs in double SSG 147.14 P 3̄1′

are related to the SIs in double MSG 147.13 P 3̄ through the subduction relations:

(z4, z2w,3)P 3̄1′ → (η4I , z3R, z2I,3)P 3̄ = (2(z4 mod 2), 00)P 3̄. (F112)

n. Double SIs in Type-I Double MSG 168.109 P6

The double MSG 168.109 P6 is generated by {E|100}, {E|010}, {E|001}, and {C6z|0}, where the angle between
the {E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} = ({C6z|0})2 rotation
symmetry.

The double MSG 168.109 P6 has the SI group Z6. To determine the physical basis for the double SIs, we first recall
the formula for the 2D Chern number in the presence of sixfold symmetries203:

ei
2π
6 C = (−1)Nocc

∏
n∈occ

ηn(Γ)θn(K)ζn(M), (F113)
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where ηn(Γ), θn(K), ζn(M) are the {C6|0}, {C3|0}, and {C2|0} eigenvalues of the nth occupied state at Γ, K, and
M , respectively. We define the SI as the Chern number in the kz = π plane modulo 6:

z6R =Ckz=π mod 6 = 3Nocc −
1

2
n

1
2
A +

1

2
n
− 1

2
A − 3

2
n

3
2
A +
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n
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n

5
2
A +

5

2
n
− 5

2
A − n

1
2
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2

H + 3n
3
2
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3

2
n

1
2
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2
n
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2
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=− 1

2
n

1
2
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1

2
n
− 1

2
A − 3

2
n

3
2
A +

3

2
n
− 3

2
A − 5

2
n

5
2
A +

5

2
n
− 5

2
A − n

1
2
H + n

− 1
2

H + 3n
3
2
H +

3

2
n

1
2
L −

3

2
n
− 1

2
L mod 6, (F114)

where the superscripts njA represent the {C6z|0} eigenvalues e−i
2π
6 j at A, njH is the number of occupied states with

{C3z|0} eigenvalue e−i
2π
3 j at H, and where njL is the number of states with {C2z|0} eigenvalue e−i

π
2 j at L. Due to the

compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a momentum-space
Chern number, a 3D insulator must satisfy Ckz=π = Ckz for all kz. Hence, we may have equivalently defined the
SI z6R using the occupied rotation symmetry eigenvalues in the kz = 0 plane, or in any other BZ plane of constant
kz. To summarize, if a 3D system is insulating and exhibits z6R 6= 0, then the system is in a 3D QAH state with
Ckz=0 = Ckz=π and z6R = Ckz=0 mod 6.

Because the physical meaning of the double SIs is straightforward (i.e. the nontrivial phases are 3D QAH states
composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 168.109
P6.

If we impose T -symmetry, then the position-space Chern numbers must vanish, which enforces z6R to be zero.
Furthermore, if we add T symmetry to a system that respects double MSG 168.109 P6, we specifically find that the
SI group becomes trivial.

o. Double SIs in Type-I Double MSG 174.133 P 6̄

The double MSG 174.133 P 6̄ is generated by {E|100}, {E|010}, {E|001}, {C3z|0}, and {mz|0}, where the angle
between the {E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} = ({C6z|0})2

rotation symmetry.
SIs – The double MSG 174.133 P 6̄ has the SI group Z3

3. In the physical basis, the three Z3-valued SIs are:
(δ3m, z

+
3m,π, z

−
3m,π), for which the SI formulas are:

δ3m = C+
kz=π − C

−
kz=0 mod 3 =

∑
K=A,H,HA

(
n
− 1

2 ,+i

K − n
3
2 ,+i

K

)
−

∑
K=Γ,K,KA

(
n
− 1

2 ,−i
K − n

3
2 ,−i
K

)
mod 3, (F115)

z+
3m,π = C+

kz=π mod 3 =
∑

K=A,H,HA

(
n
− 1

2 ,+i

K − n
3
2 ,+i

K

)
mod 3, (F116)

z−3m,π = C−kz=π mod 3 =
∑

K=A,H,HA

(
n
− 1

2 ,−i
K − n

3
2 ,−i
K

)
mod 3, (F117)

such that a 3D insulator with z+
3m,π 6= −z

−
3m,π mod 3 is in a 3D QAH state. The compatibility relations require the

kz = 0, π planes to have the same occupied C3z eigenvalues, and hence the same Chern numbers (modulo 3). In an
insulating state (i.e. in the absence of bulk Weyl points), it is further required that C+

kz=0 +C−kz=0 = C+
kz=π +C−kz=π

and C+
kz=0−C

−
kz=π mod 3 = C+

kz=π−C
−
kz=0 mod 3 = δ3m. As we will show below, in insulators with net-zero position-

space Chern numbers, AXI phases may be stabilized in double MSG 174.133 P 6̄ by S6 rotoinversion symmetry, but
will not be symmetry indicated, because the strong index δ3m is Z3-valued, whereas the axion angle θ is Z2-valued (if
quantized).

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs
(δ3m, z

+
3m,π, z

−
3m,π), we employ the layer construction method. In each layer construction, we denote the mirror

sector Chern numbers of the occupied bands at kz = 0, π as (C+
kz=0, C

−
kz=0, C

+
kz=π, C

−
kz=π). The layer constructions

for Type-I double MSG 174.133 P 6̄ are given by:

1. A ẑ-normal Chern layer with C+
z = 1, C−z = 0 in the z = 0 plane has the mirror sector Chern numbers (1010)

and the SIs (110).

2. A ẑ-normal Chern layer with C+
z = 0, C−z = 1 in the z = 0 plane has the mirror sector Chern numbers (0101)

and the SIs (201).
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3. A ẑ-normal Chern layer with C+
z = 1, C−z = 0 in the z = 1

2 plane has the mirror sector Chern numbers (1001)
and the SIs (001).

4. A ẑ-normal Chern layer with C+
z = 0, C−z = 1 in the z = 1

2 plane has the mirror sector Chern numbers (0110)
and the SIs (010).

Relationship with the SIs in other double SSGs – We next study the effects of imposing T symmetry. The double
SSG 174.134 P 6̄1′ – the SSG generated by adding {T |0} symmetry to MSG 174.133 P 6̄ – has the SI group Z3 × Z3.
The SIs in double SSG 174.134 P 6̄1′ are related to the SIs in double MSG 174.133 P 6̄ through the subduction relations:

(z3m,0, z3m,π)P 6̄1′ → (δ3m, z
+
3m,π, z

−
3m,π)P 6̄ = (z3m,π + z3m,0 mod 3, z3m,π, −z3m,π mod 3)P 6̄. (F118)

In Type-II double SSG 174.134 P 6̄1′ insulators with net-odd odd mirror Chern numbers14 are 3D TIs. However,
because z3m,0 and z3m,π only indicate the mirror Chern numbers in the kz = 0, π planes modulo 3, then there is
no relationship between z3m,0 and z3m,π and the axion (3D TI) angle θ. Specifically, consider a 3D TI in double
SSG 174.134 P 6̄1′ with (z3m,0, z3m,π)P 6̄1′ = (10)6̄1′ , where the bulk axion angle θ = π. Taking three superposed
copies of the 3D TI results in an insulator with the SIs (00)6̄1′ and the axion angle θ = π. Hence, z3m,0 and z3m,π

are individually (and as a set) independent of θ, because z3m,0 and z3m,π are Z3-valued, whereas θ is Z2-valued (if
quantized). We thus conclude that, while axionic mirror TCI phases can be stabilized by {mz|0} mirror and {S6|0}
rotoinversion symmetries in the magnetic subgroup double MSG 174.133 P 6̄ of double SSG 174.134 P 6̄1′, θ is not
symmetry-indicated in double MSG 174.133 P 6̄.

p. Double SIs in Type-I Double MSG 175.137 P6/m

The double MSG 175.137 P6/m is generated by {E|100}, {E|010}, {E|001}, {C6z|0}, and {I|0}, where the angle
between the {E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} = ({C6z|0})2

rotation symmetry. We note that double MSG 175.137 P6/m additionally contains a mirror symmetry operation:
{mz|0} = {C6z|0}3{I|0}.

SIs – The double MSG 175.137 P6/m has the SI group Z3
6. In the physical basis, the three Z6-valued SIs are:

(δ6m, z
+
6m,π, z

−
6m,π), for which the SI formulas are:

δ6m = C+
kz=π − C

−
kz=0 mod 6 =− 1
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2
n
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M mod 6, (F119)

z+
6m,π = C+

kz=π mod 6 =− 1
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L mod 6, (F120)

z−6m,π = C−kz=π mod 6 =− 1
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2
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2 ,−i
L mod 6, (F121)

such that a 3D insulator with z+
6m,π 6= −z

−
6m,π mod 6 is in a 3D QAH state. As we will show below, in insulators with

net-zero position-space Chern numbers, odd values of δ6m indicate mirror TCI phases with θ = π. The compatibility
relations require that the occupied bands in the kz = 0, π planes have the same rotation symmetry eigenvalues, and
hence the same Chern numbers (modulo 6). In an insulating state (i.e. in the absence of bulk Weyl points), it is
further required that C+

kz=0 + C−kz=0 = C+
kz=π + C−kz=π and C+

kz=0 − C
−
kz=π mod 6 = C+

kz=π − C
−
kz=0 mod 6 = δ6m.

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs
(δ6m, z

+
6m,π, z

−
6m,π), we employ the layer construction method. In each layer construction, we denote the mirror
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sector Chern numbers of the occupied bands at kz = 0, π as (C+
kz=0, C

−
kz=0, C

+
kz=π, C

−
kz=π), and additionally com-

pute the subduced SIs (η4I , z2I,1, z2I,2, z2I,3)P 1̄ in the subgroup double MSG 2.4 P 1̄ (see Appendix F 4 a). The layer
constructions for Type-I double MSG 175.137 P6/m are given by:

1. A ẑ-normal Chern layer with C+
z = 1, C−z = 0 at z = 0 has the mirror sector Chern numbers (1010) and the

SIs (110). The subduced subgroup SIs are (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2001)P 1̄.

2. A ẑ-normal Chern layer with C+
z = 0, C−z = 1 at z = 0 has the mirror sector Chern numbers (0101) and the

SIs (501). The subduced subgroup SIs are (2001)P 1̄.

3. A ẑ-normal Chern layer with C+
z = 1, C−z = 0 at z = 1

2 has the mirror sector Chern numbers (1001) and the
SIs (001). The subduced subgroup SIs are (0001)P 1̄.

4. A ẑ-normal Chern layer with C+
z = 0, C−z = 1 at z = 1

2 has the mirror sector Chern numbers (0110) and the
SIs (010). The subduced subgroup SIs are (0001)P 1̄.

Relationship with the SIs in other double SSGs – To identify the AXI phases in double MSG 175.137 P6/m, we
subduce the SIs onto double MSG 2.4 P 1̄:(

δ6m, z
+
6m,π, z

−
6m,π

)
P6/m

→ (η4I , z2I,1, z2I,2, z2I,3)P 1̄ =
(
2(δ6m mod 2), 0, 0, z+

6m,π + z−6m,π mod 2
)
P 1̄
. (F122)

Eq. (F122) implies that the I AXI index η2I′ [Eq. (F49)] is related to δ6m by η2I′ = 1
2η4I = δ6m mod 2, such that

gapped states with δ6m mod 2 = 1 and z+
6m,π+z−6m,π mod 2 = 0 in MSG 175.137 P6/m are AXIs if the non-symmetry-

indicated Chern numbers vanish.
Lastly, we study the effects of imposing T symmetry. The double SSG 175.138 P6/m1′ – the SSG generated by

adding {T |0} to double MSG 175.137 P6/m – has the SI group Z12 × Z6. The SIs in double SSG 175.138 P6/m1′

are related to the SIs in double MSG 175.137 P6/m through the subduction relations:

(z12, z6m,π)P6/m1′ → (δ6m, z
+
6m,π, z

−
6m,π)P6/m = (z12 mod 6, z6m,π,−z6m,π mod 6)P6/m. (F123)

q. Double SIs in Type-I Double MSG 176.143 P63/m

The double MSG 176.143 P63/m is generated by {E|100}, {E|010}, {E|001}, {C6z|00 1
2}, and {I|0}, where the

angle between the {E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} =
{E|001̄}{C6z|00 1

2}
2 rotation symmetry. We note that double MSG 176.143 P63/m additionally contains a mirror

symmetry operation: {mz|00 1
2} = {E|001̄}{C6z|00 1

2}
3{I|0}.

SIs – The double MSG 176.143 P63/m has the SI group Z6 × Z3. In the physical basis, the SIs are (z+
6m,0, δ3m),

where δ3m = C+
kz=π − C

−
kz=0 mod 3 subduces to the same SI (δ3m) in double MSG 174.133 P 6̄ [Eq. (F115)]. The SI

formula for z+
6m,0 is given by:

z+
6m,0 = C+

kz=0 mod 6 =− 1
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2 ,+i

M − 3

2
n
− 1

2 ,+i

M mod 6, (F124)

where nj,+iK is the number of occupied states with mirror {mz|00 1
2} eigenvalue i and rotation eigenvalue e−i

2π
n j

(n = 6, 3, 2 for K = Γ, K, and M , respectively). As we will show below, insulators with z+
6m,0 mod 2 = 1 and net-zero

position-space Chern numbers in double MSG 176.143 P63/m are AXIs – all of the other insulators in double MSG
176.143 P63/m with nontrivial SIs are 3D QAH states.

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs (z+
6m,0, δ3m),

we employ the layer construction method. In each layer construction, we denote the mirror sector Chern numbers
of the occupied bands at kz = 0, π as (C+

kz=0, C
−
kz=0, C

+
kz=π, C

−
kz=π), and additionally compute the subduced SIs

(η4I , z2I,1, z2I,2, z2I,3)P 1̄ in the subgroup double MSG 2.4 P 1̄ (see Appendix F 4 a). We note that, while the I centers
in MSG 176.143 P63/m lie in the z = 0, 1

2 planes, the mirror planes lie at z = 1
4 ,

3
4 in each cell. The layer constructions

for Type-I double MSG 176.143 P63/m are given by:

1. A ẑ-normal layer with Cz = 1 in the z = 0, 1
2 planes has the mirror sector Chern numbers (1111) and the SIs

(10). The subduced subgroup SIs are (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2000)P 1̄.
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2. A ẑ-normal layer with C+
z = 1, C−z = 0 in the z = 1

4 ,
3
4 planes has the mirror sector Chern numbers (2011) and

the SIs (21). The subduced subgroup SIs are (0000)P 1̄.

3. A ẑ-normal layer with C+
z = 0, C−z = 1 layer in the z = 1

4 ,
3
4 planes has the mirror sector Chern numbers (0211)

and the SIs (02). The subduced subgroup SIs are (0000)P 1̄.

Relationship with the SIs in other double SSGs – To identify the AXI phases, we subduce the SIs in double MSG
176.143 P63/m onto double MSG 2.4 P 1̄:

(z+
6m,0, δ3m)→ (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2(z+

6m,0 mod 2), 000)P 1̄, (F125)

which implies that the I AXI index η2I′ [Eq. (F49)] is related to z+
6m,0 by η2I′ = 1

2η4I = z+
6m,0 mod 2. Hence, we

conclude that insulators in double MSG 176.143 P63/m with z+
6m,0 mod 2 = 1 and net-zero position-space Chern

numbers are AXIs.
Lastly, we study the effects of imposing T symmetry. The double SSG 176.144 P63/m1′ – the SSG generated by

adding {T |0} to double MSG 176.143 P63/m – has the SI group Z12. The SIs in double SSG 176.144 P63/m1′ are
related to the SIs in double MSG 176.143 P63/m through the subduction relations:

(z′12)P63/m1′ → (z+
6m,0, δ3m)P63/m = (z′12 mod 6, z′12 mod 3)P63/m. (F126)

r. Double SIs in Type-I Double MSG 191.233 P6/mmm

The double MSG 191.233 P6/mmm is generated by {E|100}, {E|010}, {E|001}, {C6z|0}, {I|0}, and {mx|0}, where
the angle between the {E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} =
({C6z|0})2 rotation symmetry. We note that double MSG 191.233 P6/mmm additionally contains a mirror symmetry
operation: {mz|0} = {C6z|0}3{I|0}. In Cartesian coordinates (x, y, z), the primitive lattice translation vectors in
double MSG 191.233 P6/mmm – {E|100}, {E|010}, and {E|001} – respectively correspond to t1 = (0,−1, 0),

t2 = (
√

3
2 ,

1
2 , 0), and t3 = (0, 0, 1).

SIs – The double MSG 191.233 P6/mmm has the SI group Z12 × Z6. In double-valued small irreps of the little
groups at the I-invariant k points, the matrix representatives of perpendicular mirror symmetries (e.g. {mx|0} and
{my|0}) anticommute. Hence, Bloch states at the eight I-invariant momenta must be at least twofold degenerate
(and in fact are exactly twofold degenerate in double MSG 191.233 P6/mmm). The double SIs can be chosen to be
the same as the double SIs of SSG 191.234 P6/mmm1′ (previously introduced in Ref. 14), because the addition of
T symmetry to double MSG 191.233 P6/mmm does not change the dimensions and characters of the small irreps
at the high-symmetry BZ points or the compatibility relations between the high-symmetry-point small irreps. In the
physical basis, the Z12 double SI is:

z12 = δ6m + 3[(δ6m − z4) mod 4] mod 12, (F127)

where δ6m is computed by subduction onto double MSG 175.137 P6/m [Eq. (F119)], and z4 is computed by subduction
onto double MSG 2.4 P 1̄ [Eq. (F59)]. As we will show below, odd values of the strong index z12 indicate mirror TCI
phases with θ = π (i.e. AXIs), and nontrivial even values indicate non-axionic (helical) magnetic TCI and HOTI
phases. Lastly, in the physical basis, the Z6-valued double SI is the weak TCI invariant z+

6m,π for the mirror Chern

number (modulo 6) in the kz = π plane, and can also be computed by subduction onto double MSG 175.137 P6/m
[Eq. (F120)].

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the
layer construction method. In the layer constructions below, C+ = −C− due to the net-zero Chern numbers enforced
by the mirror symmetries. Hence, we will omit C− in further discussions of the topology in double MSG 191.233
P6/mmm. The layer constructions for the double SIs (z12, z

+
6m,π) in MSG 191.233 P6/mmm are given by:

1. A ẑ-normal layer with C+
z = 1 in the z = 0 plane has the SIs (21).

2. A ẑ-normal layer with C+
z = 1 in the z = 1

2 plane has the SIs (05).

3. An x̂-normal layer with C+
x = 1 in the x = 0 plane has the SIs (60). We emphasize that, in this layer

construction, there are also |C+| = 1 mirror Chern layers in the C6zx̂, C2
6zx̂, C3

6zx̂, C4
6zx̂, and C5

6zx̂ directions
implied by the {C6z|0} rotation symmetry.
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4. A ŷ-normal layer with C+
y = 1 in the y = 0 plane has the SIs (60). We emphasize that, in this layer construction,

there are also |C+| = 1 mirror Chern layers in the C6zŷ, C2
6zŷ, C3

6zŷ, C4
6zŷ, and C5

6zŷ directions implied by the
{C6z|0} rotation symmetry.

Axion insulators – We find that states with odd z12 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z12. First, as we will show below, insulators in double MSG 191.233 P6/mmm with z12 mod 2 = 1 subduce to
(2000)P 1̄ in MSG 2.4 P 1̄. Hence, if the z12 mod 2 = 1 phases in double MSG 191.233 P6/mmm are insulating, then
the bulk insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers Cx,y,z = 0 must
vanish if the bulk is gapped, due to the mirror symmetries of double MSG 191.233 P6/mmm, then insulators with
z12 mod 2 = 1 in double MSG 191.233 P6/mmm must be AXIs. This result can also be understood by subducing
from a T -symmetric SSG. Specifically, because insulators with the double SIs z12 mod 2 = 1 in double MSG 191.233
P6/mmm can be subduced from insulators with (z12)P6/mmm1′ mod 2 = 1 in Type-II SG 191.234 P6/mmm1′, which

correspond to T -symmetric 3D TIs with θ = π7,14,15, then the double SIs z12 mod 2 = 1 in double MSG 191.233
P6/mmm are compatible with bulk-gapped states. Hence, we conclude that 3D insulators with z12 mod 2 = 1 in
double MSG 191.233 P6/mmm are AXIs, without ambiguity. We conjecture that z12 mod 2 = 1 AXIs in double MSG
191.233 P6/mmm can be constructed using the topological crystal method207, which additionally incorporates cell
complexes of 2D Chern insulators, TIs, and TCIs.

Helical HOTI phases protected by mirror and C6 rotation symmetry – First, the double SIs (60)P6/mmm1′ of Type-II
double SSG SG 191.234 P6/mmm1′ either correspond to a rotation-anomaly (non-axionic, i.e. θ mod 2π = 0) HOTI
protected by C6 and T symmetries, or a mirror TCI with Cmz mod 12 = 6 (c.f. Table 7 in the Supplementary
Material of Ref. 14). In the C6- and T -symmetric HOTI phase, there are 6 + 12n (n ∈ {Z+, 0}) helical hinge modes
on a z-directed, C6- and T -symmetric rod, and 6 + 12n twofold Dirac points on the top (ẑ-normal) rod surface that
are locally protected by mirror symmetry (see Appendix F 6). Because double SSG SG 191.234 P6/mmm1′ contains
{mx,y|0} symmetries (as well as their conjugates under C6z symmetry), then six of the helical hinge modes on the
boundary of a 6/mmm1′-symmetric sample must also be pinned to the hinge projections of bulk mirror planes whose
normal vectors lie in the xy-plane, and must be indicated by bulk mirror Chern numbers. Hence, when T symmetry
is relaxed in a sixfold rotation-anomaly (60)P6/mmm1′ HOTI phase in Type-II double SSG 191.234 P6/mmm1′ while
preserving the symmetries of MSG 191.233 P6/mmm, the surface and hinge states will remain gapless and anomalous
[see Fig. 26(c) and Appendix F 6 b].

We will next prove that there are 6 + 12n twofold Dirac points on the top surface of a 6/mmm-symmetric nanorod
of the (60) sixfold rotation-anomaly magnetic HOTI phase in double MSG 191.233 P6/mmm introduced in this work.
We denote the four layer constructions as La (a = 1 · · · 4), respectively. First, we note that the (60) mirror TCI
phase with Cmz mod 12 = 6 can be constructed as (6m + 3)L1 ⊕ (6m′ + 3)L2. Next, the sixfold rotation-anomaly
HOTI phase can be constructed as (2n+ 1)L3, or (2n+ 1)L4, or through any superposition of an odd number of the
aforementioned layer constructions. Adding 6L1 or 6L2, which have SIs (00), to the layer-constructed HOTI phase
will not change the top surface spectrum, because L1 and L2 consist of horizontal (i.e. ẑ-normal) layers, and hence
only contribute surface and hinge states on boundaries whose normal vectors lie in the xy-plane.

We will thus focus on the top surface spectra of the (2n+1)L3 and (2n+1)L4 layer constructions. We first consider
(2n+ 1)L3. As shown in Supplementary Note 5 in Ref. 14 and in Table 6 of the Supplementary Material of Ref. 14,
the Chern numbers in the mx mirror sectors are given by C+

kx=0 = −C−kx=0 = 4n + 2, C+
kx=π = −C−kx=π = 0. In the

2D top surface BZ, C+
kx=0 mandates the presence of |4n+ 2| twofold Dirac points on the kx = 0 line. Due to the C6z

symmetry, there must also be 2|4n+2| twofold Dirac points on the C6z and C−1
6z conjugates of the kx = 0 line. Hence,

the total number of top-surface Dirac points is 3|4n+ 2| mod 12 = 6. Lastly, we note that performing the analogous
analysis on the (2n+ 1)L4 layer construction also returns the same number of mirror-protected twofold Dirac points
on the top surface (6 + 12n).

In Appendix F 6 a, we will prove that, on the top surface of the (60) HOTI state – which respects the symmetries
of Type-I double magnetic wallpaper group18,35,63,131,132 p6m – the presence of 6 + 12n (n ∈ {Z+, 0}) twofold surface
Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group
p6m.

Relationship with the SIs in other double SSGs – To identify the AXI phases, we subduce the SIs onto double MSG
2.4 P 1̄:

(z12, z
+
6m,π)P6/mmm → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2(z12 mod 2), 000)P 1̄. (F128)

Because the AXI I SI η2I′ = 1
2η4I = z12 mod 2 [Eq. (F49)], then we conclude that insulators with odd z12 SIs in

double MSG 191.233 P6/mmm are AXIs.
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s. Double SIs in Type-II Double SG 2.5 P 1̄1′

Using the definition of a minimal double SSG established in Appendix F 3, we find that there are only five min-
imal Type-II double SSGs: 2.5 P 1̄1′, 83.44 P4/m1′, 87.76 I4/m1′, 175.138 P6/m1′, and 176.144 P63/m1′. The
SIs, SI formulas, and physical interpretation of the SIs in the Type-II double SSGs were previously determined in
Refs. 7,14,15. In the physical basis employed in this work, the SI formulas, physical interpretations, and layer con-
structions of the double SIs in the above minimal Type-II double SSGs are provided in Ref. 14. Here and below
[Appendices F 4 t, F 4 u, F 4 v, and F 4 w, respectively], we will briefly review the established SI formulas and physical
interpretations of the double SIs in the five minimal Type-II double SSGs.

To begin, the double SSG 2.5 P 1̄1′ is generated by {E|100}, {E|010}, {E|001}, {I|0}, and {T |0}.
The SI group is Z4 × Z3

2. In the physical basis, the four double SIs (z4, z2w,1, z2w,2, z2w,3) of double SSG 2.5 P 1̄1′

have the respective SI formulas:

z4 =
∑
K

1

2
n−K =

∑
K

n−K − n
+
K

4
mod 4, (F129)

z2w,i =
∑

K,Ki=π

1

2
n−K =

∑
K,Ki=π

n−K − n
+
K

4
mod 2 (i = 1, 2, 3), (F130)

where K runs over the eight I-invariant momenta in the first BZ, and n±K are the number of Bloch states with ±1
parity (I) eigenvalues at K in the group of bands under consideration. The double SIs (z4, z2w,1, z2w,2, z2w,3)P 1̄1′

in double SSG 2.5 P 1̄1′ have the same SI formulas as the double SIs in (z4, z2w,1, z2w,2, z2w,3)Pmmm in double MSG
47.249 Pmmm [Eqs. (F59) and (F60)], which we previously analyzed in Appendix F 4 d.

The physical interpretations of the double SIs in Type-II double SSG 2.5 P 1̄1′ are given below:14:

1. z4 = 1, 3 indicate strong 3D TIs protected by T symmetry.

2. For z4 = 0, 2, z2w,i = 1 indicates a weak TI phase that can be deformed into a stack of 2D TIs whose normal
vectors point in the i-direction [e.g., the double SIs (z4, z2w,1, z2w,2, z2w,3)P 1̄1′ = (2110)P 1̄1′ indicate a weak TI
that is equivalent to a stack of 2D TIs oriented in the x+ y-direction].

3. For z2w,1 = z2w,2 = z2w,3 = 0, z4 = 2 indicates a non-axionic helical HOTI protected by I and T symmetries
with a sample-encircling helical hinge mode (see Supplementary Note 5 in Ref. 14).

t. Double SIs in Type-II Double SG 83.44 P4/m1′

The double SSG 83.44 P4/m1′ is generated by {E|100}, {E|010}, {E|001}, {I|0}, {C4z|0}, and {T |0}.
The double SSG 83.44 P4/m1′ has the SI group Z8 × Z4 × Z2. In the physical basis, the Z8 double SI has the SI

formula:

z8 =
3

2
n

3
2 ,+ − 3

2
n

3
2 ,− − 1

2
n

1
2 ,+ +

1

2
n

1
2 ,− mod 8, (F131)

nj,± =
∑

K=Γ,M,Z,A

nj,±K +
∑

K=X,R

n
1
2 ,±
K , (F132)

where nj,±K (K = Γ,M,Z,A) are the number of states at the momentum K with parity (I) eigenvalue ±1 and

{C4z|0} eigenvalue angular momentum j (modulo 4), and nj,±K (K = X,R) are the number of states at the mo-
mentum K with parity eigenvalue ±1 and angular momentum j (modulo 2). The Z4 SI subduces to the weak
TCI invariant z−4m,π in double MSG 83.43 P4/m [Eq. (F74)], and the Z2 SI subduces to the weak TI invariant

z2w,1 in double SSG 2.5 P 1̄1′ [Eq. (F60)]. We note that in Ref. 14, z−4m,π is instead labeled z4m,π. As a set, the

three double SIs (z8, z
−
4m,π, z2w,1)P4/m1′ in double SSG 83.44 P4/m1′ have the same SI formulas as the double SIs

(z8, z
−
4m,π, z2w,1)P4/mmm in double MSG 123.339 P4/mmm, which we previously analyzed in Appendix F 4 k.
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The physical interpretations of the double SIs in Type-II double SSG 83.44 P4/m1′ are given below14:

1. z2w,1 = 1 indicates the presence of nontrivial weak TI indices in the kx,y = π planes.

2. Nonzero values of z−4m,π indicate nontrivial mirror sector Chern numbers in the kz = π plane: z−4m,π =

C−kz=π mod 4 = −C+
kz=π mod 4 [see Eq. (F74) and the surrounding text].

3. z8 6= 0, 4 indicate nontrivial mirror sector Chern numbers in the kz = 0, π planes: C−kz=0 − C
+
kz=π mod 4 = z8

[see Appendix F 4 h for the subduction relations between (z8)P4/m1′ in double SSG 83.44 P4/m1′ and the double
SIs in double MSG 83.43 P4/m]. z8 mod 2 = 1 specifically indicates strong 3D TI phases.

4. For z2w,1 = z−4m,π = 0, z8 = 4 either indicates a mirror TCI phase with Cmz mod 8 = 4, or a non-axionic fourfold

rotation-anomaly HOTI phase with C4z- and T -symmetry-protected bulk topology and 4 + 8n (n ∈ {Z+, 0})
T -protected helical hinge modes (see Supplementary Note 5 in Ref. 14).

u. Double SIs in Type-II Double SG 87.76 I4/m1′

The double SSG 87.76 I4/m1′ is generated by {E| 1̄2
1
2

1
2}, {E|

1
2

1̄
2

1
2}, {E|

1
2

1
2

1̄
2}, {I|0}, {C4z|0}, and {T |0}.

The double SSG 87.76 I4/m1′ has the SI group Z8 × Z2. In the physical basis, the Z8 double SI subduces to
(z8)P4/m1′ in double SSG 83.44 P4/m1′ (see Appendix F 4 t):

z8 =
3

2
n

3
2 ,+ − 3

2
n

3
2 ,− − 1

2
n

1
2 ,+ +

1

2
n

1
2 ,− mod 8, (F133)

in which nj,± are given by:

nj,± =
∑

K=Γ,M

nj,±K +
∑

K=X,N

n
1
2 ,±
K +

∑
K=P

n±jK , (F134)

where nj,±K (K = Γ,M) are the number of states at the momentum K with parity eigenvalue ±1 and {C4z|0}
eigenvalue angular momentum j (modulo 4), nj,±K (K = X,N) are the number of states at the momentum K with

parity eigenvalue ±1 and angular momentum j (modulo 2), and n±jP are the number of states at the momentum P

with {S4z|0} eigenvalue e∓i
2π
4 j . The Z2 SI subduces to the weak TI invariant z2w,1 in double SSG 2.5 P 1̄1′ [Eq. (F60)].

The physical interpretations of the double SIs in Type-II double SSG 87.76 I4/m1′ are closely related to the physical
interpretations of the double SIs in double SSG 83.44 P4/m1′ previously determined in Appendix F 4 t and Ref. 14:

1. z2w,1 = 1 indicates the presence of nontrivial weak TI indices in the kx,y = π planes in the primitive-cell BZ.

2. z8 6= 0, 4 indicate nontrivial mirror sector Chern numbers in the kz = 0 plane: C−kz=0 mod 4 = −C+
kz=0 mod 4 =

z8 (noting that the kz = 0, π planes are related by reciprocal lattice vectors, because the Bravais lattice of SSG
87.76 I4/m1′ is body-centered tetragonal11). z8 mod 2 = 1 specifically indicates strong 3D TI phases.

3. For z2w,1 = 0, z8 = 4 either indicates a mirror TCI phase with Cmz mod 8 = 4, or a non-axionic fourfold
rotation-anomaly HOTI phase with C4z- and T -symmetry-protected bulk topology and 4 + 8n (n ∈ {Z+, 0})
T -protected helical hinge modes (see Supplementary Note 5 in Ref. 14).

v. Double SIs in Type-II Double SG 175.138 P6/m1′

The double SSG 175.138 P6/m1′ is generated by {E|100}, {E|010}, {E|001}, {I|0}, {C6z|0}, and {T |0}.
The double SSG 175.138 P6/m1′ has the SI group Z12×Z6. In the physical basis, the SI formula of the Z12 SI can

be expressed in terms of previously established double SIs14:

z12 = δ6m + 3[(δ6m − z4) mod 4] mod 12, (F135)

where δ6m is computed by subduction onto double MSG 175.137 P6/m [Eq. (F119)], and z4 is computed by subduction
onto double SSG 2.5 P 1̄1′ [see Appendix F 4 s]. Additionally, in the physical basis, the Z6 SI is the weak TCI invariant
z+

6m,π for the mirror Chern number (modulo 6) in the kz = π plane, and can also be computed by subduction
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onto double MSG 175.137 P6/m [Eq. (F120)]. We note that in Ref. 14, z+
6m,π is instead labeled z6m,π. As a set,

the two double SIs (z12, z
+
6m,π)P6/m1′ in double SSG 175.138 P6/m1′ have the same SI formulas as the double SIs

(z12, z
+
6m,π)P6/mmm in double MSG 191.233 P6/mmm, which we previously analyzed in Appendix F 4 r.

The physical interpretations of the double SIs in double SSG 175.138 P6/m1′ are given below14:

1. Nonzero values of z+
6m,π indicate nontrivial mirror sector Chern numbers in the kz = π plane: z+

6m,π =

C+
kz=π mod 6 = −C−kz=π mod 6 [see Eq. (F120) and the surrounding text].

2. z12 6= 0, 6 indicate nontrivial mirror sector Chern numbers in the kz = 0, π planes: C+
kz=π −C

−
kz=0 mod 6 = z12

[see Appendix F 4 p for the subduction relations between (z12)P6/m1′ in double SSG 175.138 P6/m1′ and the
double SIs in double MSG 175.137 P6/m]. z12 mod 2 = 1 specifically indicates strong 3D TI phases.

3. For z+
6m,π = 0, z12 = 6 either indicates a mirror TCI phase with Cmz mod 12 = 6, or a non-axionic sixfold

rotation-anomaly HOTI phase with C6z- and T -symmetry-protected bulk topology and 6 + 12n (n ∈ {Z+, 0})
T -protected helical hinge modes (see Supplementary Note 5 in Ref. 14).

w. Double SIs in Type-II Double SG 176.144 P63/m1′

The double SSG 176.144 P63/m1′ is generated by {E|100}, {E|010}, {E|001}, {I|0}, {C6z|00 1
2}, and {T |0}.

The double SSG 176.144 P63/m1′ has the SI group Z12. In the physical basis, the SI formula of the Z12 SI can be
expressed in terms of previously established double SIs14:

z′12 = z+
6m,0 + 3[(z+

6m,0 − z4) mod 4] mod 12, (F136)

where z+
6m,0 is computed by subduction onto double MSG 176.143 P63/m [Eq. (F124)], and z4 is computed by

subduction onto double SSG 2.5 P 1̄1′ [see Appendix F 4 s]. We note that, unlike previously in double SSG 175.138
P6/m1′ (Appendix F 4 v), the mirror sector Chern numbers in the kz = π plane individually vanish C±kz=π = 0 for any

group of bands in double SSG 176.144 P63/m1′. This can be seen by first recognizing that the matrix representatives
of {T C6z|00 1

2} and {mz|00 1
2} anticommute in any small corep of any little group in the kz = π plane that contains

both {T C6z|00 1
2} and {mz|00 1

2}. Hence, if |ψ〉 is a Bloch eigenstate of {mz|00 1
2} at a k point in the kz = π plane

with the {mz|00 1
2} eigenvalue i, then {T C6z|00 1

2}|ψ〉 is also an eigenstate of {mz|00 1
2} with the same eigenvalue (i).

Consequently, there is an effective time-reversal symmetry ({T C6z|00 1
2}) within each mirror sector, which enforces

that the mirror sector Chern numbers in the kz = π plane individually vanish.
The physical interpretations of the double SIs in double SSG 176.144 P63/m1′ are given below14:

1. z′12 6= 0, 6 indicate nontrivial mirror sector Chern numbers in the kz = 0 plane: C+
kz=0 mod 6 = −C−kz=0 mod 6 =

z′12 [see Appendix F 4 q for the subduction relations between (z′12)P63/m1′ in double SSG 176.144 P63/m1′ and
the double SIs in double MSG 176.143 P63/m]. z′12 mod 2 = 1 specifically indicates strong 3D TI phases.

2. z′12 = 6 either indicates a mirror TCI phase with Cmz mod 12 = 6, or a non-axionic sixfold rotation-anomaly
HOTI phase with 63-screw- and T -symmetry-protected bulk topology and 6 + 12n (n ∈ {Z+, 0}) T -protected
helical hinge modes (see Supplementary Note 5 in Ref. 14).

x. Double SIs in Type-III Double MSG 27.81 Pc′c′2

Finally, beginning here with double MSG 27.81 Pc′c′2 and continuing below, we will introduce the physical-basis
SI formulas and the physical interpretations of the double SIs in the 11 minimal Type-III double MSGs (see Ap-
pendix F 3). To begin, the double MSG 27.81 Pc′c′2 is generated by {E|100}, {E|010}, {E|001}, {C2z|0}, and
{Tmx|00 1

2}.
SI – The double MSG 27.81 Pc′c′2 has the SI group Z2. As we will shortly demonstrate, in the physical basis, the

double SI z′2R indicates the even-valued Chern number in the kz = π plane (modulo 4): Ckz=π mod 4 = 2z′2R. Hence,
insulators with z′2R = 1 are 3D QAH states with Cz mod 4 = 2.

We will first demonstrate that Bloch states at the {C2z|0}-invariant momenta in the kz = π plane in double MSG
27.81 Pc′c′2 form doubly-degenerate pairs with the same {C2z|0} eigenvalues. To begin, in the kz = π plane, the
matrix representative of {Tmx|00 1

2} squares to minus the identity in all double-valued small coreps. Hence, all of the

irreducible small coreps in the kz = π plane along the {Tmx|00 1
2}-invariant lines ky = 0, π must be at least twofold
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degenerate (and in fact are exactly twofold degenerate in double MSG 27.81 Pc′c′2). Next, the matrix representatives
of {Tmx|00 1

2} and {C2z|0} anticommute in all small coreps at the {C2z|0}-invariant points kx,y = 0, π in the kz = π
plane. This implies that, if |ψ〉 is a Bloch state at kx,y = 0, π in the kz = π plane for which {C2z|0}|ψ〉 = i|ψ〉, then:

{C2z|0}{Tmx|00
1

2
}|ψ〉 = −{Tmx|00

1

2
}{C2z|0}|ψ〉 = i{Tmx|00

1

2
}|ψ〉. (F137)

Eq. (F137) implies that both Bloch states in each {Tmx|00 1
2} doublet at kx,y = 0, π, kz = π must have the same

{C2z|0} eigenvalues. We therefore define the Z2 SI as the parity of the number of doublets with {C2z|0} eigenvalue
−i in the kz = π plane:

z′2R =
∑

K=Z,T,U,R

1

2
n

1
2

K mod 2 =
Ckz=π

2
mod 2, (F138)

where n
1
2

K is the number of states with {C2z|0} eigenvalue −i, such that 1
2n

1
2

K is the number of doublets in which both
Bloch states have the {C2z|0} eigenvalues −i.

Layer constructions – To diagnose the topology associated to z′2R = 1, we employ the layer construction method.
We begin by placing a ẑ-normal Chern layer with Cz = 1 in the z = 0 plane. Due to the {Tmx|00 1

2} symmetry in

double MSG 27.81 Pc′c′2, there must be another Chern layer with Cz = 1 in the z = 1
2 plane, such that the total

Chern number per cell is Cz = 2, and the Chern number of the occupied bands in the kz = π plane is Ckz=π = 2.
Hence, in this layer construction of a 3D QAH state with Cz = 2, the Z2 SI is nontrivial z′2R = 1.

Relationship with the SIs in other double SSGs – We next compute the subduction relations between the SIs in
double MSG 27.81 Pc′c′2 and the SIs in the maximal unitary subgroup double MSG 3.1 P2 (see Appendix F 4 b):

(z′2R)Pc′c′2 → (z2R)P2 = (0)P2. (F139)

Eqs. (F138) and (F139) imply that symmetry-indicated 3D QAH states with z′2R = 1 in double MSG 27.81 Pc′c′2
necessarily subduce to non-symmetry-indicated 3D QAH states with (z2R)P2 = 0 in double MSG 3.1 P2, in agreement
with the physical-basis double SI relations Ckz=π mod 4 = 2z′2R and Ckz=π mod 2 = z2R [taking the twofold axis in
double MSG 3.1 P2 to be oriented in the z-direction, see Eq. (F53) and the surrounding text].

Lastly, if we impose T symmetry, then the position-space Chern numbers must vanish, which enforces z′2R to be
zero. Correspondingly, in double SSG 27.79 Pcc21′ – the SSG generated by adding {T |0} to double MSG 27.81 Pc′c′2
– the double SI group is trivial.

y. Double SIs in Type-III Double MSG 41.215 Ab′a′2

The double MSG 41.215 Ab′a′2 is generated by {E|100}, {E|0 1
2

1
2}, {E|0

1
2

1̄
2}, {C2z|0}, and {Tmx| 12

1
20}. The

primitive lattice vectors are:

a1 = (1, 0, 0), a2 = (0,
1

2
,

1

2
), a3 = (0,

1

2
,−1

2
), (F140)

and the reciprocal lattice vectors of the primitive cell are:

b1 = 2π(1, 0, 0), b2 = 2π(0, 1, 1), b3 = 2π(0, 1,−1). (F141)

In the conventional (super)cell, the lattice vectors are:

a′1 = (1, 0, 0), a′2 = a2 + a3 = (0, 1, 0), a′3 = a2 − a3 = (0, 0, 1). (F142)

and the reciprocal lattice vectors of the conventional cell are:

b′1 = 2π(1, 0, 0), b′2 = 2π(0, 1, 0), b′3 = 2π(0, 0, 1). (F143)

In the analysis below of the double SIs in double MSG 41.215 Ab′a′2, we will refer to coordinates in the basis of the
conventional cell for consistency with the convention employed in the BCS applications implemented for MTQC.
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SI – The double MSG 41.215 Ab′a′2 has the SI group Z2. In the physical basis, the Z2 SI has the SI formula:

z2R = n
1
2

Γ mod 2, (F144)

where n
1
2

Γ is the number of occupied states with {C2z|0} eigenvalues −i at Γ. Below, we will demonstrate that
z2R = Cz mod 2 where Cz is the total position-space Chern number in the primitive cell (or equivalently z2R indicates
the even-valued Chern number Cz in the conventional cell modulo 4), such that insulators in double MSG 41.215
Ab′a′2 with z2R = 1 are 3D QAH states.

Layer constructions – To diagnose the topology associated to z2R = 1, we employ the layer construction method.
We begin by placing a ẑ-normal Chern insulator with Cz = 1 in the z = 0 plane. In the conventional cell, the
system has {Tmx| 12

1
20} and {C2z|0} symmetries, as well as the conventional-cell translation symmetries {E|100} and

{E|010}. Because a minimal Chern insulator has one occupied band198, then, in the conventional supercell – which
is twice as large as the primitive cell – the system has two occupied bands. Below, we will demonstrate that a set of
occupied bands compatible with this layer construction exhibits z2R = 1.

We next determine the constraints imposed by symmetry on the occupied {C2z|0} eigenvalues at the momenta
Γ(0, 0, 0), Z(π, 0, 0), (0, π, 0), and (π, π, 0) [where we note that (0, π, 0) and (π, π, 0) are not high-symmetry points in
MSG 41.215 Ab′a′2, see MKVEC (Appendix D 1)]. Because {Tmx| 12

1
20}2 = {E|010}, then the matrix representative

of {Tmx| 12
1
20} squares to minus the identity in all small coreps in the ky = π plane, and states in the ky = π plane

must be at least [and are in fact exactly] twofold degenerate, whereas states in the ky = 0 plane are not required
by {Tmx| 12

1
20} to be doubly degenerate [and are in fact singly degenerate at Γ(0, 0, 0)]. We then consider a Bloch

eigenstate |ψ(kx, π, 0)〉 (kx ∈ {0, π}) with {C2z|0} eigenvalue ξ ∈ {i,−i}, and compute the {C2z|0} eigenvalue of the
state {Tmx| 12

1
20}|ψ(kx, π, 0)〉:

{C2z|0}{Tmx|
1

2

1

2
0}|ψ(kx, π, 0)〉 = −{E|1̄1̄0}{Tmx|

1

2

1

2
0}ξ|ψ(kx, π, 0)〉 = e−ikxξ∗{Tmx|

1

2

1

2
0}|ψ(kx, π, 0)〉. (F145)

Eq. (F145) implies that doublets at (π, π, 0) consist of Bloch states with the same {C2z|0} eigenvalues, but that
the two states in each doublet at (0, π, 0) have oppositely-signed {C2z|0} eigenvalues. Next, we consider there to
be a state |ψ(kx, 0, 0)〉 (kx ∈ {0, π}) with {C2z|0} eigenvalue ξ ∈ {i,−i}, and compute the {C2z|0} eigenvalue of
{Tmx| 12

1
20}|ψ(kx, 0, 0)〉:

{C2z|0}{Tmx|
1

2

1

2
0}|ψ(kx, 0, 0)〉 = −{E|1̄1̄0}{Tmx|

1

2

1

2
0}ξ|ψ(kx, 0, 0)〉 = −e−ikxξ∗{Tmx|

1

2

1

2
0}|ψ(kx, 0, 0)〉. (F146)

Eq. (F146) implies that Bloch states at Z(π, 0, 0) are doubly degenerate with complex-conjugate pairs of {C2z|0}
eigenvalues {i,−i}.

We have thus determined that Bloch states at Γ(0, 0, 0) are singly degenerate, Bloch states at Z(π, 0, 0) and (0, π, 0)
are doubly degenerate and have opposite {C2z|0} eigenvalues, and that Bloch states at (π, π, 0) are doubly degenerate
and have the same {C2z|0} eigenvalues. Thus, one possible set of occupied {C2z|0} eigenvalues that satisfy the above
constraints and the compatibility relations are (−i,+i), (−i,+i), (−i,+i), (+i,+i) at Γ(0, 0, 0), Z(π, 0, 0), (0, π, 0),
(π, π, 0), respectively. Next, we consider the {C2z|0} eigenvalues at the remaining two high-symmetry k points:
Y (0, 2π, 0) and T (π, 2π, 0). Because kY − b3 = (0, 0, 2π), then the occupied states at Y must have the same {C2z|0}
rotation eigenvalues as the occupied states at Γ(0, 0, 0) for bands that satisfy the compatibility relations. Next,
because kT − b3 = (π, 0, 2π), then the occupied states at T must have the same {C2z|0} rotation eigenvalues as the
occupied states at Z(π, 0, 0) for bands that satisfy the compatibility relations. In summary, the {C2z|0} eigenvalues
of the occupied bands at the high-symmetry k points are given by:

Γ(000) Z(π00) Y (0, 2π, 0) T (π, 2π, 0)

{C2z|0} −i,+i −i,+i −i,+i −i,+i
. (F147)

Using Eq. (F144), we determine that the occupied bands have z2R = 1. Next, using the established formula for
the parity of the Chern numbers in the kz = 0, π planes in terms of {C2z|0} rotation eigenvalues198,203 [which is
equivalent to Eq. (F53)], we conclude that Ckz=0,π mod 2 = 1, which is compatible with the layer construction for
z2R = 1 introduced in the text preceding Eq. (F145). Thus, we conclude that insulators with z2R = 1 are 3D QAH
states with Cz mod 2 = 1 in the primitive cell.

Lastly, if we impose T symmetry, then the position-space Chern numbers must vanish, which enforces z′2R to be
zero. Correspondingly, in double SSG 41.212 Aba21′ – the SSG generated by adding {T |0} to double MSG 41.215
Ab′a′2 – the double SI group is trivial.

http://www.cryst.ehu.es/cryst/mkvec
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z. Double SIs in Type-III Double MSG 54.342 Pc′c′a

The double MSG 54.342 Pc′c′a is generated by {E|100}, {E|010}, {E|001}, {I|0}, {C2z| 1200}, and {Tmy|00 1
2}.

SIs – The double MSG 54.342 Pc′c′a has the SI group Z2 × Z2. In the physical basis, the double SIs of double
MSG 54.342 Pc′c′a (η′2I , z

′
2R) individually subduce to previously introduced double SIs. First, the I AXI index η′2I

subduces to the non-minimal index (η′2I)P 1̄ in double MSG 2.4 P 1̄ (see Appendix F 4 a). Next, the even Chern number
SI 2z′2R = Ckz=π mod 4 subduces to the same SI (z′2R)Pc′c′2 in double MSG 27.81 Pc′c′2 [see Eq. (F138) and the
surrounding text]. Hence, as we will show below, an insulator with (η′2I , z

′
2R) = (10) in double MSG 54.342 Pc′c′a

is an I-protected AXI if the non-symmetry-indicated Chern numbers vanish, and an insulator with z′2R = 1 is a 3D
QAH state with Cz mod 4 = 2.

Layer constructions – We find that all of the double SIs in double MSG 54.342 Pc′c′a can be realized by layer
constructions. The layer constructions for the double SIs (η′2I , z

′
2R) in double MSG 54.342 Pc′c′a are given by:

1. A ẑ-normal Chern layer with Cz = 1 at the z = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a Cz = 1 Chern layer in the z = 1

2 plane implied by the {Tmy|00 1
2} symmetry operation. This

layer construction is a 3D QAH state with Ckz = 2 in all BZ planes of constant kz.

2. An x̂-normal Chern layer with Cx = 1 at the x = 0 plane has the SIs (10). We emphasize that, in this layer
construction, there is also a Cx = −1 Chern layer in the x = 1

2 plane implied by the {C2z| 1200} symmetry.
Because this layer construction consists of layers with alternating odd Chern numbers occupying I centers, then
this layer construction is an I-protected AXI (see Appendix F 4 a and Refs. 19,20,29,68,103–121).

Relationship with the SIs in other double SSGs – The SIs in double MSG 54.342 Pc′c′a are related to the SIs in
double MSG 2.4 P 1̄ through the subduction relations:

(η′2I , z
′
2R)Pc′c′a → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2η′2I , 000)P 1̄. (F148)

Lastly, we study the effects of imposing T symmetry. The double SSG 54.338 Pcca1′ – the SSG generated by
adding {T |0} symmetry to double MSG 54.342 Pc′c′a – has the SI group Z4 × Z2

14. The SIs in double SSG 54.338
Pcca1′ are related to the SIs in double MSG 54.342 Pc′c′a through the subduction relations:

(z4, z2w,2)Pcca1′ → (η′2I , z
′
2R)Pc′c′a = (z4 mod 2, 0)Pc′c′a. (F149)

aa. Double SIs in Type-III Double MSG 56.369 Pc′c′n

The double MSG 56.369 Pc′c′n is generated by {E|100}, {E|010}, {E|001}, {I|0}, {C2z| 12
1
20}, and {Tmy|0 1

2
1
2}.

SIs – The double MSG 56.369 Pc′c′n has the SI group Z2 × Z2. In the physical basis, the double SIs of double
MSG 56.369 Pc′c′n (η′2I , z

′
2R) individually subduce to previously introduced double SIs. First, the I AXI index η′2I

subduces to the non-minimal index (η′2I)P 1̄ in double MSG 2.4 P 1̄ (see Appendix F 4 a). Next, the even Chern number
SI 2z′2R = Ckz=π mod 4 subduces to the same SI (z′2R)Pc′c′2 in double MSG 27.81 Pc′c′2 [see Eq. (F138) and the
surrounding text]. Hence, as we will show below, an insulator with (η′2I , z

′
2R) = (10) in double MSG 56.369 Pc′c′n

is an I-protected AXI if the non-symmetry-indicated Chern numbers vanish, and an insulator with z′2R = 1 is a 3D
QAH state with Cz mod 4 = 2.

Layer constructions – We find that all of the double SIs in double MSG 56.369 Pc′c′n can be realized by layer
constructions. The layer constructions for the double SIs (η′2I , z

′
2R) in double MSG 56.369 Pc′c′n are given by:

1. A ẑ-normal Chern layer with Cz = 1 at the z = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a Cz = 1 Chern layer in the z = 1

2 plane implied by the {Tmy|0 1
2

1
2} symmetry operation. This

layer construction is a 3D QAH state with Ckz = 2 in all BZ planes of constant kz.

2. An x̂-normal Chern layer with Cx = 1 at the x = 0 plane has the SIs (10). We emphasize that, in this layer
construction, there is also a Cx = −1 Chern layer in the x = 1

2 plane implied by the {C2z| 12
1
20} symmetry.

Because this layer construction consists of layers with alternating odd Chern numbers occupying I centers, then
this layer construction is an I-protected AXI (see Appendix F 4 a and Refs. 19,20,29,68,103–121).

Relationship with the SIs in other double SSGs – The SIs in double MSG 56.369 Pc′c′n are related to the SIs in
double MSG 2.4 P 1̄ through the subduction relations:

(η′2I , z
′
2R)Pc′c′n → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2η′2I , 000)P 1̄. (F150)
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Lastly, we study the effects of imposing T symmetry. The double SSG 56.366 Pccn1′ – the SSG generated by
adding {T |0} symmetry to double MSG 56.369 Pc′c′n – has the SI group Z4

14. The SIs in double SSG 56.366 Pccn1′

are related to the SIs in double MSG 56.369 Pc′c′n through the subduction relations:

(z4)Pccn1′ → (η′2I , z
′
2R)Pc′c′n = (z4 mod 2, 0)Pc′c′n. (F151)

bb. Double SIs in Type-III Double MSG 60.424 Pb′cn′

The double MSG 60.424 Pb′cn′ is generated by {E|100}, {E|010}, {E|001}, {I|0}, {C2y|00 1
2}, and {Tmx| 12

1
20}.

SIs – The double MSG 60.424 Pb′cn′ has the SI group Z2 × Z2. In the physical basis, the double SIs of double
MSG 60.424 Pb′cn′ are (η′2I , z

′
2R). As previously in double MSGs 54.342 Pc′c′a and 56.369 Pc′c′n (Appendices F 4 z

and F 4 aa, respectively), η′2I is the I AXI index, and subduces to the non-minimal index (η′2I)P 1̄ in double MSG 2.4
P 1̄.

However, unlike previously in double MSGs 54.342 Pc′c′a and 56.369 Pc′c′n, z′2R does not subduce to a previously
introduced minimal double SI. Nevertheless, we will shortly use layer constructions to demonstrate that like in double
MSGs 54.342 Pc′c′a and 56.369 Pc′c′n, z′2R indicates the value of a Chern number – here the position-space Chern
number Cy – modulo 4. Hence, an insulator with (η′2I , z

′
2R) = (10) in double MSG 60.424 Pb′cn′ is an I-protected

AXI if the non-symmetry-indicated Chern numbers vanish, and an insulator with z′2R = 1 is a 3D QAH state with
Cy mod 4 = 2. Using the Smith normal form of the EBR matrix [see Appendix F 2] and the definition of the Z2 AXI
parity index η′2I obtained by subduction onto double MSG 2.4 P 1̄ [see the text surrounding Eq. (F49)], we define the
second Z2 SI in double MSG 60.424 Pb′cn′ to be:

z′2R = η′2I +m(Γ3) mod 2, (F152)

where m(ki) is the multiplicity of the small corep ki of the little group Gk in the symmetry data vector of the occupied
bands [where the symmetry data vector of a group of bands is defined in the text following Eq. (D65)].

Layer constructions – We find that all of the double SIs in double MSG 60.424 Pb′cn′ can be realized by layer
constructions. The layer constructions for the double SIs (η′2I , z

′
2R) in double MSG 60.424 Pb′cn′ are given by:

1. A ŷ-normal Chern layer with Cy = 1 at the y = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a Cy = 1 Chern layer in the y = 1

2 plane implied by the {Tmx| 12
1
20} symmetry operation. This

layer construction is a 3D QAH state with Cky = 2 in all BZ planes of constant ky.

2. An ẑ-normal Chern layer with Cz = 1 at the z = 0 plane has the SIs (10). We emphasize that, in this layer
construction, there is also a Cz = −1 Chern layer in the z = 1

2 plane implied by the {C2y|00 1
2} symmetry.

Because this layer construction consists of layers with alternating odd Chern numbers occupying I centers, then
this layer construction is an I-protected AXI (see Appendix F 4 a and Refs. 19,20,29,68,103–121).

Relationship with the SIs in other double SSGs – The SIs in double MSG 60.424 Pb′cn′ are related to the SIs in
double MSG 2.4 P 1̄ through the subduction relations:

(η′2I , z
′
2R)Pb′cn′ → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2η′2I , 000)P 1̄. (F153)

Lastly, we study the effects of imposing T symmetry. The double SSG 60.418 Pbcn1′ – the SSG generated by
adding {T |0} symmetry to double MSG 60.424 Pb′cn′ – has the SI group Z4

14. The SIs in double SSG 60.418 Pbcn1′

are related to the SIs in double MSG 60.424 Pb′cn′ through the subduction relations:

(z4)Pbcn1′ → (η′2I , z
′
2R)Pb′cn′ = (z4 mod 2, 0)Pb′cn′ . (F154)

cc. Double SIs in Type-III Double MSG 83.45 P4′/m

The double MSG 83.45 P4′/m is generated by {E|100}, {E|010}, {E|001}, {I|0}, and {T C4z|0}. We note that
double MSG 83.45 P4′/m additionally contains a mirror symmetry operation: {mz|0} = {I|0}{T C4z|0}2.

SIs – The double MSG 83.45 P4′/m has the SI group Z4 × Z2. In double-valued small coreps of the little groups
at the I- and T C4z-invariant k points Γ [kΓ = (000)], M [kM = (ππ0)], Z [kZ = (00π)], and A [kA = (πππ)], the
matrix representatives of {I|0}, {T C4z|0}, and {mz|0} commute. Hence, Bloch states |ψ〉 at the Γ, M , Z, and A
points may be simultaneously labeled with both parity ({I|0}) and mirror eigenvalues. Taking |ψ〉 to be a state at
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an I- and T C4z-invariant k point with {mz|0} eigenvalue i, and parity eigenvalue ξ ∈ {−1, 1}, we next compute the
{mz|0} eigenvalues of the state {T C4z|0}|ψ〉:

{mz|0}{T C4z|0}|ψ〉 = {T C4z|0}{mz|0}|ψ〉 = −i{T C4z|0}|ψ〉, (F155)

and the {I|0} eigenvalues of {T C4z|0}|ψ〉:

{I|0}{T C4z|0}|ψ〉 = {T C4z|0}{I|0}|ψ〉 = ξ{T C4z|0}|ψ〉. (F156)

Eqs. (F155) and (F156) imply that the Bloch states at Γ, M , Z, and A form doublets with complex-conjugate {mz|0}
eigenvalues and the same parity eigenvalues. At the I-invariant k points X [kX = (0π0)], XA [kXA = (π00)], R
[kR = (0ππ)], and RA [kRA = (π0π)] at which {T C4z|0} is not an element of the little group Gk, Bloch states
are instead singly degenerate (see the output of the Corepresentations tool introduced in this work for the double-
valued small coreps of double MSG 83.45 P4′/m, where Corepresentations is detailed in Appendix D 2). However,
the insulating compatibility relations require that there is always an even number of singly-degenerate occupied Bloch
states at X, XA, R, and RA, which are required to subdivide into pairs of states (at different energies) with complex-
conjugate {mz|0} eigenvalues and the same parity eigenvalues (see the output of the MCOMPREL tool introduced
in this work for the double-valued small coreps of double MSG 83.45 P4′/m, where MCOMPREL is detailed in
Appendix D 3).

Therefore, like in other centrosymmetric SSGs in which insulators with nontrivial SIs have even numbers of occupied
bands that subdivide at each I-invariant k point into doublets with the same parity eigenvalues [e.g. double MSG
47.249 Pmmm and double SSG 2.5 P 1̄1′, see Appendices F 4 d and F 4 s, respectively], the double SIs of MSG 83.45
P4′/m in the physical basis (z4, z2w,3) have the respective SI formulas:

z4 =
∑
K

1

2
n−K =

∑
K

n−K − n
+
K

4
mod 4, (F157)

z2w,3 =
∑

K,K3=π

1

2
n−K =

∑
K,K3=π

n−K − n
+
K

4
mod 2, (F158)

where K runs over the eight I-invariant momenta in the first BZ, and n±K are the number of Bloch states with ±1 parity
eigenvalues at K in the group of bands under consideration. Like in double MSG 47.249 Pmmm (see Appendix F 4 d),
insulators with z4 mod 2 = 1 are TCIs with θ = π (specifically AXIs with the same C4z ×T -symmetric configuration
of chiral hinge states as the magnetic HOTIs introduced in Ref. 34), z2w,3 indicates the mirror Chern number in the
kz = π plane modulo 2 (z2w,3 = C+

kz=π mod 2 = C−kz=πmod 2), and the double SIs (z4, z2w,3) = (20) indicate a helical

(non-axionic) magnetic mirror TCI with Cmz mod 4 = 2.
Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the

layer construction method. In the layer constructions below, C+ = −C− due to the net-zero Chern numbers enforced
by the symmetries {T C4z|0} and {mz|0}. Hence, we will omit C− in further discussions of the topology in double
MSG 83.45 P4′/m. The layer constructions for the double SIs (z4, z2w,3) of MSG 83.45 P4′/m are given by:

1. A ẑ-normal mirror Chern layer with C+
z = 1 in the z = 0 plane has the mirror sector Chern numbers

(C+
kz=0, C

+
kz=π) = (11) and the SIs (21).

2. A ẑ-normal mirror Chern layer with C+
z = 1 in the z = 1

2 plane has the mirror sector Chern numbers

(C+
kz=0, C

+
kz=π) = (1,−1) and the SIs (01).

Axion insulators – We find that states with odd z4 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z4. First, as we will show below, (10) and (30) subduce to (2000)P 1̄ in MSG 2.4 P 1̄. Hence, if the (10) and (30)
phases in double MSG 83.45 P4′/m are insulating, then the bulk insulator must either be an AXI or a 3D QAH
state. Because the net Chern numbers Cx,y,z = 0 must vanish if the bulk is gapped, due to the symmetries {T C4z|0}
and {mz|0} of double MSG 83.45 P4′/m, then the (10) and (30) states must be AXIs. As we will show below, this
result can also be understood by subducing from a T -symmetric SSG. Specifically, because z4 mod 2 = 1, z2w,3 = 0
states in MSG 83.45 P4′/m can respectively be subduced from insulators with z8 mod 2 = 1, z−4m,π = z2w,1 = 0 in

Type-II double SG 83.44 P4/m1′, which correspond to T -symmetric 3D TIs with θ = π (see Appendix F 4 t and
Refs. 7,14,15,98), then (10) and (30) are compatible with bulk-gapped states in double MSG 83.45 P4′/m. Hence,
we conclude that 3D insulators with (10) and (30) in double MSG 83.45 P4′/m are AXIs, without ambiguity. We

http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations
https://www.cryst.ehu.es/cryst/mcomprel
https://www.cryst.ehu.es/cryst/mcomprel
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conjecture that the (10) and (30) AXIs in double MSG 83.45 P4′/m can be constructed using the topological crystal
method207, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Relationship with the SIs in other double SSGs – The SIs in double MSG 83.45 P4′/m are related to the SIs in
double MSG 2.4 P 1̄ through the subduction relations:

(z4, z2w,3)P4′/m → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2(z4 mod 2), 000)P 1̄. (F159)

Lastly, we study the effects of imposing T symmetry. The double SSG 83.44 P4/1m1′ – the SSG generated by
adding {T |0} symmetry to double MSG 83.45 P4′/m – has the SI group Z8 × Z4 × Z2 (see Appendix F 4 t and
Refs. 7,14,15,98). The SIs in double SSG 83.44 P4/1m1′ are related to the SIs in double MSG 83.45 P4′/m through
the subduction relations:

(z8, z
−
4m,π, z2w,1)P4/m1′ → (z4, z2w,3)P4′/m = (z8 mod 4, z−4m,π mod 2)P4′/m. (F160)

dd. Double SIs in Type-III Double MSG 103.199 P4c′c′

The double MSG 103.199 P4c′c′ is generated by {E|100}, {E|010}, {E|001}, {C4z|0}, and {Tmy|00 1
2}.

SI – The double MSG 103.199 P4c′c′ has the SI group Z4. As we will shortly demonstrate, in the physical basis,
the double SI z′4R indicates the even-valued Chern number in the kz = π plane (modulo 8): Ckz=π mod 8 = 2z′4R.
Hence, insulators with nontrivial values of z′4R are 3D QAH states.

We first emphasize that Bloch states at the {C4z|0}-invariant momenta in the kz = π plane in double MSG
103.199 P4c′c′ form doubly-degenerate pairs with the same {C4z|0} eigenvalues. Specifically, in the kz = π plane, the
matrix representative of {Tmy|00 1

2} squares to minus the identity in all double-valued small coreps. Furthermore,
using the Corepresentations tool introduced in this work (detailed in Appendix D 2), we determine that, in all of
{Tmy|00 1

2}-paired doublets at the {C4z|0}-invariant k points kx = ky = 0, π in the kz = π plane, both states have
the same {C4z|0} (and {C2z|0}) eigenvalues. Additionally, using the output of Corepresentations for the double-
valued small coreps of double MSG 103.199 P4c′c′, we find that, at the {C4z|0}-invariant k points (kx, ky) = (0π)
and (π0), both of the Bloch states within each doublet have the same {C2z|0} eigenvalues.

We therefore define the Z4 SI to be half of the even-valued Chern number (modulo 4) of the occupied bands in the
kz = π plane:

z′4R =
∑

K=Z,A

(
−1

4
n

1
2

K +
1

4
n
− 1

2

K − 3

4
n

3
2

K +
3

4
n
− 3

2

K

)
+

1

2
n

1
2

R −
1

2
n
− 1

2

R mod 4 =
Ckz=π

2
mod 4. (F161)

where n
1
2 ,−

1
2 ,

3
2 ,−

3
2

Z,A are the number of occupied states with {C4z|0} eigenvalues e−i
π
4 , ei

π
4 , e−i

3π
4 , ei

3π
4 , respectively,

and n
1
2 ,−

1
2

R are the number of occupied states with {C2z|0} eigenvalues e−i
π
2 , ei

π
2 , respectively.

Layer constructions – To diagnose the topology associated to nontrivial values of z′4R, we employ the layer construc-
tion method. We begin by placing a ẑ-normal Chern layer with Cz = 1 in the z = 0 plane. Due to the {Tmy|00 1

2}
symmetry in double MSG 103.199 P4c′c′, there must be another Chern layer with Cz = 1 in the z = 1

2 plane, such
that the total Chern number per cell is Cz = 2, and the Chern number of the occupied bands in the kz = π plane is
Ckz=π = 2. Hence, in this layer construction of a 3D QAH state, Cz = 2 and z′4R = 1.

Relationship with the SIs in other double SSGs – We next compute the subduction relations between the SIs in
double MSG 103.199 P4c′c′ and the SIs in the maximal unitary subgroup double MSG 75.1 P4 (see Appendix F 4 e):

(z′4R)P4c′c′ → (z4R)P4 = (2(z′4R mod 2))P4. (F162)

Eq. (F162) implies that symmetry-indicated 3D QAH states with z′4R mod 2 = 1 in double MSG 103.199 P4c′c′

subduce to symmetry-indicated 3D QAH states with (z4R)P4 = 2 in double MSG 75.1 P4, whereas symmetry-
indicated 3D QAH states with z′4R = 2 in double MSG 103.199 P4c′c′ necessarily subduce to non-symmetry-indicated
3D QAH states with (z4R)P4 = 0 in double MSG 75.1 P4, in agreement with the physical-basis double SI relations
Ckz=π mod 8 = 2z′4R and Ckz=π mod 4 = z4R [see Eq. (F63) and the surrounding text].

Lastly, if we impose T symmetry, then the position-space Chern numbers must vanish, which enforces z′4R to be
zero. Correspondingly, in double SSG 103.196 P4cc1′ – the SSG generated by adding {T |0} to double MSG 103.199
P4c′c′ – the double SI group is trivial.
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ee. Double SIs in Type-III Double MSG 110.249 I41c
′d′

The double MSG 110.249 I41c
′d′ is generated by {E| 1̄2

1
2

1
2}, {E|

1
2

1̄
2

1
2}, {E|

1
2

1
2

1̄
2}, {C4z|0 1

2
1
4}, and {Tmx| 12

1
20}. The

Bravais lattice of double MSG 110.249 I41c
′d′ is body-centered. Correspondingly, in the primitive cell, the lattice

vectors are:

a1 = (−1

2
,

1

2
,

1

2
), a2 = (

1

2
,−1

2
,

1

2
), a3 = (

1

2
,

1

2
,−1

2
), (F163)

and the reciprocal lattice vectors are:

b1 = 2π(0, 1, 1), b2 = 2π(1, 0, 1), b3 = 2π(1, 1, 0). (F164)

We additionally note that {C4z|0 1
2

1
4}

2 = {C2z| 12
1
2

1
2} = {E| 12

1
2

1
2}{C2z|0}, where {E| 12

1
2

1
2} is a primitive translation

symmetry. Hence, the 41 screw symmetry operation {C4z|0 1
2

1
4} only contains a half lattice translation in the z

direction in the primitive cell, such that double MSG 110.249 I41c
′d′ also contains the rotation symmetry {C2z|0}.

SI – The double MSG 110.249 I41c
′d′ has the SI group Z2. In the physical basis, the Z2 SI has the SI formula:

z′′2R = m(Γ6) mod 2 =
Ckz=0

2
mod 2, (F165)

where m(Γ6) is the multiplicity of the double-valued small corep Γ6 in the symmetry data ς̃Γ corresponding to the
occupied states at Γ [kΓ = (0, 0, 0)], where the symmetry data at a k point is defined in the text following Eq. (D65),
and where the {C4z|0 1

2
1
4} and {C2z|0} characters of the irreducible small coreps σ̃ at Γ are given by:

Γ5 Γ6 Γ7 Γ8

χσ̃({C4z|0 1
2

1
4}) e

i 3π
4 e−i

π
4 e−i

3π
4 ei

π
4

χσ̃({C2z|0}) −i −i i i

. (F166)

Hence, as we will show below, insulators in double MSG 110.249 I41c
′d′ with z′′2R = 1 are 3D QAH states with

Cz mod 4 = 2 per primitive cell.
Layer constructions – To diagnose the topology associated to z′′2R = 1, we employ the layer construction method. We

begin by placing a ẑ-normal Chern insulator with Cz = 1 in the z = 0 plane. Due to the {C4z|0 1
2

1
4} screw symmetry

in double MSG 110.249 I41c
′d′, there must be a second ẑ-normal Chern insulator with Cz = 1 in the z = 1

4 plane.

Using the established formula for the parity of the Chern number in terms of {C2z|0} rotation eigenvalues198,203 and
the constraints imposed by the compatibility relations on the eigenvalues of the 41 screw symmetry {C4z|0 1

2
1
4} in an

insulating state (see the output of the MCOMPREL tool introduced in this work for the double-valued small coreps of
double MSG 110.249 I41c

′d′, where MCOMPREL is detailed in Appendix D 3), we find that a set of symmetry data
compatible with this layer construction is given by ς̃Γ = Γ5 + Γ6 + Γ7 + Γ8. Hence, z′′2R = 1 in this layer construction
of a 3D QAH state, in agreement with the net position-space Chern number Cz = 2 per primitive cell.

Lastly, if we impose T symmetry, then the position-space Chern numbers must vanish, which enforces z′2R to be
zero. Correspondingly, in double SSG 110.246 I41cd1′ – the SSG generated by adding {T |0} to double MSG 110.249
I41c

′d′ – the double SI group is trivial.

ff. Double SIs in Type-III Double MSG 130.429 P4/nc′c′

The double MSG 130.429 P4/nc′c′ is generated by {E|100}, {E|010}, {E|001}, {C4z| 1200}, {I|0}, and {Tm11̄0|00 1
2}.

SIs – The double MSG 130.429 P4/nc′c′ has the SI group Z4 × Z2. In the physical basis, the double SIs of double
MSG 130.429 P4/nc′c′ (z′4R, η

′
2I) individually subduce to previously introduced double SIs. First, the even Chern

number SI 2z′4R = Ckz=π mod 8 subduces to the same SI (z′4R)P4c′c′ in double MSG 103.199 P4c′c′ [see Eq. (F161)
and the surrounding text]. Next, the I AXI index η′2I subduces to the non-minimal index (η′2I)P 1̄ in double MSG 2.4
P 1̄ (see Appendix F 4 a). Hence, as we will show below, an insulator with (z′4R, η

′
2I) = (01) in double MSG 130.429

P4/nc′c′ is an I-protected AXI if the non-symmetry-indicated Chern numbers vanish, and insulators with z′4R 6= 0
are 3D QAH states.

Layer constructions – We find that in double MSG 130.429 P4/nc′c′, the 3D QAH states – but not the AXI states –
can be realized by layer constructions. The double SIs (z′4R, η

′
2I) of the symmetry-indicated 3D QAH states in double

MSG 130.429 P4/nc′c′ are spanned by superpositions of the following layer construction:
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1. A ẑ-normal Chern layer with Cz = 1 at the z = 0 has the SIs (11). We emphasize that, in this layer construction,
there is also a Cz = 1 Chern layer in the z = 1

2 plane implied by the {Tm11̄0|00 1
2} symmetry operation. This

layer construction is a 3D QAH state with Ckz = 2 in all BZ planes of constant kz.

Axion insulators and 3D QAH states – We find that states with the double SIs (z′4R, η
′
2I) = (01) in double MSG

130.429 P4/nc′c′ cannot be constructed from layers of 2D stable topological phases. However, we may still use
subduction relations to determine the bulk topology of insulators with the double SIs (01). First, as we will show
below, (01) subduces to (2000)P 1̄ in MSG 2.4 P 1̄. Hence, if a (01) state in double MSG 130.429 P4/nc′c′ is insulating,
then the bulk insulator must either be an AXI or a 3D QAH state, and will specifically be an AXI if the non-symmetry-
indicated Chern numbers vanish. As we will show below, this result can also be understood by subducing from a
T -symmetric SSG. Specifically, because (01) states in double MSG 130.429 P4/nc′c′ can be subduced from insulators
with (z4)P4/ncc1′ mod 2 = 1 in Type-II double SG 130.424 P4/ncc1′, which correspond to T -symmetric 3D TIs with

θ = π14, then the double SIs (01) are compatible with a bulk-gapped state in double MSG 130.429 P4/nc′c′. This
provides further evidence that 3D insulators with (01) and net-zero position-space Chern numbers in double MSG
130.429 P4/nc′c′ are AXIs. We conjecture that (01) AXIs in double MSG 130.429 P4/nc′c′ can be constructed using
the topological crystal method207, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and
TCIs.

Relationship with the SIs in other double SSGs – The SIs in double MSG 130.429 P4/nc′c′ are related to the SIs
in double MSG 2.4 P 1̄ through the subduction relations:

(z′4R, η
′
2I)P4/nc′c′ → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2η′2I , 000)P 1̄. (F167)

Lastly, we study the effects of imposing T symmetry. The double SSG 130.424 P4/ncc1′ – the SSG generated by
adding {T |0} symmetry to double MSG 130.429 P4/nc′c′ – has the SI group Z4

14. The SIs in double SSG 130.424
P4/ncc1′ are related to the SIs in double MSG 130.429 P4/nc′c′ through the subduction relations:

(z4)P4/ncc1′ → (z′4R, η
′
2I)P4/nc′c′ = (0, z4 mod 2)P4/nc′c′ . (F168)

gg. Double SIs in Type-III Double MSG 135.487 P4′2/mbc
′

The double MSG 135.487 P4′2/mbc
′ is generated by {E|100}, {E|010}, {E|001}, {I|0}, {mz|0}, {C2x| 12

1
20}, and

{T C4z|00 1
2}.

SI – The double MSG 135.487 P4′2/mbc
′ has the SI group Z4. At the I-invariant momenta, the double-valued

irreducible small coreps are either two- or four-dimensional. An expression for the SI formula of the Z4 double SI
computed from the Smith normal form of the EBR matrix (see Appendix F 2) is given by:

z′4 = 2m(Γ5)−m(Γ6)−m(M5) + 2m(X3), (F169)

where m(ki) is the multiplicity of the small corep ki of the little group Gk in the symmetry data vector of the occupied
bands [where the symmetry data vector of a group of bands is defined in the text following Eq. (D65)]. As we will
shortly show below through layer constructions, like in double MSGs 47.249 Pmmm and 83.45 P4′/m, insulators
with z′4 mod 2 = 1 are TCIs with θ = π (i.e. AXIs), and z′4 = 2 indicates a helical (non-axionic) magnetic mirror
TCI with Cmz mod 4 = 2.

Layer constructions – We find that in double MSG 135.487 P4′2/mbc
′, the non-axionic magnetic TCI phases –

but not the AXI phases – can be realized by layer constructions. The double SI z′4 = 2 of a symmetry-indicated
non-axionic TCI phase in P4′2/mbc

′ with Cmz = 2 is realized by the following layer construction:

1. A ẑ-normal mirror Chern layer with C+
z = −C−z = 1 in the z = 0 plane has the double SI z′4 = 2. We emphasize

that, in this layer construction, there is also a ẑ-normal mirror Chern layer with C+
z = −C−z = 1 in the z = 1

2

plane implied by the {T C4z|00 1
2} symmetry operation.

Axion insulators – We find that states with odd z′4 SIs cannot be constructed from layers of 2D stable topological
phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values
of z′4. First, as we will show below, the double SIs z′4 = 1, 3 in double MSG 135.487 P4′2/mbc

′ subduce to (2000)P 1̄

in MSG 2.4 P 1̄. Hence, if the z′4 mod 2 = 1 phases in double MSG 135.487 P4′2/mbc
′ are insulating, then the bulk

insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers Cx,y,z = 0 must vanish if the bulk
is gapped, due to the symmetries {mz|0} and {C2x| 12

1
20} of double MSG 135.487 P4′2/mbc

′, then the z′4 = 1, 3 states
must be AXIs. As we will show below, this result can also be understood by subducing from a T -symmetric SSG.
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Specifically, because z′4 mod 2 = 1 states in MSG 135.487 P4′2/mbc
′ can respectively be subduced from insulators

with z4 = 1, 3 in Type-II double SG 135.484 P42/mbc1
′, which correspond to T -symmetric 3D TIs with θ = π14,

then the double SIs z′4 = 1, 3 are compatible with bulk-gapped states in double MSG 135.487 P4′2/mbc
′. Hence, we

conclude that 3D insulators with z′4 mod 2 = 1 in double MSG 135.487 P4′2/mbc
′ are AXIs, without ambiguity. We

conjecture that the z′4 = 1, 3 AXIs in double MSG 135.487 P4′2/mbc
′ can be constructed using the topological crystal

method207, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Relationship with the SIs in other double SSGs – The SIs in double MSG 135.487 P4′2/mbc
′ are related to the SIs

in double MSG 2.4 P 1̄ through the subduction relations:

(z′4)P4′2/mbc
′ → (η4I , z2I,1, z2I,2, z2I,3)P 1̄ = (2(z′4 mod 2), 000)P 1̄. (F170)

Lastly, we study the effects of imposing T symmetry. The double SSG 135.484 P42/mbc1
′ – the SSG generated by

adding {T |0} symmetry to double MSG 135.487 P4′2/mbc
′ – has the SI group Z4

14. The SIs in double SSG 135.484
P42/mbc1

′ are in one-to-one correspondence with the SIs in double MSG 135.487 P4′2/mbc
′:

(z4)P42/mbc1′ → (z′4)P4′2/mbc
′ = (z4)P4′2/mbc

′ . (F171)

Nevertheless, because the EBRs in Type-II double SSG 135.484 P42/mbc1
′ and the MEBRs in Type-III double

MSG 135.487 P4′2/mbc
′ are not in one-to-one correspondence, then we will continue throughout this work to employ

separate labels (z4 and z′4 respectively) for the double SIs in double SSGs 135.484 P42/mbc1
′ and 135.487 P4′2/mbc

′.

hh. Double SIs in Type-III Double MSG 184.195 P6c′c′

The double MSG 184.195 P6c′c′ is generated by {E|100}, {E|010}, {E|001}, {C6z|0} and {Tmx|00 1
2}, where

the angle between the {E|100} and {E|010} translations is chosen to be 2π/3 for consistency with the {C3z|0} =
({C6z|0})2 rotation symmetry.

SI – The double MSG 184.195 P6c′c′ has the SI group Z6. As we will shortly demonstrate, in the physical basis,
the double SI z′6R indicates the even-valued Chern number in the kz = π plane (modulo 12): Ckz=π mod 12 = 2z′6R.
Hence, insulators with nontrivial values of z′6R are 3D QAH states.

First, using the Corepresentations tool introduced in this work (detailed in Appendix D 2), we determine that
Bloch states at the {Cnz|0}-invariant (n = 2, 3, 6) k points in the kz = π plane in double MSG 184.195 P6c′c′ form
doubly-degenerate pairs with the same {Cnz|0} rotation symmetry eigenvalues. We therefore define the Z6 SI to be
half of the even-valued Chern number (modulo 6) of the occupied bands in the kz = π plane:

z′6R =
1

2
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2
n
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2
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2
n
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n
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2
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2
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2
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2
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L −
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n
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L

)
mod 6

=
Ckz=π

2
mod 6, (F172)

where the superscripts njA represent the {C6z|0} eigenvalues e−i
2π
6 j at A, njH is the number of occupied states with

{C3z|0} eigenvalue e−i
2π
3 j at H, and where njL is the number of states with {C2z|0} eigenvalue e−i

π
2 j at L.

Layer constructions – To diagnose the topology associated to nontrivial values of z′6R, we employ the layer construc-
tion method. We begin by placing a ẑ-normal Chern layer with Cz = 1 in the z = 0 plane. Due to the {Tmx|00 1

2}
symmetry in double MSG 184.195 P6c′c′, there must be another Chern layer with Cz = 1 in the z = 1

2 plane, such
that the total Chern number per cell is Cz = 2, and the Chern number of the occupied bands in the kz = π plane is
Ckz=π = 2. Hence, in this layer construction of a 3D QAH state, Cz = 2 and z′6R = 1.

Relationship with the SIs in other double SSGs – We next compute the subduction relations between the SIs in double
MSG 184.195 P6c′c′ and the SIs in the maximal unitary subgroup double MSG 168.109 P6 (see Appendix F 4 n):

(z′6R)P6c′c′ → (z6R)P6 = (2(z′6R mod 3))P6. (F173)

Eq. (F173) implies that symmetry-indicated 3D QAH states with z′6R mod 3 6= 0 in double MSG 184.195 P6c′c′

subduce to symmetry-indicated 3D QAH states with even values of (z6R)P6 in double MSG 168.109 P6, whereas
symmetry-indicated 3D QAH states with z′6R mod 3 = 0 in double MSG 184.195 P6c′c′ necessarily subduce to non-
symmetry-indicated 3D QAH states with (z6R)P6 = 0 in double MSG 168.109 P6, in agreement with the physical-basis
double SI relations Ckz=π mod 12 = 2z′6R and Ckz=π mod 6 = z6R [see Eq. (F114) and the surrounding text].
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Lastly, if we impose T symmetry, then the position-space Chern numbers must vanish, which enforces z′6R to be
zero. Correspondingly, in double SSG 184.192 P6cc1′ – the SSG generated by adding {T |0} to double MSG 184.195
P6c′c′ – the double SI group is trivial.

5. Summary of the Double SIs in the Minimal Double SSGs

In this section, we will summarize and review the results of the minimal double SI calculations performed in
Appendix F 4. In Table XIII, we present a summary of the complete, independent, minimal double SIs of spinful
band topology in the 1,651 SSGs. All symmetry-indicated spinful SISM [specifically symmetry-indicated WSM, see
the text following Eq. (F36)], TI, and TCI phases in crystalline solids necessarily exhibit nontrivial values of at least
one of the double SIs listed in Table XIII.

We note that, in Table XIII, some minimal double SSGs G are associated to a smaller set of SIs than the SI group
ZG. This occurs because, in some cases, some – but not all – of the double SIs in G have already been established in
subgroups M of G (i.e., the double SIs in G are not dependent on the double SIs in M , even though some of the double
SIs in G are the same as the double SIs in M , see Appendix F 3 for the definition of dependent SIs). For example,
the indicator group of double MSG 147.13 P 3̄ is Z12 × Z2, whereas double MSG 147.13 P 3̄ is only associated in
Table XIII to the Z3-valued index z3R. In the minimal double MSG 147.13 P 3̄ [Appendix F 4 m], the double SIs (η4I ,
z3R, z2I,3) are not dependent on the double SIs in any individual lower-symmetry double MSG. However, the double
SIs η4I and z2I,3 also appear in the minimal double MSG 2.4 P 1̄, where the definitions of η4I and z2I,3 [the product
of the parity eigenvalues of a set of bands at all of the I-invariant k points and in the k3 = π plane, respectively, see
Eq. (F35)] is the same in both double MSG 147.13 P 3̄ and double MSG 2.4 P 1̄. Correspondingly, when the spinful
SI topological bands of double MSG 147.13 P 3̄ are subduced onto the subgroup double MSG 2.4 P 1̄, the values of
(η4I)P 3̄ and (z2I,3)P 3̄ for the spinful SI topological bands of double MSG 147.13 P 3̄ are the same as the values of
(η4I)P 1̄ and (z2I,3)P 1̄ for the SI topological bands subduced onto double MSG 2.4 P 1̄. Hence, double MSG 147.13
P 3̄ is not associated to η4I or z2I,3 in Table XIII, even though the double SIs (η4I , z3R, z2I,3) of double MSG 147.13
P 3̄ include η4I and z2I,3.

Additionally, in Table XIII, some double SIs are associated to more than one minimal double SSG. This occurs
when minimal double SIs that indicate the same bulk topology arise in two minimal double SSGs G and M for which
neither G 6⊂ M nor M 6⊂ G. For example, z4 in Table XIII is associated to both double SG 2.5 P 1̄1′ and double
MSG 47.249 Pmmm. In both double SG 2.5 P 1̄1′ and double MSG 47.249 Pmmm, z4 = 2 indicates a non-axionic
HOTI phase with helical hinge states through the Z4-valued parity eigenvalue formula introduced in Refs. 7,14,15
[reproduced in Eq. (F59)]. We will further analyze the z4 = 2 non-axionic magnetic HOTI phase protected by the
symmetries of double MSG 47.249 Pmmm in Appendix F 6.
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Independent Minimal Double SIs of Spinful Band Topology in the 1,651 Magnetic and Nonmagnetic Double SSGs

SI Bulk Topology Minimal Double SSG(s) [Double SI Formula(s)]

η4I WSM/QAH/AXI 2.4 P 1̄ [Eq. (F35)]

z2I,i QAH: Cki=π mod 2 2.4 P 1̄ [Eq. (F36)]

η′2I AXI 2.4 P 1̄ [Eq. (F49)]

z2R QAH: Cy mod 2 3.1 P2 [Eq. (F53)], 41.215 Ab′a′2 [Eq. (F144)]

δ2m QAH/AXI/TCI: C+
ky=π − C

−
ky=0 mod 2 10.42 P2/m [Eq. (F54)]

z+
2m,π QAH/weak TI/weak TCI: C+

ky=π mod 2 10.42 P2/m [Eq. (F55)]

z−2m,π QAH/weak TI/weak TCI: C−ky=π mod 2 10.42 P2/m [Eq. (F56)]

z4 AXI/TCI/HOTI 2.5 P 1̄1′, 47.249 Pmmm, 83.45 P4′/m [Eq. (F59)]

z2w,i weak TI/weak TCI: C+
ki=π

mod 2 2.5 P 1̄1′, 47.249 Pmmm, 83.45 P4′/m [Eq. (F60)] (†)

z4R QAH: Cz mod 4 75.1 P4 [Eq. (F63)]

z′2R, z′′2R QAH: Cy,z/2 mod 2 77.13 P42 [Eq. (F64)], 27.81 Pc′c′2 [Eq. (F138)], 54.342 Pc′c′a [Eq. (F138)],

56.369 Pc′c′n [Eq. (F138)], 60.424 Pb′cn′ [Eq. (F152)], 110.249 I41c
′d′ [Eq. (F165)] (‡)

z4S QAH: Cz mod 4 81.33 P 4̄ [Eq. (F66)]

δ2S WSM 81.33 P 4̄ [Eq. (F69)]

z2 AXI 81.33 P 4̄ [Eq. (F70)]

δ4m QAH/AXI: C+
kz=π − C

−
kz=0 mod 4 83.43 P4/m [Eq. (F72)]

z+
4m,π weak TI/weak TCI: C+

kz=π mod 4 83.43 P4/m [Eq. (F73)]

z−4m,π weak TI/weak TCI: C−kz=π mod 4 83.43 P4/m [Eq. (F74)]

z+
4m,0 QAH/weak TI/weak TCI: C+

kz=0 mod 4 84.51 P42/m [Eq. (F78)]

z8 AXI/TCI/HOTI 83.44 P4/m1′, 123.339 P4/mmm [Eq. (F105)]

z3R QAH: Cz mod 3 147.13 P 3̄ [Eq. (F110)]

z6R QAH: Cz mod 6 168.109 P6 [Eq. (F114)]

δ3m QAH/AXI/TCI: C+
kz=π − C

−
kz=π mod 3 174.133 P 6̄ [Eq. (F115)]

z+
3m,π weak TI/weak TCI: C+

kz=π mod 3 174.133 P 6̄ [Eq. (F116)]

z−3m,π weak TI/weak TCI: C−kz=π mod 3 174.133 P 6̄ [Eq. (F117)]

δ6m QAH/AXI/TCI: C+
kz=π − C

−
kz=π mod 6 175.137 P6/m [Eq. (F119)]

z+
6m,π weak TI/weak TCI: C+

kz=π mod 6 175.137 P6/m [Eq. (F120)]

z−6m,π weak TI/weak TCI: C−kz=π mod 6 175.137 P6/m [Eq. (F121)]

z+
6m,0 QAH/weak TI/weak TCI: C+

kz=0 mod 6 176.143 P63/m [Eq. (F124)]

z12 AXI/TCI/HOTI 175.138 P6/m1′, 191.233 P6/mmm [Eq. (F127)]

z′12 AXI/TCI/HOTI 176.144 P63/m1′ [Eq. (F136)]

z′4R QAH: Cz/2 mod 4 103.199 P4c′c′ [Eq. (F161)]

z′4 AXI/TCI 135.487 P4′2/mbc
′ [Eq. (F169)]

z′6R QAH: Cz/2 mod 6 184.195 P6c′c′ [Eq. (F172)]

TABLE XIII: The independent minimal double SIs of spinful band topology in all 1,651 double SSGs. In order, this table
contains the symbol of each double SI, the bulk topological phase(s) associated to nontrivial values of the double SI including –
where applicable – the momentum- or position-space Chern numbers indicated by the double SI, and the minimal double SSG(s)
associated to the double SI [i.e. the lowest-symmetry SSG(s) in which the double SI predicts nontrivial band topology, see
Appendices F 3 and G 3], as well as the equation in Appendix F 4 containing the explicit double SI formula in terms of crystal
symmetry eigenvalues. All symmetry-indicated spinful SISM [specifically symmetry-indicated WSM, see the text following
Eq. (F36)], TI, and TCI phases in crystalline solids necessarily exhibit nontrivial values of at least one of the double SIs listed
in this table. We note that, in this table, the symbol “AXI” refers to both magnetic AXIs and T -symmetric 3D TIs, because AXI
and 3D TI phases are both defined by the nontrivial bulk axion angle θ = π19,20,27–29,68,103–121. Additionally, the symbols “TCI”
and “HOTI” respectively indicate helical (i.e. non-axionic) mirror Chern insulators and HOTIs7,14,15,17–19,32,34–36,98,202,203,
which include the magnetic HOTIs introduced in this work (see Appendix F 6). We have placed a † symbol after MSG 83.45
P4′/m in the row for z2w,i to emphasize that, of the three z2w,i, only z2w,3 is a minimal double SI in MSG 83.45 P4′/m
(where minimal double SIs are defined in Appendix F 3). We have placed a ‡ symbol after MSG 110.249 I41c

′d′ in the row
for the indices z′2R and z′′2R to emphasize that the position-space Chern number Cz (modulo 2) is indicated by z′′2R only in
the primitive cell of a crystal in MSG 110.249 I41c

′d′ – in the conventional cell, the position-space Chern number is given by
Cz mod 8 = 4z′′2R [see the text surrounding Eq. (F165)].
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6. Non-Axionic Spinful Magnetic HOTIs

In the sections below, we will further analyze the spinful helical magnetic HOTI phases discovered in this work. As
discussed in the main text and in Appendices F 4 and F 5, we have discovered helical magnetic (i.e. {T |0}-broken)
HOTI phases indicated by z4 = 2 in double MSG 47.249 Pmmm, z8 = 4 in double MSG 123.339 P4/mmm, and z12 = 6
in double MSG 191.233 P6/mmm, as well as trivial values for all other independent minimal double SIs in Table XIII.
In this work, we refer to the helical magnetic HOTIs that will be analyzed in this section as non-axionic, because
the helical HOTIs exhibit trivial axion angles θ mod 2π = 0 [see Refs. 19,20,27–29,68,103–121 for further discussions
of chiral HOTIs (i.e. AXIs), which conversely exhibit nontrivial axion angles θ = π]. When terminated in nanorod
geometries, the helical magnetic HOTIs generically exhibit even numbers of massive or massless twofold surface Dirac
cones, and domain walls between surfaces with oppositely-signed masses bind mirror-protected helical hinge states. As
we will show in Appendix F 6 b, the helical magnetic HOTIs discovered in this work can be connected to nonmagnetic
“rotation-anomaly” TCIs35,98 without closing a bulk or surface gap or gapping the anomalous surface or hinge states.
First, in Appendix F 6 a, we will introduce the symmetry-enhanced fermion doubling theorems18,35,63,74 for twofold
Dirac fermions in the surface wallpaper groups of the helical magnetic HOTIs, which we will then use to diagnose
the 2D surface states as anomalous. Unlike in Ref. 35, the twofold Dirac fermion doubling theorems introduced in
Appendix F 6 a do not require {T |0} to be enforced, and are instead only enforced by the spinful unitary magnetic
symmetries of Type-I magnetic double wallpaper groups. Lastly, in Appendix F 6 b, we will introduce tight-binding
models for the helical magnetic HOTI phases, which we will use to explicitly demonstrate the presence of anomalous,
mirror-protected 2D surface and 1D hinge states.

a. Symmetry-Enhanced Fermion Doubling Theorems for Non-Axionic Magnetic HOTIs

In this section, we will derive 2D symmetry-enhanced fermion doubling theorems18,35,63,74 for the surface wallpaper
groups131,132 of spinful, helical magnetic HOTIs. Through the doubling theorems established in this section, we will
demonstrate that the 2D, twofold Dirac surface states of helical magnetic HOTIs are anomalous (see Appendix F 6 b
for tight-binding models and surface- and hinge-state calculations for helical magnetic HOTIs).

To begin, in each BZ of a 2D crystal, the parity anomaly excludes the presence of a single (i.e. unpaired) twofold-
degenerate, linearly dispersing, ({T |0}}- or magnetic-) symmetry-stabilized Dirac fermion18,67,219–221. However, on
the 2D surfaces of 3D TIs27,28,222,223 (and some AXIs, see Refs. 19,20,29,68,103–121), unpaired twofold Dirac fermions
are anomalously stabilized by the combination of surface wallpaper group symmetries and spectral (Wannier) flow.
As shown in Refs. 18,35, for 3D crystals whose surface wallpaper groups contain additional rotation and reflection
symmetries, there also exist symmetry-enhanced fermion doubling theorems that may similarly be evaded through a
combination of wallpaper group symmetry and spectral flow.

In Ref. 35, the authors specifically defined the fermion multiplication theorem for twofold Dirac fermions in non-
magnetic [Type-II, see Appendix B 2] double wallpaper groups [which we will in this section take to be ẑ-normal]
that contain the symmetries {T |0} and {C2z|0}, as well as, optionally, {C4z|0} or {C6z|0}. To derive the fermion
multiplication for nonmagnetic double wallpaper groups, we begin by exploiting the formulas derived in Ref. 203 for
Berry phase in 2D crystals with rotation symmetries. Specifically, in Ref. 203, it was shown that the Berry phase Θ2

in one half of the BZ of a 2D crystal with {C2z|0} symmetry [Fig. 27(a)] is given by:

eiΘ2 = (−1)Nocc
∏

m∈occ
ζm(Γ̄)ζn(X̄)ζm(Ȳ )ζm(M̄), (F174)

that the Berry phase Θ4 in one quarter of the BZ of a 2D crystal with {C4z|0} symmetry [Fig. 27(b)] is given by:

eiΘ4 = (−1)Nocc
∏

m∈occ
ξm(Γ̄)ξm(M̄)ζm(X̄), (F175)

and that the Berry phase Θ6 in one sixth of the BZ of a 2D crystal with {C6z|0} symmetry [Fig. 27(c)] is given by:

eiΘ6 = (−1)Nocc
∏

m∈occ
ηm(Γ̄)θm(K̄)ζm(M̄), (F176)

where ζm(K), ξm(K), ηm(K), θm(K) respectively refer to the C2z, C4z, C6z, and C3z eigenvalues of the mth Bloch
state at K, and where Nocc is the number of Bloch states at each high-symmetry k point in a given energy range.
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FIG. 27: The 2D BZs of wallpaper groups with even-fold rotation symmetries. (a) The 2D BZ of Type-I magnetic wallpaper
group pmm [isomorphic to Type-I MSG 25.57 Pmm2 modulo out-of-plane lattice translations] or Type-II nonmagnetic wallpa-
per group pmm1′ [isomorphic to Type-II SG 25.58 Pmm21′ modulo out-of-plane lattice translations]. (b) The 2D BZ of Type-I
magnetic wallpaper group p4m [isomorphic to Type-I MSG 99.163 P4mm modulo out-of-plane lattice translations] or Type-II
nonmagnetic wallpaper group p4m1′ [isomorphic to Type-II SG 99.164 P4mm1′ modulo out-of-plane lattice translations]. (c)
The 2D BZ of Type-I magnetic wallpaper group p6m [isomorphic to Type-I MSG 183.185 P6mm modulo out-of-plane lattice
translations] or Type-II nonmagnetic wallpaper group p6m1′ [isomorphic to Type-II SG 183.186 P6mm1′ modulo out-of-plane
lattice translations]. The dashed lines in (a-c) indicate mirror lines. The blue patches in (a-c) respectively indicate patches of
the 2D BZ whose area is one half, one quarter, and one sixth of the first 2D BZ; the boundaries of the blue patches are explicitly
chosen to avoid coinciding with the mirror lines. Eqs. (F174), (F175), and (F176) respectively indicate the combinations of
rotation symmetry eigenvalues that correspond to the quantized Berry phases Θ2,4,6 = 0, π in the blue patches in (a-c).

In Ref. 203, it was shown that Θ2,4,6 = π in Eqs. (F174), (F175), and (F176) respectively indicates a nontrivial
bulk Chern number. However, in the presence of {T |0} or in-plane mirror symmetries, the Chern number is required
to vanish20,27–29,35,68,108,196,210. In wallpaper groups with C2z, C4z, or C6z rotation symmetry and either {T |0} or
in-plane mirror lines, the disagreement between Θ2,4,6 = π and the symmetry restriction that the Chern number
vanish can be resolved by recognizing that a twofold Dirac fermion respectively placed in each half, quarter, and
sixth of the 2D BZ also provides a source of π Berry phase indicated by Θ2,4,6 = π18,27,28,67,219–223. In nonmagnetic
(Type-II) wallpaper groups with C2z, C4z, or C6z rotation symmetry, or in Type-I magnetic wallpaper groups with
mirror and C2z, C4z, or C6z rotation symmetry, Θ2,4,6 therefore respectively indicate the number of twofold Dirac
cones in each BZ modulo 4, 8, and 12. Specifically, if Θ2,4,6 = π (Θ2,4,6 = 0), there must be an odd (even) number of
twofold Dirac cones in the blue BZ patches in Fig. 27(a-c), respectively implying the presence of 2 + 4a (4a), 4 + 8a
(8a), or 6 + 12a (12a) twofold Dirac fermions in each BZ [where a ∈ {Z+, 0}]. In nonmagnetic wallpaper groups with
C2z, C4z, or C6z rotation symmetry, the Dirac fermions are stabilized by {C2z × T |0} symmetry20,35,196,210, and in
the magnetic wallpaper groups in Fig. 27(a-c), the Dirac fermions are stabilized by mirror symmetry.

However, in Ref. 203, it was shown that Θ2,4,6 = 0 for all 2D spinful lattice models with {T |0} symmetry, due to
the constraints imposed by T symmetry on the eigenvalues of spinful rotation symmetries. Below, we will show that
Θ2,4,6 = 0 is also required in all 2D spinful lattice models that respect the symmetries of Type-I magnetic double
wallpaper groups containing {mx|0} and {my|0} and C2z, C4z, or C6z rotation symmetries (i.e. Type-I magnetic
double wallpaper groups pmm, p4m, and p6m, respectively18,35,63,131,132). We note that throughout this work, the
symbols of wallpaper groups – which are also sometimes termed plane groups – are given in the short notation
previously employed in Refs. 18,55,131; in the long notation of the Get Plane Gen tool on the BCS61,62, magnetic
wallpaper groups pmm, p4m, and p6m are respectively labeled by the symbols p2mm, p4mm, and p6mm. For each
C2z-symmetric wallpaper group in Fig. 27(a-c), we will choose a patch of the 2D BZ whose boundary intersects the
rotation-invariant k points in Eqs. (F174), (F175), and (F176), respectively, while avoiding the mirror lines, which
may host mirror-symmetry-stabilized Dirac fermions.

First, in double magnetic wallpaper group pmm [isomorphic to Type-I MSG 25.57 Pmm2 modulo out-of-plane
lattice translations], the matrix representatives of {C2z|0} and {mx|0} anticommute at each of the four C2z-invariant
k points in Fig. 27(a) and Eq. (F174) [this result can be obtained by applying the Corepresentations tool detailed in
Appendix D 2 to MSG 25.57 Pmm2]. Consequently, in 2D lattice models constructed from MEBRs, all of the small
irreps σ at the four C2z-invariant k points are two-dimensional, and exhibit net-zero C2z eigenvalues: χσ({C2z|0}) = 0.
For any set of energetically isolated multiplets of Bloch states at the four C2z-invariant points in Fig. 27(a) and
Eq. (F174), this implies that Θ2 mod 2π = 0. Consequently, spinful lattice models in double magnetic wallpaper
group pmm must exhibit even numbers of twofold Dirac fermions in each half of the 2D BZ in Fig. 27(a).

Similarly, for double magnetic wallpaper groups p4m [isomorphic to Type-I MSG 99.163 P4mm modulo out-of-plane
lattice translations] and p6m [isomorphic to Type-I MSG 183.185 P6mm modulo out-of-plane lattice translations],
it can be shown through the Corepresentations tool (see Appendix D 2) that the spinful rotation eigenvalues of
energetically isolated multiplets of Bloch states must also appear in complex-conjugate pairs. This respectively implies

https://www.cryst.ehu.es/plane/get_plane_gen.html
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/corepresentations


123

that, for spinful lattice models in double magnetic wallpaper groups p4m and p6m, Θ4,6 mod 2π = 0. Consequently,
spinful lattice models in double magnetic wallpaper group p4m [p6m] must exhibit even numbers of twofold Dirac
fermions in each quarter [sixth] of the 2D BZ in Fig. 27(b) [Fig. 27(c)].

As we will shortly see in Appendix F 6 b, the surfaces of the helical magnetic HOTIs discovered in this work exhibit
odd numbers of twofold Dirac cones in the blue regions of the 2D BZs shown in Fig. 27(a-c), representing anomalous
exceptions to the magnetic fermion multiplication theorem derived in this section.

b. Tight-Binding Models and Boundary States for Non-Axionic Magnetic HOTIs

Through the double SIs computed in Appendix F 4, we have discovered three novel variants of spinful, helical
magnetic HOTIs with trivial axion angles θ mod 2π = 0. In this section, we will provide tight-binding models and
surface- and hinge-state calculations for the three non-axionic magnetic HOTI phases discovered in this work. For each
phase, we will also demonstrate how the top (ẑ-normal) surface states circumvent a magnetic fermion multiplication
theorem (see Appendix F 6 a). We will leave the development of bulk (nested) Wilson loop invariants17–20,33 for the
helical magnetic HOTI phases for future works. However, we note that, like the fourfold-rotation-anomaly HOTI
phase in SnTe32,34,98,202, in the helical magnetic HOTIs modeled in this section, the occupied bands in half of the
bulk mirror planes that project to the ẑ-normal surface (e.g. {mx±y|0}) exhibit mirror Chern numbers Cm mod 4 = 2,
whereas the other half (e.g. {mx,y|0}) exhibit Cm mod 4 = 0 (see Fig. 26).

D2h HOTI in double MSG 47.249 Pmmm – We will here analyze the helical magnetic TCI phase protected by
the symmetries of double MPG mmm 8.1.24 [D2h] (see Appendices C 1 and E 1 and Refs. 12,24,61,62,87–94), which
we term the D2h HOTI (as previously in Appendices C 1 and E 1, we will continue to label MPGs in this section
employing the notation of the MPOINT tool on the BCS91–94 in which an MPG is labeled by its number, followed by
its symbol). As discussed in Appendix F 4 d, the double SIs (z4, z2w,1, z2w,2, z2w,3) = (2000) in double MSG 47.249
Pmmm indicate a mirror TCI for which the mirror Chern numbers Cmx mod 2 = Cmy mod 2 = Cmz mod 2 =
0, Cmx + Cmy + Cmz mod 4 = 2. Nevertheless, in this work, we refer to the (2000) phase in double MSG 47.249
Pmmm as a helical HOTI for two reasons. First, as discussed in Appendix F 4 d, the (2000) phase of double MSG
47.249 can be connected to a (z4, z2w,1, z2w,2, z2w,3)Pmmm1′ = (2000)Pmmm1′ mirror TCI phase in the T -symmetric
supergroup Type-II double SG 47.250 Pmmm1′ without closing a bulk or surface gap. In turn, the (2000)Pmmm1′ TCI
phase subduces to an I- and T -protected (z4, z2w,1, z2w,2, z2w,3)P 1̄1′ = (2000)P 1̄1′ helical HOTI in Type-II double SG
2.5 P 1̄1′ [see Appendix F 4 s and Refs. 7,14,15,19]. Second, in each of the momentum-space mirror planes in double
MSG 47.249 Pmmm, a nontrivial mirror Chern number cannot be identified by the 2D symmetry-based mirror Chern
indices implied by the Chern number SI formulas in Ref. 203. Specifically, each momentum-space mirror plane in
double MSG 47.249 Pmmm has only mirror, twofold rotation, and inversion symmetries, which can only indicate the
mirror Chern number modulo 2. For example, in the kz = π plane of the bulk BZ in double MSG 47.249 Pmmm,
the only SI of stable 2D topology is z2w,3, which only indicates Cmz (kz = π) mod 2 (see Appendix F 4 d). Hence, the
nontrivial even mirror Chern numbers of the (2000) phase in double MSG 47.249 Pmmm can only be inferred from
the 3D double SIs (z4, z2w,1, z2w,2, z2w,3), and cannot be inferred from symmetry-indicated momentum-space mirror
Chern numbers evaluated in BZ planes. As we will show in this section, and as discussed in previous works14,15,34,
TCI surface states may in general be interpreted as HOTI hinge modes if a finite sample is cut into a geometry in
which the bulk mirror planes project to 1D hinges, as opposed to flat 2D surfaces.

To model the D2h HOTI phase in double MSG 47.249 Pmmm, we begin by introducing the Bernevig-Hughes-Zhang
Hamiltonian for a 3D TI26–29:

HTI(k) = −τz
(

2−
∑

i=x,y,z

cos ki

)
+

∑
i=x,y,z

τxσi sin ki, (F177)

where τ i and σj are each 2× 2 Pauli matrices, and where we have employed a notation in which τ iσj = τ i ⊗ σj and
factors of the 2 × 2 identity matrices τ0 and σ0 are suppressed. Eq. (F177) respects I and spinful T symmetries,
which are represented through the symmetry action:

IHTI(k)I−1 = τzHTI(−k)τz, T HTI(k)T −1 = σyH∗TI(−k)σy. (F178)

We next construct the helical D2h HOTI phase by first superposing two copies of the 3D TI phase of Eq. (F177), and
then introducing perturbative couplings to break T symmetry:

HPmmm
HOTI (k) = µ0HTI(k) + ∆0µ

yτy sin kx + ∆1[µz(τz + τ0) + (τz + τ0)σz sin kx sin ky], (F179)

http://www.cryst.ehu.es/cryst/mpoint.html
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Bands Γ(000) X(π00) Y (0π0) Z(00π) S(ππ0) T (0ππ) U(π0π) R(πππ)

1-2
Energy -1 -1.6 -1.6 -1.6 -3.6 -3.6 -3.6 -5.6

σ Γ6 X5 Y 5 Z5 S5 T 5 U5 R5

∆σ(I) −ξ0 ξ0 ξ0 ξ0 ξ0 ξ0 ξ0 ξ0

3-4
Energy -1 -0.4 -0.4 -0.4 -2.4 -2.4 -2.4 -4.4

σ Γ6 X5 Y 5 Z5 S5 T 5 U5 R5

∆σ(I) −ξ0 ξ0 ξ0 ξ0 ξ0 ξ0 ξ0 ξ0

TABLE XIV: The double-valued small irreps corresponding to the four occupied bulk bands of the helical D2h magnetic HOTI
phase of Eq. (F179) [Fig. 28(b)]. At each of the eight I-invariant k points in MSG 47.249 Pmmm [given in the notation
k(kxkykz) and obtained through MKVEC, see Appendix D 1 and Fig. 28(a)], we list the occupied band index and energy,
the label of the double-valued small irrep σ that corresponds to each pair of occupied Bloch states at k in the notation of
the Corepresentations tool [see Appendix D 2], and the matrix representative ∆σ(I) in the basis of the 2× 2 Pauli matrices ξi.

in which µi is a 2×2 Pauli matrix that indexes the two coupled 3D TI models, and where we have employed a notation
in which µiτ jσk = µi⊗τ j⊗σk and factors of the 2×2 identity matrices µ0, τ0, σ0 are suppressed in terms other than
µ0HTI(k) when the identity matrices are not summed with other Pauli matrices. HPmmm

HOTI (k) in Eq. (F179) respects
the symmetries of double MPG mmm 8.1.24 [D2h], whose generating elements are represented through the action:

IHPmmm
HOTI (k)I−1 = τzHPmmm

HOTI (−k)τz,

C2xH
Pmmm
HOTI (k)C−1

2x = σxHPmmm
HOTI (C2xk)σx,

C2yH
Pmmm
HOTI (k)C−1

2y = µzσyHPmmm
HOTI (C2yk)µzσy. (F180)

Because HPmmm
HOTI (k) in Eq. (F179) also respects the group of 3D orthogonal lattice translations, then Eq. (F180)

implies that HPmmm
HOTI (k) respects the symmetries of double MSG 47.249 Pmmm. In Eq. (F179), the ∆0 and ∆1 terms

break T symmetry. The ∆0 term vanishes at the eight I-invariant k points kx,y,z = 0, π [Fig. 28(a)], whereas the ∆1

term is generically nonzero at all values of k.

To realize the helical D2h HOTI phase of HPmmm
HOTI (k), we choose ∆0 = 1, ∆1 = 0.3 in Eq. (F179). We have chosen

a relatively small value of ∆1 to ensure that the band ordering remains the same as in the T -symmetric limit in
which ∆0,1 vanish. Specifically, as discussed in Appendix F 4 d and earlier in this section, in the T -symmetric limit,
HPmmm

HOTI (k) realizes a twofold-rotation-anomaly, helical, nonmagnetic HOTI phase with a nontrivial bulk mirror
Chern number7,14,15,19,35,36 indicated by the double SIs (z4, z2w,1, z2w,2, z2w,3) = (2000) in the Type-II double SG
47.250 Pmmm1′. In Fig. 28(b), we plot the bulk band structure of Eq. (F179); we emphasize that Eq. (F179)
contains additional, extraneous (artificial) symmetries beyond those of double MSG 47.249 Pmmm. Hence, the band
structure in Fig. 28(b) exhibits additional degeneracies away from the Fermi level – such as the occupied fourfold
degeneracy at Γ – that are not robust to symmetry-preserving perturbations.

To diagnose the topology of Eq. (F179), we will perform two sets of calculations. First, we will calculate the double
SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and hinge states when
Eq. (F179) is terminated in a finite, D2h-symmetric nanorod geometry [Fig. 28(c)]. To begin, in Table XIV, we list
the double-valued small irreps that correspond to the four occupied spinful Bloch eigenstates at each of the eight
I-invariant k points in MSG 47.249 Pmmm [Fig. 28(a)]. The matrix representative ∆σ(I) of each two-dimensional
small irrep σ in Table XIV is diagonal, indicating that each pair of Bloch states at each I-invariant k point has two
parity eigenvalues with the same sign. From Table XIV, we obtain the occupied parity eigenvalue multiplicities:

n−Γ = 4, n+
Γ = 0, n−K = 0, n+

K = 4 for K = X,Y, Z, S, T, U,R. (F181)

Substituting Eq. (F181) into the double SI formulas in Type-I double MSG 47.249 Pmmm [Eqs. (F59) and (F60)],
we find that:

z4 =
∑
K

1

2
n−K mod 2 =

∑
K

n−K − n
+
K

4
mod 4 =

4− 28

4
mod 4 = 2, (F182)

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations
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FIG. 28: Surface and hinge states of the helical magnetic D2h HOTI phase in double MSG 47.249 Pmmm. (a) The bulk BZ.
(b) The bulk band structure obtained from Eq. (F179) with ∆0 = 1 and ∆1 = 0.3. We note that Eq. (F179) contains additional,
extraneous symmetries beyond those of double MSG 47.249 Pmmm, such that the band structure in (b) exhibits additional
degeneracies away from the Fermi level – such as the occupied fourfold degeneracy at Γ – that are not robust to symmetry-
preserving perturbations. (c) Schematic of the top (ẑ-normal) surface states and nanorod hinge states. The top surface of the
rectangular nanorod in (c) respects the symmetries of Type-I double magnetic wallpaper group pmm, and the hinges respect the
symmetries of frieze groups that contain either {mx|0} or {my|0} (see Appendices F 4 and F 6 a and Refs. 18,34,63,131,132). (d)
The top surface spectrum plotted along ky, obtained from surface Green’s functions calculated for the model in (b) terminated
in a z-directed slab geometry. In (d), the surface bands exhibit mirror Chern Cmx = 2 spectral flow. We have verified through
surface-state calculations that the slab surface spectrum along kx does not exhibit spectral flow, and that Cmz = 0. Together,
this implies that the top surface exhibits two twofold Dirac cones, circumventing the fermion multiplication theorem for double
magnetic wallpaper group pmm derived in Appendix F 6 a, and implies that the bulk is a D2h HOTI. (e) The spectrum of an
infinite, z-directed, mx,y-symmetric nanorod of the model in (b) features two pairs of hinge-localized helical modes (four total
hinge states), demonstrating that the model in (b) exhibits higher-order spectral flow.

and:

z2w,1 =
∑

K=X,S,U,R

1

2
n−K mod 2 = 0,

z2w,2 =
∑

K=Y,S,T,R

1

2
n−K mod 2 = 0,

z2w,3 =
∑

K=Z,T,U,R

1

2
n−K mod 2 = 0, (F183)

such that the occupied bands of Eq. (F179) shown in Fig. 28(b) exhibit the double SIs (z4, z2w,1, z2w,2, z2w,3) = (2000).
Previously, in Appendix F 4 d, we showed that the double SIs (z4, z2w,1, z2w,2, z2w,3) = (2000) in double MSG 47.249

Pmmm indicate a mirror TCI phase that we designate in this work to be a helical D2h HOTI. To demonstrate that
Eq. (F179), with the parameters used to obtain Fig. 28(b), exhibits the anomalous surface and hinge states of a D2h

HOTI, we have performed two boundary state calculations. First, as shown in Fig. 28(d), we have calculated the top
(ẑ-normal) surface spectrum of HPmmm

HOTI (k) terminated in a z-directed slab geometry. The top surface of a crystal in
MSG 47.249 Pmmm respects the symmetries of Type-I magnetic wallpaper group pmm (see Appendices F 4 and F 6 a
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and Refs. 18,34,63,131,132). The slab surface spectrum in Fig. 28(d) exhibits mirror Chern Cmx = 2 spectral flow,
and we have additionally verified through surface-state calculations that Cmy = 0. Together, this implies that the
top surface exhibits two twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic
wallpaper group pmm derived in Appendix F 6 a. We next calculate the spectrum of an infinite, z-directed, mx,y-
symmetric nanorod of HPmmm

HOTI (k) [Fig. 28(e)]. We observe two pairs of hinge-localized helical modes in the nanorod
spectrum in Fig. 28(e), confirming that HPmmm

HOTI (k) exhibits the higher-order spectral flow of a D2h HOTI.

D4h HOTI in double MSG 123.339 P4/mmm – We will next analyze the helical magnetic HOTI phase protected
by the symmetries of double MPG 15.1.53 4/mmm [D4h] (see Appendices C 1 and E 1 and Refs. 12,24,61,62,87–94),
which we term the D4h HOTI. As discussed in Appendix F 4 k, the double SIs (z8, z

−
4m,π, z2w,1) = (400) in double

MSG 123.339 P4/mmm either indicate a mirror TCI with mirror Chern number Cmz mod 8 = 4, or indicate a
helical D4h HOTI phase in which half of the z-projecting mirror planes (e.g. the {mx±y|0}-invariant planes) exhibit
Cm mod 4 = 2, the other half (e.g. the {mx,y|0}-invariant planes) exhibit Cm mod 4 = 0, and Cmz = 0 [see
Fig. 26(b)]. To construct the helical D4h HOTI phase, we first superpose two copies of the 3D TI phase of Eq. (F177),
but crucially, in a manner in which the two 3D TIs are formed from different orbital hybridization [e.g. s − pz and
s − fxyz]. As we will see, this implies that the two superposed 3D TIs exhibit different valence C4z eigenvalues (see
Ref. 55 for closely related discussions of orbital hybridization and anomalous corner modes in 2D TIs and 3D Dirac
semimetals). We next add perturbative couplings to break T symmetry, resulting in the 3D Hamiltonian:

H
P4/mmm
HOTI (k) = µ0HTI(k) + ∆0(µx + µy)(2τy − σz sin kz)(cos kx − cos ky) + ∆1µ

z, (F184)

employing the notation detailed in the text following Eq. (F179). H
P4/mmm
HOTI (k) respects the symmetries of double

MPG 15.1.53 4/mmm [D4h], whose generating elements are represented through the action:

IHP4/mmm
HOTI (k)I−1 = µzτzH

P4/mmm
HOTI (−k)µzτz,

C4zH
P4/mmm
HOTI (k)C−1

4z = µze−i
π
4 σ

z

H
P4/mmm
HOTI (C4zk)µzei

π
4 σ

z

,

C2xH
P4/mmm
HOTI (k)C−1

2x = σxH
P4/mmm
HOTI (C2xk)σx. (F185)

Because H
P4/mmm
HOTI (k) in Eq. (F184) also respects the group of 3D tetragonal lattice translations, then Eq. (F185)

implies that H
P4/mmm
HOTI (k) respects the symmetries of double MSG 123.339 P4/mmm. In Eq. (F184), the ∆0 term

breaks T symmetry, and the ∆1 term breaks the extraneous exchange symmetry represented by µx + µy between the
two superposed 3D TIs at all k points.

To realize the helical D4h HOTI phase of H
P4/mmm
HOTI (k), we choose ∆0 = 0.5 and ∆1 = 0.2 in Eq. (F184).

We have chosen a relatively small value of ∆1 to ensure that the band ordering remains the same as in the T -
symmetric limit in which ∆0 vanishes. Specifically, as discussed in Appendix F 4 k, in the T -symmetric limit,

H
P4/mmm
HOTI (k) realizes the same fourfold-rotation-anomaly, helical, nonmagnetic HOTI phase indicated by the dou-

ble SIs in (z8, z
−
4m,π, z2w,1) = (400) in the Type-II double SG 123.340 P4/mmm1′ as a tetragonal supercell of the

well-studied TCI SnTe14,15,32,34,35,98,202. In Fig. 29(b), we plot the bulk band structure of Eq. (F184).

To diagnose the topology of Eq. (F184), we will perform two sets of calculations. First, we will calculate the double
SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and hinge states when
Eq. (F184) is terminated in a finite, D4h-symmetric nanorod geometry [Fig. 29(c)]. To begin, in Table XV, we list the
double-valued small irreps that correspond to the four occupied spinful Bloch eigenstates at the six high-symmetry k
points shown in Fig. 29(a). From the matrix representative ∆σ(h) of each two-dimensional small irrep for each of the
representative unitary symmetries h of the little group Gk [e.g. C4z and I, see Eq. (D28) and the surrounding text],
we may infer the symmetry eigenvalues of the four occupied bands. Using the matrix representatives in Table XV,
we then compute the auxiliary variables [see Eq. (F106) and the surrounding text]:

n
3
2 ,+ =

∑
K=Γ,M,Z,A

n
3
2 ,+

K +
∑

K=X,R

n
1
2 ,+ = 1 + 4 = 5,

n
3
2 ,− =

∑
K=Γ,M,Z,A

n
3
2 ,−
K +

∑
K=X,R

n
1
2 ,− = 3 + 4 = 7,

n
1
2 ,+ =

∑
K=Γ,M,Z,A

n
1
2 ,+

K +
∑

K=X,R

n
1
2 ,+ = 1 + 4 = 5,

n
1
2 ,− =

∑
K=Γ,M,Z,A

n
1
2 ,−
K +

∑
K=X,R

n
1
2 ,− = 3 + 4 = 7, (F186)
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FIG. 29: Surface and hinge states of the helical magnetic D4h HOTI phase in double MSG 123.339 P4/mmm. (a) The bulk
BZ. (b) The bulk band structure obtained from Eq. (F184) with ∆0 = 0.5 and ∆1 = 0.2. (c) Schematic of the top (ẑ-normal)
surface states and nanorod hinge states. The top surface of the square nanorod in (c) respects the symmetries of Type-I double
magnetic wallpaper group p4m, and the hinges respect the symmetries of frieze groups that contain either {mx±y|0} (see
Appendices F 4 and F 6 a and Refs. 18,34,63,131,132). (d) The top surface spectrum plotted along kx−y, obtained from surface
Green’s functions calculated for the model in (b) terminated in a z-directed slab geometry. In (d), the surface bands exhibit
mirror Chern Cmx+y = 2 spectral flow. We have verified through surface-state calculations that the C4z-related slab surface
spectrum along kx+y also exhibits Cmx−y = 2 spectral flow, that the surface spectrum along kx,y exhibits trivial Cmy,x, = 0
spectral flow, and that Cmz = 0. Together, this implies that the top surface exhibits four twofold Dirac cones, circumventing
the fermion multiplication theorem for double magnetic wallpaper group p4m derived in Appendix F 6 a, and implies that the
bulk is a D4h HOTI. (e) The spectrum of an infinite, C4z- and mx±y-symmetric nanorod of the model in (b) features four pairs
of hinge-localized helical modes (eight total hinge states), demonstrating that the model in (b) exhibits higher-order spectral
flow.

where nj,±K is the number of occupied states with the C4z eigenvalues e−i
π
2 j and the parity (I) eigenvalues ±1 at

K [which is only well-defined at the four C4z-invariant momenta K = Γ,M,Z,A, see Fig. 29(a)]. Additionally, in

Eq. (F186), n
1
2 ,±
K is the number of occupied states with the C2z eigenvalues −i and the parity eigenvalues ±1 at the

points K = X,R. Substituting Eq. (F186) into the double SI formula for z8 in Type-I double MSG 123.339 P4/mmm
[Eq. (F105)], we obtain:

z8 =
3(n

3
2 ,+ − n 3

2 ,−)− (n
1
2 ,+ − n 1

2 ,−)

2
mod 8 =

3× (5− 7)− (5− 7)

2
mod 8 = 4. (F187)

To complete the double SI calculation, we must also determine the values of z−4m,π and z2w,1 (see Appendix F 4 k).

To compute z−4m,π and z2w,1, we first use Table XV to calculate the number of C4z eigenvalues at Z and A in each
mirror sector:

n
1
2 ,−i
Z = 1, n

− 1
2 ,−i

Z = 0, n
3
2 ,−i
Z = 1, n

− 3
2 ,−i

Z = 0,

n
1
2 ,−i
A = 1, n

− 1
2 ,−i

A = 0, n
3
2 ,−i
A = 1, n

− 3
2 ,−i

A = 0, (F188)
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Bands Γ(000) Z(00π) M(ππ0) A(πππ)

1-2

Energy -1.2 -1.2 -3.2 -5.2

σ Γ6 Z8 M8 A8

∆σ(I) ξ0 −ξ0 −ξ0 −ξ0

∆σ(C4z) e
−i 3π

4 ξ
z

e−i
3π
4 ξ

z

e−i
3π
4 ξ

z

e−i
3π
4 ξ

z

∆σ(mz) iξz −iξz −iξz −iξz

3-4

Energy -0.8 -0.8 -2.8 -4.8

σ Γ9 Z7 M7 A7

∆σ(I) −ξ0 ξ0 ξ0 ξ0

∆σ(C4z) e−i
π
4 ξ
z

e−i
π
4 ξ
z

e−i
π
4 ξ
z

e−i
π
4 ξ
z

∆σ(mz) iξz −iξz −iξz −iξz

Bands X(0π0) R(0ππ)

1-2

Energy -3.07 -4.27

σ X6 R6

∆σ(I) −ξ0 −ξ0

∆σ(C2z) −iξz −iξz

∆σ(mz) iξz iξz

3-4

Energy -2.94 -3.98

σ X5 R5

∆σ(I) ξ0 ξ0

∆σ(C2z) −iξz −iξz

∆σ(mz) −iξz −iξz

TABLE XV: The double-valued small irreps corresponding to the four occupied bulk bands of the helical D4h magnetic HOTI
phase of Eq. (F184) [Fig. 29(b)]. At one k point in each of the six maximal momentum stars in MSG 123.339 P4/mmm [given
in the notation k(kxkykz) and obtained through MKVEC, see Appendix D 1 and Fig. 29(a)], we list the occupied band index
and energy, the label of the double-valued small irrep σ that corresponds to each pair of occupied Bloch states at k in the
notation of the Corepresentations tool [see Appendix D 2], and the matrix representatives ∆σ(h) of the representative unitary
symmetries h of the little group Gk [see Eq. (D28) and the surrounding text] in the basis of the 2× 2 Pauli matrices ξi.

as well as the number of C2z eigenvalues at R in each mirror sector:

n
1
2 ,−i
R = n

− 1
2 ,−i

R = 1. (F189)

From Eqs. (F188) and (F189), we then compute z−4m,π [Eq. (F74)]:

z−4m,π =
∑

K=Z,A

(
−1

2
n

1
2 ,−i
K +

1

2
n
− 1

2 ,−i
K − 3

2
n

3
2 ,−i
K +

3

2
n
− 3

2 ,−i
K

)
+ n

1
2 ,−i
R − n−

1
2 ,−i

R mod 4

=− 1

2
(1 + 1) +

1

2
(0 + 0)− 3

2
(1 + 1) +

3

2
(0 + 0) + 1− 1 mod 4 = 0. (F190)

Lastly, using Eqs. (F186), (F188), and (F189), we compute z2w,1 [Eq. (F70)]:

z2w,1 =
∑

K=X′,R′,M,A

1

2
n−K mod 2 =

1

2
(2 + 2 + 2 + 2) mod 2 = 0, (F191)

where X ′ = C−1
4z X and R′ = C−1

4z R. Eq. (F191) implies that the occupied bands of Eq. (F184) shown in Fig. 29(b)
exhibit the double SIs (z8, z

−
4m,π, z2w,1) = (400).

Previously, in Appendix F 4 k, we showed that the double SIs (z8, z
−
4m,π, z2w,1) = (400) in double MSG 123.339

P4/mmm either indicate a mirror TCI with mirror Chern number Cmz mod 8 = 4, or indicate a helical D4h HOTI
phase in which half of the z-projecting mirror planes (e.g. the {mx±y|0}-invariant planes) exhibit Cm mod 4 = 2, the
other half (e.g. the {mx,y|0}-invariant planes) exhibit Cm mod 4 = 0, and Cmz = 0 [see Fig. 26(b)]. To demonstrate
that Eq. (F184), with the parameters used to obtain Fig. 29(b), is a D4h HOTI, we have performed two boundary state

calculations. First, as shown in Fig. 29(d), we have calculated the top (ẑ-normal) surface spectrum of H
P4/mmm
HOTI (k)

terminated in a z-directed slab geometry. The top surface of a crystal in double MSG 123.339 P4/mmm respects
the symmetries of Type-I magnetic wallpaper group p4m (see Appendices F 4 and F 6 a and Refs. 18,34,63,131,132).
The slab surface spectrum in Fig. 29(d) exhibits four twofold Dirac cones, circumventing the fermion multiplication
theorem for double magnetic wallpaper group p4m derived in Appendix F 6 a. We next calculate the spectrum of an

infinite, z-directed, C4z- and mx±y-symmetric nanorod of H
P4/mmm
HOTI (k) [Fig. 29(e)]. We observe four pairs of hinge-

localized helical modes in the nanorod spectrum in Fig. 29(e), confirming that H
P4/mmm
HOTI (k) exhibits the higher-order

spectral flow of a D4h HOTI.
D6h HOTI in double MSG 191.233 P6/mmm – Finally, we will now analyze the helical magnetic HOTI phase

protected by the symmetries of double MPG 27.100 6/mmm [D6h] (see Appendices C 1 and E 1 and Refs. 12,24,
61,62,87–94), which we term the D6h HOTI. As discussed in Appendix F 4 r, the double SIs (z12, z

+
6m,π) = (60)

in double MSG 191.233 P6/mmm either indicate a mirror TCI with mirror Chern number Cmz mod 12 = 6, or

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations
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indicate a helical D6h HOTI in which half of the z-projecting mirror planes (e.g. the {mx|0}-, {C6zmxC
−1
6z |0}-,

and {C−1
6z mxC6z|0}-invariant planes) exhibit Cm mod 4 = 2, the other half (e.g. the {my|0}-, {C6zmyC

−1
6z |0}-, and

{C−1
6z myC6z|0}-invariant planes) exhibit Cm mod 4 = 0, and Cmz = 0 [see Fig. 26(c)].

To construct the helical D6h HOTI phase, we begin by introducing the hexagonal lattice vectors:

t1 = (0,−1, 0), t2 = (
√

3/2, 1/2, 0), t3 = (0, 0, 1), (F192)

and reciprocal lattice vectors:

b1 = (
√

3/3,−1, 0), b2 = (2
√

3/3, 0, 0), b3 = (0, 0, 1). (F193)

We define the first BZ to consist of the points k =
∑
i=1,2,3 kibi, ki ∈ [−π, π) [see Fig. 30(a)].

Next, we introduce a model for a 3D TI with hexagonal lattice vectors:

H
P6/mmm1′

TI (k) = τzM(k) + τxσ̄1 sin(2k1 + k2) + τxσ̄2 sin(k2 − k1) + τxσ̄3 sin(k1 + 2k2) + τxσz sin(k3), (F194)

where we have employed the notation detailed in the text following Eq. (F177), and where:

M(k) = 3−
∑

i=1,2,3

cos(ki)− cos(k1 + k2). (F195)

In Eq. (F194), we have employed a canonical Pauli matrix transformation given by:

σ̄1 =

√
3

2
σx − 1

2
σy, σ̄2 = σy, σ̄3 =

√
3

2
σx +

1

2
σy. (F196)

Eq. (F194) respects I and spinful T symmetries, which are represented through the symmetry action:

IHP6/mmm1′

TI (k)I−1 = τzH
P6/mmm1′

TI (−k)τz, T HP6/mmm1′

TI (k)T −1 = σy[H
P6/mmm1′

TI (−k)]∗σy. (F197)

As was done for the D4h HOTI earlier in this section, we next superpose two copies of the 3D TI phase of Eq. (F194),
but again in a manner in which the two 3D TIs are formed from different orbital hybridization, such that the occupied
bands of the two 3D TIs exhibit different C6z and C3z eigenvalues [see Ref. 55 and the text preceding Eq. (F184)].
We then add perturbative couplings to break T symmetry, resulting in the 3D Hamiltonian:

H
P6/mmm
HOTI (k) = µ0H

P6/mmm1′

TI (k) + (µx + µy)[(τx + τy) +
1

2
σz sin(k3)]f(k) + ∆1µ

z(τz + τ0), (F198)

where we have employed the notation detailed in the text following Eq. (F179), and where:

f(k) = ∆0[sin(k2 − k1) + sin(2k1 + k2)− sin(k1 + 2k2)]. (F199)

H
P6/mmm
HOTI (k) respects the symmetries of double MPG 27.1.100 6/mmm [D6h], whose generating elements are repre-

sented through the action:

IHP6/mmm
HOTI (k)I−1 = τzH

P6/mmm
HOTI (−k)τz,

C6zH
P6/mmm
HOTI (k)C−1

6z = µze−i
π
6 σ

z

H
P6/mmm
HOTI (C6zk)µzei

π
6 σ

z

,

C2yH
P6/mmm
HOTI (k)C−1

2y = µzσxH
P6/mmm
HOTI (C2yk)µzσx. (F200)

Because H
P6/mmm
HOTI (k) in Eq. (F199) also respects the group of 3D hexagonal lattice translations, then Eq. (F200)

implies that H
P6/mmm
HOTI (k) respects the symmetries of double MSG 191.233 P6/mmm. In Eqs. (F198) and (F199),

the ∆0 term breaks T symmetry, and the ∆1 term breaks the extraneous exchange symmetry represented by µx +µy

between the two superposed hexagonal 3D TIs in the τ+ = 1
2 [τz + τ0] subspace at all k points.

To realize the helical D6h HOTI phase of H
P6/mmm
HOTI (k), we choose ∆0 = 2 and ∆1 = 0.4 in Eqs. (F198) and (F199).

We have chosen a relatively small value of ∆1 to ensure that the band ordering remains the same as in the T -symmetric

limit in which ∆0 vanishes. Specifically, as discussed in Appendix F 4 r, in the T -symmetric limit, H
P6/mmm
HOTI (k) realizes

a sixfold-rotation-anomaly, helical, nonmagnetic HOTI phase14,15,35 indicated by the double SIs (z12, z
+
6m,π) = (60)
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FIG. 30: Surface and hinge states of the helical magnetic D6h HOTI phase in double MSG 191.233 P6/mmm. (a) The bulk
BZ. (b) The bulk band structure obtained from Eqs. (F198) and (F199) with ∆0 = 2 and ∆1 = 0.4. We note that Eq. (F198)
contains additional symmetries beyond those of double MSG 191.233 P6/mmm, such that the band structure in (b) exhibits
additional degeneracies away from the Fermi level – such as the unoccupied fourfold degeneracy at Γ – that are not robust
to symmetry-preserving perturbations. (c) Schematic of the top (ẑ-normal) surface states and nanorod hinge states. The top
surface of the hexagonal nanorod in (c) respects the symmetries of Type-I double magnetic wallpaper group p6m, and the
hinges respect the symmetries of frieze groups with mirror lines parallel to the hinge translation direction (see Appendices F 4
and F 6 a and Refs. 18,34,63,131,132). (d) The top surface spectrum plotted along ky = 0 [see Eqs. (F192) and (F193)] obtained
from surface Green’s functions calculated for the model in (b) terminated in a ẑ- (t3-) normal slab geometry. In (d), the surface
bands exhibit mirror Chern Cmx = 2 spectral flow. We have verified through surface-state calculations that the C6z-related slab
surface spectrum along the C6mxC

−1
6 - and C−1

6 mxC6-invariant surface mirror lines in p6m [see Fig. 27(c)] also exhibits mirror
Chern Cm = 2 spectral flow, that the surface spectrum along the other three surface mirror lines [i.e. the my-, C6myC

−1
6 -, and

C−1
6 myC6-invariant lines] exhibits trivial Cm = 0 spectral flow, and that Cmz = 0. Together, this implies that the top surface

exhibits six twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p6m
derived in Appendix F 6 a, and implies that the bulk is a D6h HOTI. (e) Unlike in Figs. 28(e) and 29(e), it is numerically
simpler to implement a hinge-state calculation in which the bulk insulator in (b) is cut into a z-directed nanorod that preserves
I and mx,y symmetries, but does not preserve C3z and C6z rotation symmetries [see the inset panel in (e)]. In (e), we show
the spectrum of a z-directed, mx,y-symmetric nanorod of the model in (b); the nanorod in (e) features two pairs of helical
hinge states along the mx-invariant hinges (four total hinge states), and does not exhibit any other states crossing the gap.
The nanorod spectrum in (e) implies that a D6h-symmetric nanorod of the model in (b) [i.e. a nanorod with mx, C6zmxC

−1
6z ,

and C−1
6z mxC6z symmetries], would feature six pairs of hinge-localized helical modes [twelve total hinge states], demonstrating

that the model in (b) exhibits the higher-order spectral flow of a D6h helical magnetic HOTI.

in the Type-II double SG 191.234 P6/mmm1′. In Fig. 30(b), we plot the bulk band structure of Eqs. (F198)
and (F199); we emphasize that Eqs. (F198) and (F199) contain additional, extraneous (artificial) symmetries beyond
those of double MSG 191.233 P6/mmm. Hence, the band structure in Fig. 30(b) exhibits additional degeneracies away
from the Fermi level – such as the unoccupied fourfold degeneracy at Γ – that are not robust to symmetry-preserving
perturbations.

To diagnose the topology of Eqs. (F198) and (F199), we will perform two sets of calculations. First, we will
calculate the double SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and
hinge states when Eqs. (F198) and (F199) are terminated in a finite, D6h-symmetric nanorod geometry [Fig. 30(c)].
To begin, in Table XVI, we list the double-valued small irreps that correspond to the four occupied spinful Bloch
eigenstates at the six high-symmetry k points shown in Fig. 30(a). From the matrix representative ∆σ(h) of each
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Bands Γ(000) A(00π)

1-2

Energy -1.8 -1

σ Γ8 A11

∆σ(I) ξ0 −ξ0

∆σ(C6z) e
−i 5π

6 ξ
z

e−i
5π
6 ξ

z

∆σ(mz) −iξz iξz

3-4

Energy -0.2 -1

σ Γ9 A12

∆σ(I) ξ0 −ξ0

∆σ(C6z) e−i
π
6 ξ
z

e−i
π
6 ξ
z

∆σ(mz) −iξz iξz

Bands K( 2π
3

2π
3 0) H( 2π

3
2π
3 π)

1-2

Energy -3.5 -5.5

σ K8 H8

∆σ(C3z) e−i
π
3 ξ
z

e−i
π
3 ξ
z

∆σ(mz) −iξz −iξz

3-4

Energy -3.5 -5.5

σ K9 H9

∆σ(C3z) ei
π
3 ξ
z

ei
π
3 ξ
z

∆σ(mz) −iξz −iξz

Bands M(π00) L(π0π)

1-2

Energy -3 -5

σ M6 L6

∆σ(I) −ξ0 −ξ0

∆σ(mz) iξz iξz

3-4

Energy -3 -5

σ M6 L6

∆σ(I) −ξ0 −ξ0

∆σ(mz) iξz iξz

TABLE XVI: The double-valued small irreps corresponding to the four occupied bulk bands of the helical D6h magnetic HOTI
phase of Eq. (F198) [Fig. 30(b)]. At one k point in each of the six maximal momentum stars in MSG 191.233 P6/mmm [given
in the notation k(k1k2k3) and obtained through MKVEC, see Appendix D 1 and Fig. 30(a)], we list the occupied band index
and energy, the label of the double-valued small irrep σ that corresponds to each pair of occupied Bloch states at k in the
notation of the Corepresentations tool [see Appendix D 2], and the matrix representatives ∆σ(h) of the representative unitary
symmetries h of the little group Gk [see Eq. (D28) and the surrounding text] in the basis of the 2× 2 Pauli matrices ξi.

two-dimensional small irrep for each of the representative unitary symmetries h of the little group Gk [e.g. C6z, C3z,
and I, see Eq. (D28) and the surrounding text], we may infer the symmetry eigenvalues of the four occupied bands.

In Appendix F 4 r, we previously expressed the double SI z12 in terms of other double SIs in double MSGs with
lower symmetry than double MSG 191.233 P6/mmm [Eq. (F127)]:

z12 = δ6m + 3[(δ6m − z4) mod 4] mod 12, (F201)

where z4 and δ6m are respectively defined in Eqs. (F59) and (F119). Using the matrix representatives in Table XVI,
we first determine the parity eigenvalue multiplicities:

n−Γ = 0, n+
Γ = 4, n−A = 4, n+

A = 0, n−M = 4, n+
M = 0, n−L = 4, n+

L = 0. (F202)

In MSG 191.233 P6/mmm, the M and L points lie within multiplicity-3 momentum stars (see Appendix D 1
and MKVEC); therefore, the eight I-invariant momenta in MSG 191.233 P6/mmm are given by:

kI =

{
Γ, A,M, (C6z)M, (C6z)

2M,L, (C6z)L, (C6z)
2L

}
. (F203)

Eqs. (F202) and (F203) imply that:

z4 =
∑
K∈KI

n−K − n
+
K

4
mod 4

=
n−Γ − n

+
Γ

4
+
n−A − n

+
A

4
+ 3

n−M − n
+
M

4
+ 3

n−L − n
+
L

4
mod 4

= −1 + 1 + 3 + 3 mod 4 = 2. (F204)

Next, to compute δ6m, we use Table XVI to obtain the rotation eigenvalues in each mirror sector:

n
1
2 ,i

A = 1, n
− 1

2 ,i

A = 0, n
3
2 ,i

A = 0, n
− 3

2 ,i

A = 0, n
5
2 ,i

A = 1, n
− 5

2 ,i

A = 0,

n
1
2 ,i

H = 1, n
− 1

2 ,i

H = 1, n
3
2 ,i

H = 0, n
1
2 ,i

L = 2, n
− 1

2 ,i

L = 0,

n
1
2 ,−i
Γ = 1, n

− 1
2 ,−i

Γ = 0, n
3
2 ,−i
Γ = 0, n

− 3
2 ,−i

Γ = 0, n
5
2 ,−i
Γ = 1, n

− 5
2 ,−i

Γ = 0,

n
1
2 ,−i
K = 1, n

− 1
2 ,−i

K = 1, n
3
2 ,−i
K = 0, n

1
2 ,−i
M = 0, n

− 1
2 ,−i

M = 2. (F205)

http://www.cryst.ehu.es/cryst/mkvec
http://www.cryst.ehu.es/cryst/corepresentations
http://www.cryst.ehu.es/cryst/mkvec
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Using Eqs. (F119) and (F205), we then compute δ6m:

δ6m = −1

2
n

1
2 ,+i

A +
1

2
n
− 1

2 ,+i

A − 3

2
n

3
2 ,+i

A +
3

2
n
− 3

2 ,+i

A − 5

2
n

5
2 ,+i

A +
5

2
n
− 5

2 ,+i

A

− n
1
2 ,+i

H + n
− 1

2 ,+i

H + 3n
3
2 ,+i

H +
3

2
n

1
2 ,+i

L − 3

2
n
− 1

2 ,+i

L

+
1

2
n

1
2 ,−i
Γ − 1

2
n
− 1

2 ,−i
Γ +

3

2
n

3
2 ,−i
Γ − 3

2
n
− 3

2 ,−i
Γ +

5

2
n

5
2 ,−i
Γ − 5

2
n
− 5

2 ,−i
Γ

+ n
1
2 ,−i
K − n−

1
2 ,−i

K − 3n
3
2 ,−i
K − 3

2
n

1
2 ,−i
M +

3

2
n
− 1

2 ,−i
M mod 6

= (−1

2
− 5

2
− 1 + 1 + 3) + (

1

2
+

5

2
+ 1− 1 + 3) mod 6 = 0. (F206)

From Eqs. (F201), (F204), and (F206), we next compute z12:

z12 = δ6m + 3[(δ6m − z4) mod 4] mod 12 = 0 + 3× 2 mod 12 = 6. (F207)

Lastly, to complete the calculation of the double SIs in MSG 191.233 P6/mmm, we compute z+
6m,π [Eq. (F120)]:

z+
6m,π =− 1

2
n

1
2 ,+i

A +
1

2
n
− 1

2 ,+i

A − 3

2
n

3
2 ,+i

A +
3

2
n
− 3

2 ,+i

A − 5

2
n

5
2 ,+i

A +
5

2
n
− 5

2 ,+i

A

− n
1
2 ,+i

H + n
− 1

2 ,+i

H + 3n
3
2 ,+i

H +
3

2
n

1
2 ,+i

L − 3

2
n
− 1

2 ,+i

L mod 6

=− 1

2
− 5

2
− 1 + 1 + 3 mod 6 = 0. (F208)

From Eqs. (F207) and (F208), we determine that the occupied bands of Eqs. (F198) and (F199) shown in Fig. 30(b)
exhibit the double SIs (z12, z

+
6m,π) = (60).

Previously, in Appendix F 4 r, we showed that the double SIs (z12, z
+
6m,π) = (60) in double MSG 191.233 P6/mmm

either indicate a mirror TCI with mirror Chern number Cmz mod 12 = 6 or indicate a helical D6h HOTI phase in
which half of the z-projecting mirror planes [e.g. the {mx|0}-, {C6zmxC

−1
6z |0}-, and {C−1

6z mxC6z|0}-invariant planes]
exhibit Cm mod 4 = 2, the other half [e.g. the {my|0}-, {C6zmyC

−1
6z |0}-, and {C−1

6z myC6z|0}-invariant planes] exhibit
Cm mod 4 = 0, and Cmz = 0 [see Fig. 26(c)]. To demonstrate that Eq. (F198), with the parameters used to obtain
Fig. 30(b), is a D6h HOTI, we have performed two boundary state calculations. First, as shown in Fig. 30(d), we have

calculated the top surface spectrum of H
P6/mmm
HOTI (k) terminated in a ẑ- (t3-) normal slab geometry. The top surface

of a crystal in double MSG 191.233 P6/mmm respects the symmetries of Type-I magnetic wallpaper group p6m (see
Appendices F 4 and F 6 a and Refs. 18,34,63,131,132). The slab surface spectrum in Fig. 30(d) exhibits six twofold
Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p6m derived in

Appendix F 6 a. We then calculate the spectrum of an infinite, z-directed, mx,y-symmetric nanorod of H
P6/mmm
HOTI (k),

which we find to exhibit the higher-order spectral flow of a D6h HOTI [Fig. 30(e)].
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Appendix G: Supplementary Tables

In the sections below, we will provide further supplementary tables containing additional data generated for this
work. First, in Appendix G 1, we will provide a complete tabulation of the exceptional composite band (co)reps of
the 1,651 single and double SSGs [see Appendix E 3 a]. Then, in Appendix G 2, we will tabulate the minimum and
maximum EBR dimension in each single and double SSG. Finally, in Appendix G 3, we will list the minimal double
SSG with the minimal double SIs on which the double SIs in each double SSGs are dependent (see Appendix F 3).

1. Exceptional Composite Band Coreps Induced from Maximal Site-Symmetry Groups

In this section, we provide a complete tabulation of the exceptional cases [defined in detail in Appendix E 3 a] in
the 1,651 single and double SSGs in which an irreducible (co)rep of a site-symmetry group of a site in a maximal
Wyckoff position does not induce an elementary band (co)rep [EBR]. For the Type-I MSGs and Type-II SGs analyzed
in TQC5,57,58,60,85,86, the exceptional cases listed in the tables below agree with the previous tabulations performed
in Refs. 5,60. Among the tables provided in this section, there is no table of exceptional cases in the Type-II double
SGs, because, as previously shown in Refs. 5,60 and in Table XI, there are no exceptional composite band coreps in
the Type-II double SGs.

a. Exceptional Composite Band Reps in the Type-I Single MSGs

TABLE XVII: Exceptional composite band reps induced from site-
symmetry irreps in the Type-I single MSGs (Appendix B 1). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the single-valued irrep of the site-symmetry group Gq,
the symbol of the MPG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS91–94 and
the number of the MPG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group Gq′ , the symbol and number of the MPG isomor-
phic to the intersection group Gq0 = Gq ∩ Gq′ , and the dimension d
of the exceptional composite band rep. See Appendix E 3 a for further
information regarding exceptional composite band reps.

MSG Irrep Gq Gq′ Gq0 d
124.351 P4/mcc a,E 422 12.1.40 4/m 11.1.35 4 9.1.29 4
124.351 P4/mcc c,E 422 12.1.40 4/m 11.1.35 4 9.1.29 4
131.435 P42/mmc e,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 4
131.435 P42/mmc f,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 4
132.447 P42/mcm b,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 4
132.447 P42/mcm d,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 4
139.531 I4/mmm d,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 4
140.541 I4/mcm a,E 422 12.1.40 4/m 11.1.35 4 9.1.29 4
140.541 I4/mcm b,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 4
163.79 P 3̄1c a,E 32 18.1.65 3̄ 17.1.62 3 16.1.60 4
165.91 P 3̄c1 a,E 32 18.1.65 3̄ 17.1.62 3 16.1.60 4
167.103 R3̄c a,E 32 18.1.65 3̄ 17.1.62 3 16.1.60 4
188.215 P 6̄c2 a,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
188.215 P 6̄c2 c,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
188.215 P 6̄c2 e,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
190.227 P 6̄2c a,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
192.243 P6/mcc a,E2 622 24.1.87 6/m 23.1.82 6 21.1.76 4
192.243 P6/mcc a,E1 622 24.1.87 6/m 23.1.82 6 21.1.76 4
192.243 P6/mcc c,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 8
193.253 P63/mcm d,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 8
207.40 P432 c,E 422 12.1.40 432 30.1.112 4 9.1.29 6
207.40 P432 d,E 422 12.1.40 432 30.1.112 4 9.1.29 6
208.44 P4232 b,E 32 18.1.65 23 28.1.107 3 16.1.60 8
208.44 P4232 c,E 32 18.1.65 23 28.1.107 3 16.1.60 8
210.52 F4132 c,E 32 18.1.65 23 28.1.107 3 16.1.60 8
210.52 F4132 d,E 32 18.1.65 23 28.1.107 3 16.1.60 8

http://www.cryst.ehu.es/cryst/mpoint.html
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211.56 I432 b,E 422 12.1.40 432 30.1.112 4 9.1.29 6
211.56 I432 c,E 32 18.1.65 432 30.1.112 3 16.1.60 8
215.70 P 4̄3m c,E 4̄2m 14.1.48 4̄3m 31.1.115 mm2 7.1.20 6
215.70 P 4̄3m d,E 4̄2m 14.1.48 4̄3m 31.1.115 mm2 7.1.20 6
217.78 I 4̄3m b,E 4̄2m 14.1.48 4̄3m 31.1.115 mm2 7.1.20 6
222.98 Pn3̄n b,E 422 12.1.40 432 30.1.112 4 9.1.29 12
223.104 Pm3̄n c,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 12
223.104 Pm3̄n d,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 12
223.104 Pm3̄n e,E 32 18.1.65 m3̄ 29.1.109 3 16.1.60 16
224.110 Pn3̄m d,E 4̄2m 14.1.48 4̄3m 31.1.115 mm2 7.1.20 12
226.122 Fm3̄c c,E 4̄2m 14.1.48 m3̄ 29.1.109 mm2 7.1.20 12
228.134 Fd3̄c b,E 32 18.1.65 23 28.1.107 3 16.1.60 16

32 18.1.65 3̄ 17.1.62 3 16.1.60 16
229.140 Im3̄m d,E 4̄2m 14.1.48 4/mmm 15.1.53 mm2 7.1.20 12
230.145 Ia3̄d b,E 32 18.1.65 3̄ 17.1.62 3 16.1.60 16

b. Exceptional Composite Band Reps in the Type-I Double MSGs

TABLE XVIII: Exceptional composite band reps induced from site-
symmetry irreps in the Type-I double MSGs (Appendix B 1). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the double-valued irrep of the site-symmetry group Gq,
the symbol of the MPG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS91–94 and
the number of the MPG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group Gq′ , the symbol and number of the MPG isomor-
phic to the intersection group Gq0 = Gq ∩ Gq′ , and the dimension d
of the exceptional composite band rep. See Appendix E 3 a for further
information regarding exceptional composite band reps.

SSG Irrep Gq Gq′ Gq0 d
49.265 Pccm e,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
49.265 Pccm f,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
49.265 Pccm g,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
49.265 Pccm h,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
51.289 Pmma e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 4
51.289 Pmma f,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 4
63.457 Cmcm c,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 4
66.491 Cccm a,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
66.491 Cccm b,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
67.501 Cmma a,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
67.501 Cmma b,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
67.501 Cmma g,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 4
69.521 Fmmm f,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
72.539 Ibam a,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
72.539 Ibam b,E 222 6.1.17 2/m 5.1.12 2 3.1.6 4
74.554 Imma e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 4
89.87 P422 e,E 222 6.1.17 422 12.1.40 2 3.1.6 4
89.87 P422 f,E 222 6.1.17 422 12.1.40 2 3.1.6 4
97.151 I422 c,E 222 6.1.17 422 12.1.40 2 3.1.6 4
99.163 P4mm c,E mm2 7.1.20 4mm 13.1.44 m 4.1.9 4
107.227 I4mm b,E mm2 7.1.20 4mm 13.1.44 m 4.1.9 4
111.251 P 4̄2m e,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 4
111.251 P 4̄2m f,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 4
112.259 P 4̄2c a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 4
112.259 P 4̄2c c,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 4
115.283 P 4̄m2 g,E mm2 7.1.20 4̄2m 14.1.48 m 4.1.9 4
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116.291 P 4̄c2 a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 4
116.291 P 4̄c2 b,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 4
120.321 I 4̄c2 a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 4
120.321 I 4̄c2 d,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 4
121.327 I 4̄2m c,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 4

222 6.1.17 4̄ 10.1.32 2 3.1.6 4
124.351 P4/mcc a,E2 422 12.1.40 4/m 11.1.35 4 9.1.29 4
124.351 P4/mcc a,E1 422 12.1.40 4/m 11.1.35 4 9.1.29 4
124.351 P4/mcc c,E2 422 12.1.40 4/m 11.1.35 4 9.1.29 4
124.351 P4/mcc c,E1 422 12.1.40 4/m 11.1.35 4 9.1.29 4
124.351 P4/mcc f,E 222 6.1.17 422 12.1.40 2 3.1.6 8

222 6.1.17 2/m 5.1.12 2 3.1.6 8
126.375 P4/nnc c,E 222 6.1.17 422 12.1.40 2 3.1.6 8

222 6.1.17 4̄ 10.1.32 2 3.1.6 8
128.399 P4/mnc d,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
130.423 P4/ncc a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8
132.447 P42/mcm e,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 8

222 6.1.17 2/m 5.1.12 2 3.1.6 8
133.459 P42/nbc b,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8
134.471 P42/nnm c,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 8
134.471 P42/nnm d,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
135.483 P42/mbc d,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
137.507 P42/nmc d,E mm2 7.1.20 4̄2m 14.1.48 m 4.1.9 8
138.519 P42/ncm a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8

222 6.1.17 2/m 5.1.12 2 3.1.6 8
138.519 P42/ncm e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8
140.541 I4/mcm a,E2 422 12.1.40 4/m 11.1.35 4 9.1.29 4
140.541 I4/mcm a,E1 422 12.1.40 4/m 11.1.35 4 9.1.29 4
142.561 I41/acd b,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8
163.79 P 3̄1c a,E1 32 18.1.65 3̄ 17.1.62 3 16.1.60 4
165.91 P 3̄c1 a,E1 32 18.1.65 3̄ 17.1.62 3 16.1.60 4
167.103 R3̄c a,E1 32 18.1.65 3̄ 17.1.62 3 16.1.60 4
177.149 P622 f,E 222 6.1.17 622 24.1.87 2 3.1.6 6

222 6.1.17 32 18.1.65 2 3.1.6 6
177.149 P622 g,E 222 6.1.17 622 24.1.87 2 3.1.6 6

222 6.1.17 32 18.1.65 2 3.1.6 6
183.185 P6mm c,E mm2 7.1.20 6mm 25.1.91 m 4.1.9 6

mm2 7.1.20 3m 19.1.68 m 4.1.9 6
188.215 P 6̄c2 a,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
188.215 P 6̄c2 c,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
188.215 P 6̄c2 e,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
190.227 P 6̄2c a,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 4
192.243 P6/mcc a,E3 622 24.1.87 6/m 23.1.82 6 21.1.76 4
192.243 P6/mcc a,E2 622 24.1.87 6/m 23.1.82 6 21.1.76 4
192.243 P6/mcc a,E1 622 24.1.87 6/m 23.1.82 6 21.1.76 4
192.243 P6/mcc c,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 8
192.243 P6/mcc f,E 222 6.1.17 622 24.1.87 2 3.1.6 12

222 6.1.17 32 18.1.65 2 3.1.6 12
222 6.1.17 2/m 5.1.12 2 3.1.6 12

193.253 P63/mcm a,E3 6̄m2 26.1.95 3̄m1 20.1.71 3m 19.1.68 4
193.253 P63/mcm d,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 8
194.263 P63/mmc b,E3 6̄m2 26.1.95 3̄m1 20.1.71 3m 19.1.68 4
195.1 P23 c,E 222 6.1.17 23 28.1.107 2 3.1.6 6
195.1 P23 d,E 222 6.1.17 23 28.1.107 2 3.1.6 6
197.7 I23 b,E 222 6.1.17 23 28.1.107 2 3.1.6 6
201.18 Pn3̄ d,E 222 6.1.17 23 28.1.107 2 3.1.6 12
207.40 P432 c,E2 422 12.1.40 432 30.1.112 4 9.1.29 6
207.40 P432 c,E1 422 12.1.40 432 30.1.112 4 9.1.29 6
207.40 P432 d,E2 422 12.1.40 432 30.1.112 4 9.1.29 6
207.40 P432 d,E1 422 12.1.40 432 30.1.112 4 9.1.29 6
208.44 P4232 b,E1 32 18.1.65 23 28.1.107 3 16.1.60 8
208.44 P4232 c,E1 32 18.1.65 23 28.1.107 3 16.1.60 8
208.44 P4232 d,E 222 6.1.17 23 28.1.107 2 3.1.6 12
208.44 P4232 e,E 222 6.1.17 32 18.1.65 2 3.1.6 12
208.44 P4232 f,E 222 6.1.17 32 18.1.65 2 3.1.6 12
209.48 F432 d,E 222 6.1.17 432 30.1.112 2 3.1.6 12

222 6.1.17 23 28.1.107 2 3.1.6 12
210.52 F4132 c,E1 32 18.1.65 23 28.1.107 3 16.1.60 8
210.52 F4132 d,E1 32 18.1.65 23 28.1.107 3 16.1.60 8
211.56 I432 b,E2 422 12.1.40 432 30.1.112 4 9.1.29 6
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211.56 I432 b,E1 422 12.1.40 432 30.1.112 4 9.1.29 6
211.56 I432 c,E1 32 18.1.65 432 30.1.112 3 16.1.60 8
211.56 I432 d,E 222 6.1.17 422 12.1.40 2 3.1.6 12

222 6.1.17 32 18.1.65 2 3.1.6 12
214.67 I4132 c,E 222 6.1.17 32 18.1.65 2 3.1.6 12
214.67 I4132 d,E 222 6.1.17 32 18.1.65 2 3.1.6 12
218.81 P 4̄3n b,E 222 6.1.17 23 28.1.107 2 3.1.6 12

222 6.1.17 4̄ 10.1.32 2 3.1.6 12
222.98 Pn3̄n b,E2 422 12.1.40 432 30.1.112 4 9.1.29 12
222.98 Pn3̄n b,E1 422 12.1.40 432 30.1.112 4 9.1.29 12
223.104 Pm3̄n e,E1 32 18.1.65 m3̄ 29.1.109 3 16.1.60 16
224.110 Pn3̄m a,F 4̄3m 31.1.115 3̄m1 20.1.71 3m 19.1.68 8
224.110 Pn3̄m f,E 222 6.1.17 3̄m1 20.1.71 2 3.1.6 24

222 6.1.17 4̄2m 14.1.48 2 3.1.6 24
225.116 Fm3̄m c,F 4̄3m 31.1.115 m3̄m 32.1.118 3m 19.1.68 8
227.128 Fd3̄m a,F 4̄3m 31.1.115 3̄m1 20.1.71 3m 19.1.68 8
227.128 Fd3̄m b,F 4̄3m 31.1.115 3̄m1 20.1.71 3m 19.1.68 8
228.134 Fd3̄c b,E1 32 18.1.65 23 28.1.107 3 16.1.60 16

32 18.1.65 3̄ 17.1.62 3 16.1.60 16
230.145 Ia3̄d b,E1 32 18.1.65 3̄ 17.1.62 3 16.1.60 16
230.145 Ia3̄d c,E 222 6.1.17 32 18.1.65 2 3.1.6 24

222 6.1.17 4̄ 10.1.32 2 3.1.6 24

c. Exceptional Composite Band Coreps in the Type-II Single SGs

TABLE XIX: Exceptional composite band coreps induced from site-
symmetry coreps in the Type-II single SGs (Appendix B 2). In order,
the columns in this table list the number of the SG in the BNS setting
and the symbol of the SG, the letter of the maximal Wyckoff position
containing q and the single-valued corep of the site-symmetry group Gq,
the symbol of the SPG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS91–94 and
the number of the SPG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the SPG isomorphic
to the reducing group Gq′ , the symbol and number of the SPG isomor-
phic to the intersection group Gq0 = Gq ∩Gq′ , and the dimension d of
the exceptional composite band corep. See Appendix E 3 a for further
information regarding exceptional composite band coreps.

SG Corep Gq Gq′ Gq0 d
84.52 P42/m1′ e, 1E 2E 4̄1′ 10.2.33 2/m1′ 5.2.13 21’ 3.2.7 4
84.52 P42/m1′ f, 1E 2E 4̄1′ 10.2.33 2/m1′ 5.2.13 21’ 3.2.7 4
87.76 I4/m1′ d, 1E 2E 4̄1′ 10.2.33 2/m1′ 5.2.13 21’ 3.2.7 4

112.260 P 4̄2c1′ e, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 4
112.260 P 4̄2c1′ f, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 4
116.292 P 4̄c21′ c, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 4
116.292 P 4̄c21′ d, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 4
120.322 I 4̄c21′ b, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 4
120.322 I 4̄c21′ c, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 4
121.328 I 4̄2m1′ d, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 4
126.376 P4/nnc1′ d, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 8
130.424 P4/ncc1′ b, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 8
131.436 P42/mmc1

′ e,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 4
131.436 P42/mmc1

′ f,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 4
132.448 P42/mcm1′ b,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 4
132.448 P42/mcm1′ d,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 4
133.460 P42/nbc1

′ d, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 8
135.484 P42/mbc1

′ b, 1E 2E 4̄1′ 10.2.33 2/m1′ 5.2.13 21’ 3.2.7 8
136.496 P42/mnm1′ d, 1E 2E 4̄1′ 10.2.33 2/m1′ 5.2.13 21’ 3.2.7 8
138.520 P42/ncm1′ b, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 8
139.532 I4/mmm1′ d,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 4
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140.542 I4/mcm1′ b,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 4
142.562 I41/acd1′ a, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 8
215.71 P 4̄3m1′ c,E 4̄2m1′ 14.2.49 4̄3m′ 31.2.116 mm21’ 7.2.21 6
215.71 P 4̄3m1′ d,E 4̄2m1′ 14.2.49 4̄3m′ 31.2.116 mm21’ 7.2.21 6
217.79 I 4̄3m1′ b,E 4̄2m1′ 14.2.49 4̄3m′ 31.2.116 mm21’ 7.2.21 6
217.79 I 4̄3m1′ d, 1E 2E 4̄1′ 10.2.33 4̄2m1′ 14.2.49 21’ 3.2.7 12
218.82 P 4̄3n1′ c, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 12
218.82 P 4̄3n1′ d, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 12
219.86 F 4̄3c1′ c, 1E 2E 4̄1′ 10.2.33 231′ 28.2.108 21’ 3.2.7 12
219.86 F 4̄3c1′ d, 1E 2E 4̄1′ 10.2.33 231′ 28.2.108 21’ 3.2.7 12
222.99 Pn3̄n1′ d, 1E 2E 4̄1′ 10.2.33 4221′ 12.2.41 21’ 3.2.7 24
223.105 Pm3̄n1′ c,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 12
223.105 Pm3̄n1′ d,E 4̄2m1′ 14.2.49 mmm1′ 8.2.25 mm21’ 7.2.21 12
224.111 Pn3̄m1′ d,E 4̄2m1′ 14.2.49 4̄3m′ 31.2.116 mm21’ 7.2.21 12
226.123 Fm3̄c1′ c,E 4̄2m1′ 14.2.49 m3̄1′ 29.2.110 mm21’ 7.2.21 12
228.135 Fd3̄c1′ d, 1E 2E 4̄1′ 10.2.33 231′ 28.2.108 21’ 3.2.7 24
229.141 Im3̄m1′ d,E 4̄2m1′ 14.2.49 4/mmm1′ 15.2.54 mm21’ 7.2.21 12
230.146 Ia3̄d1′ d, 1E 2E 4̄1′ 10.2.33 2221′ 6.2.18 21’ 3.2.7 24

d. Exceptional Composite Band Coreps in the Type-III Single MSGs

TABLE XX: Exceptional composite band coreps induced from site-
symmetry coreps in the Type-III single MSGs (Appendix B 3). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the single-valued corep of the site-symmetry group Gq,
the symbol of the MSG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS91–94 and
the number of the MSG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group Gq′ , the symbol and number of the MPG isomor-
phic to the intersection group Gq0 = Gq ∩Gq′ , and the dimension d of
the exceptional composite band corep. See Appendix E 3 a for further
information regarding exceptional composite band coreps.

MSG Corep Gq Gq′ Gq0 d
84.53 P4′2/m e,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 4
84.53 P4′2/m f,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 4
84.54 P42/m

′ e,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 4
84.54 P42/m

′ f,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 4
87.77 I4′/m d,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 4
87.78 I4/m′ d,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 4

112.261 P 4̄′2′c e,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
112.261 P 4̄′2′c f,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
112.262 P 4̄′2c′ e,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
112.262 P 4̄′2c′ f,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
116.293 P 4̄′c′2 c,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
116.293 P 4̄′c′2 d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
116.294 P 4̄′c2′ c,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
116.294 P 4̄′c2′ d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
120.323 I 4̄′c′2 b,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
120.323 I 4̄′c′2 c,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
120.324 I 4̄′c2′ b,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
120.324 I 4̄′c2′ c,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
121.329 I 4̄′2′m d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
121.330 I 4̄′2m′ d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
124.353 P4/m′cc b, 1E 2E 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
124.353 P4/m′cc d, 1E 2E 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
126.377 P4/n′nc d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
126.378 P4′/nn′c d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
126.379 P4′/nnc′ d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
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126.383 P4/n′n′c′ d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
130.425 P4/n′cc b,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
130.426 P4′/nc′c b,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
130.427 P4′/ncc′ b,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
130.431 P4/n′c′c′ b,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
131.437 P42/m

′mc e,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 4
131.437 P42/m

′mc f,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 4
131.438 P4′2/mm

′c e,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
131.438 P4′2/mm

′c f,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
131.439 P4′2/mmc

′ e,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 4
131.439 P4′2/mmc

′ f,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 4
131.442 P4′2/m

′mc′ e,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 4
131.442 P4′2/m

′mc′ f,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 4
131.443 P42/m

′m′c′ e,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 4
131.443 P42/m

′m′c′ f,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 4
132.449 P42/m

′cm b,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 4
132.449 P42/m

′cm d,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 4
132.450 P4′2/mc

′m b,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 4
132.450 P4′2/mc

′m d,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 4
132.451 P4′2/mcm

′ b,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
132.451 P4′2/mcm

′ d,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
132.452 P4′2/m

′c′m b,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 4
132.452 P4′2/m

′c′m d,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 4
132.455 P42/m

′c′m′ b,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 4
132.455 P42/m

′c′m′ d,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 4
133.461 P42/n

′bc d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
133.462 P4′2/nb

′c d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
133.463 P4′2/nbc

′ d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
133.467 P42/n

′b′c′ d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
135.485 P42/m

′bc b,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
135.486 P4′2/mb

′c b,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
135.487 P4′2/mbc

′ b,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
135.491 P42/m

′b′c′ b,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
136.497 P42/m

′nm d,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
136.498 P4′2/mn

′m d,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
136.499 P4′2/mnm

′ d,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
136.503 P42/m

′n′m′ d,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
138.521 P42/n

′cm b,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
138.522 P4′2/nc

′m b,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
138.523 P4′2/ncm

′ b,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
138.527 P42/n

′c′m′ b,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
139.533 I4/m′mm d,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 4
139.534 I4′/mm′m d,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
139.535 I4′/mmm′ d,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 4
139.538 I4′/m′mm′ d,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 4
139.539 I4/m′m′m′ d,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 4
140.543 I4/m′cm b,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 4
140.543 I4/m′cm c, 1E 2E 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
140.544 I4′/mc′m b,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 4
140.545 I4′/mcm′ b,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
140.546 I4′/m′c′m b,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 4
140.549 I4/m′c′m′ b,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 4
142.563 I41/a

′cd a,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
142.564 I4′1/ac

′d a,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
142.565 I4′1/acd

′ a,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
142.569 I41/a

′c′d′ a,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
163.81 P 3̄′1c b, 1E 2E 3̄′ 17.3.64 32′1 18.3.67 3 16.1.60 4
165.93 P 3̄′c1 b, 1E 2E 3̄′ 17.3.64 32′1 18.3.67 3 16.1.60 4
167.105 R3̄′c b, 1E 2E 3̄′ 17.3.64 32′1 18.3.67 3 16.1.60 4
176.145 P6′3/m b, 1E 2E 3̄′ 17.3.64 6̄ 22.1.79 3 16.1.60 4
176.147 P6′3/m

′ a, 1E 2E 6̄′ 22.3.81 3̄ 17.1.62 3 16.1.60 4
182.181 P6′32′2 b,E 32 18.1.65 32′1 18.3.67 3 16.1.60 4
182.182 P6′322′ a,E 32 18.1.65 32′1 18.3.67 3 16.1.60 4
188.218 P 6̄′c2′ b, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 4
188.218 P 6̄′c2′ d, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 4
188.218 P 6̄′c2′ f, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 4
190.229 P 6̄′2′c b, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 4
192.245 P6/m′cc b, 1E1

2E1 6/m′ 23.4.85 62′2′ 24.4.90 6 21.1.76 4
192.245 P6/m′cc b, 1E2

2E2 6/m′ 23.4.85 62′2′ 24.4.90 6 21.1.76 4
192.245 P6/m′cc d, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 8
192.247 P6′/mcc′ c,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 8
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192.249 P6′/m′cc′ d, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 8
193.255 P63/m

′cm c, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 8
193.257 P6′3/mcm

′ b,E 3̄′m′1 20.4.74 6̄m′2′ 26.5.99 3m’1 19.3.70 4
193.257 P6′3/mcm

′ d,E 32 18.1.65 6̄ 22.1.79 3 16.1.60 8
193.259 P6′3/m

′cm′ a,E 6̄′m′2 26.3.97 3̄m′1 20.5.75 3m’1 19.3.70 4
193.259 P6′3/m

′cm′ c, 1E 2E 6̄′ 22.3.81 32′1 18.3.67 3 16.1.60 8
194.266 P6′3/mm

′c a,E 3̄′m′1 20.4.74 6̄m′2′ 26.5.99 3m’1 19.3.70 4
194.268 P6′3/m

′m′c b,E 6̄′m′2 26.3.97 3̄m′1 20.5.75 3m’1 19.3.70 4
201.20 Pn′3̄′ b, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
201.20 Pn′3̄′ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
203.28 Fd′3̄′ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
203.28 Fd′3̄′ d, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
204.32 Im′3̄′ c, 1E 2E 3̄′ 17.3.64 m′3̄′ 29.3.111 3 16.1.60 8
215.72 P 4̄′3m′ c,B2B3 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 6
215.72 P 4̄′3m′ d,B2B3 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 6
217.80 I 4̄′3m′ b,B2B3 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 6
217.80 I 4̄′3m′ d,BB 4̄′ 10.3.34 4̄′2m′ 14.4.51 2 3.1.6 12
218.83 P 4̄′3n′ c,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 12
218.83 P 4̄′3n′ d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 12
219.87 F 4̄′3c′ c,BB 4̄′ 10.3.34 23 28.1.107 2 3.1.6 12
219.87 F 4̄′3c′ d,BB 4̄′ 10.3.34 23 28.1.107 2 3.1.6 12
221.96 Pm′3̄′m′ c,E 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
221.96 Pm′3̄′m′ d,E 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
222.100 Pn′3̄′n c, 1E 2E 3̄′ 17.3.64 4′32′ 30.3.114 3 16.1.60 16
222.101 Pn3̄n′ d,BB 4̄′ 10.3.34 4′22′ 12.3.42 2 3.1.6 24
222.102 Pn′3̄′n′ b,E 422 12.1.40 432 30.1.112 4 9.1.29 12
222.102 Pn′3̄′n′ c, 1E 2E 3̄′ 17.3.64 432 30.1.112 3 16.1.60 16
222.102 Pn′3̄′n′ d,BB 4̄′ 10.3.34 422 12.1.40 2 3.1.6 24
223.107 Pm3̄n′ c,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 12
223.107 Pm3̄n′ d,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 12
223.108 Pm′3̄′n′ c,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 12
223.108 Pm′3̄′n′ d,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 12
223.108 Pm′3̄′n′ e,E 32 18.1.65 m′3̄′ 29.3.111 3 16.1.60 16
224.112 Pn′3̄′m d,E 4̄2m 14.1.48 4̄3m 31.1.115 mm2 7.1.20 12
224.113 Pn3̄m′ d,B2B3 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 12
224.114 Pn′3̄′m′ d,B2B3 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 12
224.114 Pn′3̄′m′ b,E 3̄′m′1 20.4.74 4̄′3m′ 31.3.117 3m’1 19.3.70 8
224.114 Pn′3̄′m′ c,E 3̄′m′1 20.4.74 4̄′3m′ 31.3.117 3m’1 19.3.70 8
226.125 Fm3̄c′ c,B1B2 4̄′2′m 14.3.50 m3̄ 29.1.109 mm2 7.1.20 12
226.126 Fm′3̄′c′ c,B2B3 4̄′2m′ 14.4.51 m′3̄′ 29.3.111 m’m’2 7.4.23 12
226.126 Fm′3̄′c′ d, 1E 2E 4/m′ 11.4.38 432 30.1.112 4 9.1.29 12
227.132 Fd′3̄′m′ c,E 3̄′m′1 20.4.74 4̄′3m′ 31.3.117 3m’1 19.3.70 8
227.132 Fd′3̄′m′ d,E 3̄′m′1 20.4.74 4̄′3m′ 31.3.117 3m’1 19.3.70 8
228.136 Fd′3̄′c c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 32′1 18.3.67 3 16.1.60 16
228.137 Fd3̄c′ d,BB 4̄′ 10.3.34 23 28.1.107 2 3.1.6 24
228.138 Fd′3̄′c′ d,BB 4̄′ 10.3.34 23 28.1.107 2 3.1.6 24
228.138 Fd′3̄′c′ b,E 32 18.1.65 23 28.1.107 3 16.1.60 16

32 18.1.65 3̄′ 17.3.64 3 16.1.60 16
228.138 Fd′3̄′c′ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 32 18.1.65 3 16.1.60 16
229.143 Im3̄m′ d,B1B2 4̄′2′m 14.3.50 4′/mm′m 15.4.56 mm2 7.1.20 12
229.144 Im′3̄′m′ b,E 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
229.144 Im′3̄′m′ c,E 3̄′m′1 20.4.74 m′3̄′m′ 32.5.122 3m’1 19.3.70 8
229.144 Im′3̄′m′ d,B2B3 4̄′2m′ 14.4.51 4/m′m′m′ 15.7.59 m’m’2 7.4.23 12
230.147 Ia′3̄′d a, 1E 2E 3̄′ 17.3.64 32′1 18.3.67 3 16.1.60 16
230.148 Ia3̄d′ d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 24
230.149 Ia′3̄′d′ d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 24
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e. Exceptional Composite Band Coreps in the Type-III Double MSGs

TABLE XXI: Exceptional composite band coreps induced from site-
symmetry coreps in the Type-III double MSGs (Appendix B 3). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the double-valued corep of the site-symmetry groupGq,
the symbol of the MSG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS91–94 and
the number of the MSG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group Gq′ , the symbol and number of the MPG isomor-
phic to the intersection group Gq0 = Gq ∩Gq′ , and the dimension d of
the exceptional composite band corep. See Appendix E 3 a for further
information regarding exceptional composite band coreps.

MSG Corep Gq Gq′ Gq0 d
11.52 P2′1/m a,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 4
11.52 P2′1/m b,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 4
11.52 P2′1/m c,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 4
11.52 P2′1/m d,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 4
11.53 P21/m

′ a,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 4
11.53 P21/m

′ b,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 4
11.53 P21/m

′ c,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 4
11.53 P21/m

′ d,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 4
12.60 C2′/m e,AA 1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 4
12.60 C2′/m f,AA 1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 4
12.61 C2/m′ e,AA 1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 4
12.61 C2/m′ f,AA 1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 4
13.67 P2′/c a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
13.67 P2′/c b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
13.67 P2′/c c,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
13.67 P2′/c d,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
13.68 P2/c′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
13.68 P2/c′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
13.68 P2/c′ c,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
13.68 P2/c′ d,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
15.87 C2′/c a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
15.87 C2′/c b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
15.87 C2′/c c,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
15.87 C2′/c d,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 4
15.88 C2/c′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
15.88 C2/c′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
15.88 C2/c′ c,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
15.88 C2/c′ d,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 4
48.259 Pn′nn e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
48.259 Pn′nn f,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
48.261 Pn′n′n′ e,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8
48.261 Pn′n′n′ f,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8
49.267 Pc′cm a, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
49.267 Pc′cm b, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
49.267 Pc′cm c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
49.267 Pc′cm d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
49.268 Pccm′ a, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
49.268 Pccm′ b, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
49.268 Pccm′ c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
49.268 Pccm′ d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
50.279 Pb′an e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
50.279 Pb′an f,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
50.280 Pban′ e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
50.280 Pban′ f,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
50.283 Pb′a′n′ e,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8
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50.283 Pb′a′n′ f,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8
51.291 Pm′ma a, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
51.291 Pm′ma b, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
51.291 Pm′ma c, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
51.291 Pm′ma d, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
51.292 Pmm′a a, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
51.292 Pmm′a b, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
51.292 Pmm′a c, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
51.292 Pmm′a d, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
51.297 Pm′m′a′ a, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
51.297 Pm′m′a′ b, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
51.297 Pm′m′a′ c, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
51.297 Pm′m′a′ d, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
52.307 Pn′na a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
52.307 Pn′na b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
52.308 Pnn′a a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
52.308 Pnn′a b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
52.309 Pnna′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
52.309 Pnna′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
52.313 Pn′n′a′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
52.313 Pn′n′a′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
54.339 Pc′ca a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
54.339 Pc′ca b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
54.340 Pcc′a a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
54.340 Pcc′a b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
54.341 Pcca′ a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
54.341 Pcca′ b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
54.345 Pc′c′a′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
54.345 Pc′c′a′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
56.367 Pc′cn a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
56.367 Pc′cn b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
56.368 Pccn′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
56.368 Pccn′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
56.371 Pc′c′n′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
56.371 Pc′c′n′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
57.379 Pb′cm a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
57.379 Pb′cm b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
57.380 Pbc′m a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
57.380 Pbc′m b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
57.381 Pbcm′ a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
57.381 Pbcm′ b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
57.385 Pb′c′m′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
57.385 Pb′c′m′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
59.407 Pm′mn c,AA 1̄′ 2.3.5 m′m2′ 7.3.22 1 1.1.1 8
59.407 Pm′mn d,AA 1̄′ 2.3.5 m′m2′ 7.3.22 1 1.1.1 8
59.408 Pmmn′ c,AA 1̄′ 2.3.5 mm2 7.1.20 1 1.1.1 8
59.408 Pmmn′ d,AA 1̄′ 2.3.5 mm2 7.1.20 1 1.1.1 8
59.411 Pm′m′n′ c,AA 1̄′ 2.3.5 m′m′2 7.4.23 1 1.1.1 8
59.411 Pm′m′n′ d,AA 1̄′ 2.3.5 m′m′2 7.4.23 1 1.1.1 8
60.419 Pb′cn a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
60.419 Pb′cn b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
60.420 Pbc′n a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
60.420 Pbc′n b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
60.421 Pbcn′ a,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
60.421 Pbcn′ b,AA 1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
60.425 Pb′c′n′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
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60.425 Pb′c′n′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
62.443 Pn′ma a,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
62.443 Pn′ma b,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
62.444 Pnm′a a,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
62.444 Pnm′a b,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
62.445 Pnma′ a,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
62.445 Pnma′ b,AA 1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
62.449 Pn′m′a′ a,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
62.449 Pn′m′a′ b,AA 1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
63.459 Cm′cm a, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
63.459 Cm′cm b, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
63.459 Cm′cm d,AA 1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8

1̄′ 2.3.5 m′m2′ 7.3.22 1 1.1.1 8
63.460 Cmc′m d,AA 1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 8

1̄′ 2.3.5 mm2 7.1.20 1 1.1.1 8
63.461 Cmcm′ a, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
63.461 Cmcm′ b, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
63.461 Cmcm′ d,AA 1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 8

1̄′ 2.3.5 m′m2′ 7.3.22 1 1.1.1 8
63.465 Cm′c′m′ a, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
63.465 Cm′c′m′ b, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
63.465 Cm′c′m′ d,AA 1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8

1̄′ 2.3.5 m′m′2 7.4.23 1 1.1.1 8
64.471 Cm′ca c,AA 1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
64.472 Cmc′a c,AA 1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
64.473 Cmca′ c,AA 1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
64.477 Cm′c′a′ c,AA 1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
65.483 Cm′mm e, 1E 2E 2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 4
65.483 Cm′mm f, 1E 2E 2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 4
65.484 Cmmm′ e, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 4
65.484 Cmmm′ f, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 4
65.487 Cm′m′m′ e, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 4
65.487 Cm′m′m′ f, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 4
66.493 Cc′cm c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
66.493 Cc′cm d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
66.494 Cccm′ c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
66.494 Cccm′ d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
67.503 Cm′ma c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4

2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
67.503 Cm′ma d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4

2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
67.503 Cm′ma e, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4

2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
67.503 Cm′ma f, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4

2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
67.504 Cmma′ c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 4
67.504 Cmma′ d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 4
67.504 Cmma′ e, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 4
67.504 Cmma′ f, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 4
67.504 Cmma′ g,E mm2 7.1.20 2′/m 5.3.14 m 4.1.9 4
67.507 Cm′m′a′ c, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 4

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
67.507 Cm′m′a′ d, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 4

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
67.507 Cm′m′a′ e, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 4

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
67.507 Cm′m′a′ f, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 4

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
67.507 Cm′m′a′ a,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 4
67.507 Cm′m′a′ b,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 4
68.513 Cc′ca c,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
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1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
68.513 Cc′ca d,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
68.514 Ccca′ c,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
68.514 Ccca′ d,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
68.517 Cc′c′a′ c,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
68.517 Cc′c′a′ d,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
69.523 Fm′mm c, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 4

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
69.523 Fm′mm d, 1E 2E 2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 4

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
69.523 Fm′mm e, 1E 2E 2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 4

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
69.525 Fm′m′m′ c, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 4

2/m′ 5.4.15 222 6.1.17 2 3.1.6 4
69.525 Fm′m′m′ d, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 4

2/m′ 5.4.15 222 6.1.17 2 3.1.6 4
69.525 Fm′m′m′ e, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 4

2/m′ 5.4.15 222 6.1.17 2 3.1.6 4
69.525 Fm′m′m′ f,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 4
70.529 Fd′dd c,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
70.529 Fd′dd d,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8
70.531 Fd′d′d′ c,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8
70.531 Fd′d′d′ d,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8
71.535 Im′mm k,AA 1̄′ 2.3.5 m′mm 8.3.26 1 1.1.1 8
71.537 Im′m′m′ k,AA 1̄′ 2.3.5 m′m′m′ 8.5.28 1 1.1.1 8
72.541 Ib′am c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
72.541 Ib′am d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 4
72.541 Ib′am e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8

1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 8
72.542 Ibam′ c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
72.542 Ibam′ d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 4
72.542 Ibam′ e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 8

1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8
72.545 Ib′a′m′ e,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 8

1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8
73.550 Ib′ca a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
73.550 Ib′ca b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
73.552 Ib′c′a′ a,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
73.552 Ib′c′a′ b,AA 1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
74.556 Im′ma a, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
74.556 Im′ma b, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 4
74.556 Im′ma c, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
74.556 Im′ma d, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 4
74.560 Im′m′a′ a, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
74.560 Im′m′a′ b, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
74.560 Im′m′a′ c, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
74.560 Im′m′a′ d, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 4
83.46 P4/m′ e, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 4
83.46 P4/m′ f, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 4
83.47 P4′/m′ e, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 4
83.47 P4′/m′ f, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 4
84.53 P4′2/m e, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 4
84.53 P4′2/m f, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 4
84.55 P4′2/m

′ a, 1E 2E 2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 4
84.55 P4′2/m

′ b, 1E 2E 2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 4
85.62 P4/n′ d,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 8

1̄′ 2.3.5 4 9.1.29 1 1.1.1 8
85.62 P4/n′ e,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 8

1̄′ 2.3.5 4 9.1.29 1 1.1.1 8
85.63 P4′/n′ d,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 8

1̄′ 2.3.5 4′ 9.3.31 1 1.1.1 8
85.63 P4′/n′ e,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 8

1̄′ 2.3.5 4′ 9.3.31 1 1.1.1 8
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86.70 P42/n
′ c,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
86.70 P42/n

′ d,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

86.71 P4′2/n
′ c,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
86.71 P4′2/n

′ d,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

87.77 I4′/m d, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 4
87.78 I4/m′ c, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 4

2/m′ 5.4.15 4̄′ 10.3.34 2 3.1.6 4
87.78 I4/m′ f,AA 1̄′ 2.3.5 4/m′ 11.4.38 1 1.1.1 8

1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8
1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 8

87.78 I4/m′ d, 1E 2E 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 4
87.79 I4′/m′ c, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 4

2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 4
87.79 I4′/m′ f,AA 1̄′ 2.3.5 4′/m′ 11.5.39 1 1.1.1 8

1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8
1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 8

88.84 I41/a
′ c,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 8

88.84 I41/a
′ d,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 8

88.85 I4′1/a
′ c,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 8

88.85 I4′1/a
′ d,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 8

89.89 P4′22′ e,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 4
89.89 P4′22′ f,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 4
93.121 P4′222′ a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
93.121 P4′222′ b,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
93.123 P4′22′2 e,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
93.123 P4′22′2 f,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
97.153 I4′22′ c,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 4

222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
97.155 I4′2′2 d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
99.166 P4′mm′ c,E mm2 7.1.20 4′m′m 13.3.46 m 4.1.9 4
107.230 I4′mm′ b,E mm2 7.1.20 4′m′m 13.3.46 m 4.1.9 4
111.254 P 4̄′2m′ e,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 4
111.254 P 4̄′2m′ f,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 4
112.261 P 4̄′2′c e, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
112.261 P 4̄′2′c f, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
115.286 P 4̄′m2′ g,E mm2 7.1.20 4̄′2′m 14.3.50 m 4.1.9 4
116.294 P 4̄′c2′ c, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
116.294 P 4̄′c2′ d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
120.324 I 4̄′c2′ b, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
120.324 I 4̄′c2′ c, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
121.329 I 4̄′2′m d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 4
121.330 I 4̄′2m′ c,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 4

222 6.1.17 4̄′ 10.3.34 2 3.1.6 4
121.330 I 4̄′2m′ d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 4
123.341 P4/m′mm e,E m′mm 8.3.26 4/m′mm 15.3.55 m’m2’ 7.3.22 4
123.341 P4/m′mm f,E m′mm 8.3.26 4/m′mm 15.3.55 m’m2’ 7.3.22 4
123.344 P4′/m′m′m e,E m′m′m′ 8.5.28 4′/m′m′m 15.5.57 m’m’2 7.4.23 4
123.344 P4′/m′m′m f,E m′m′m′ 8.5.28 4′/m′m′m 15.5.57 m’m’2 7.4.23 4
123.346 P4′/m′mm′ e,E m′mm 8.3.26 4′/m′m′m 15.5.57 m’m2’ 7.3.22 4
123.346 P4′/m′mm′ f,E m′mm 8.3.26 4′/m′m′m 15.5.57 m’m2’ 7.3.22 4
123.347 P4/m′m′m′ e,E m′m′m′ 8.5.28 4/m′m′m′ 15.7.59 m’m’2 7.4.23 4
123.347 P4/m′m′m′ f,E m′m′m′ 8.5.28 4/m′m′m′ 15.7.59 m’m’2 7.4.23 4
124.353 P4/m′cc b, 1E2

2E2 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
124.353 P4/m′cc b, 1E1

2E1 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
124.353 P4/m′cc d, 1E2

2E2 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
124.353 P4/m′cc d, 1E1

2E1 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
124.353 P4/m′cc e, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 8

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
124.355 P4′/mcc′ f,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 8

222 6.1.17 2/m 5.1.12 2 3.1.6 8
124.356 P4′/m′c′c e, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
124.356 P4′/m′c′c f,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
124.358 P4′/m′cc′ e, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 8
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2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
124.359 P4/m′c′c′ e, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
124.359 P4/m′c′c′ f,E 222 6.1.17 422 12.1.40 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
125.365 P4/n′bm e, 1E 2E 2′/m 5.3.14 42′2′ 12.4.43 2’ 3.3.8 8

2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 8
125.365 P4/n′bm f, 1E 2E 2′/m 5.3.14 42′2′ 12.4.43 2’ 3.3.8 8

2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 8
125.368 P4′/n′b′m e, 1E 2E 2′/m 5.3.14 4′22′ 12.3.42 2’ 3.3.8 8

2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 8
125.368 P4′/n′b′m f, 1E 2E 2′/m 5.3.14 4′22′ 12.3.42 2’ 3.3.8 8

2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 8
125.370 P4′/n′bm′ e, 1E 2E 2/m′ 5.4.15 4′22′ 12.3.42 2 3.1.6 8

2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 8
125.370 P4′/n′bm′ f, 1E 2E 2/m′ 5.4.15 4′22′ 12.3.42 2 3.1.6 8

2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 8
125.371 P4/n′b′m′ e, 1E 2E 2/m′ 5.4.15 422 12.1.40 2 3.1.6 8

2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 8
125.371 P4/n′b′m′ f, 1E 2E 2/m′ 5.4.15 422 12.1.40 2 3.1.6 8

2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 8
126.377 P4/n′nc d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
126.377 P4/n′nc f,AA 1̄′ 2.3.5 42′2′ 12.4.43 1 1.1.1 16

1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16

126.378 P4′/nn′c d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
126.379 P4′/nnc′ c,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 8

222 6.1.17 4̄′ 10.3.34 2 3.1.6 8
126.379 P4′/nnc′ d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
126.380 P4′/n′n′c c,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 8

222 6.1.17 4̄ 10.1.32 2 3.1.6 8
126.380 P4′/n′n′c f,AA 1̄′ 2.3.5 4′22′ 12.3.42 1 1.1.1 16

1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

126.382 P4′/n′nc′ f,AA 1̄′ 2.3.5 4′22′ 12.3.42 1 1.1.1 16
1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

126.383 P4/n′n′c′ c,E 222 6.1.17 422 12.1.40 2 3.1.6 8
222 6.1.17 4̄′ 10.3.34 2 3.1.6 8

126.383 P4/n′n′c′ f,AA 1̄′ 2.3.5 422 12.1.40 1 1.1.1 16
1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16

126.383 P4/n′n′c′ d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
128.401 P4/m′nc c, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 8

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
128.402 P4′/mn′c d,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
128.404 P4′/m′n′c c, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 8

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
128.406 P4′/m′nc′ c, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
128.406 P4′/m′nc′ d,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
128.407 P4/m′n′c′ c, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
128.407 P4/m′n′c′ d,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
129.413 P4/n′mm d, 1E 2E 2′/m 5.3.14 4̄′2′m 14.3.50 2’ 3.3.8 8

2′/m 5.3.14 4mm 13.1.44 m 4.1.9 8
129.413 P4/n′mm e, 1E 2E 2′/m 5.3.14 4̄′2′m 14.3.50 2’ 3.3.8 8

2′/m 5.3.14 4mm 13.1.44 m 4.1.9 8
129.416 P4′/n′m′m d, 1E 2E 2′/m 5.3.14 4̄2′m′ 14.5.52 2’ 3.3.8 8

2′/m 5.3.14 4′m′m 13.3.46 m 4.1.9 8
129.416 P4′/n′m′m e, 1E 2E 2′/m 5.3.14 4̄2′m′ 14.5.52 2’ 3.3.8 8

2′/m 5.3.14 4′m′m 13.3.46 m 4.1.9 8
129.418 P4′/n′mm′ d, 1E 2E 2/m′ 5.4.15 4̄2m 14.1.48 2 3.1.6 8

2/m′ 5.4.15 4′m′m 13.3.46 m’ 4.3.11 8
129.418 P4′/n′mm′ e, 1E 2E 2/m′ 5.4.15 4̄2m 14.1.48 2 3.1.6 8

2/m′ 5.4.15 4′m′m 13.3.46 m’ 4.3.11 8
129.419 P4/n′m′m′ d, 1E 2E 2/m′ 5.4.15 4̄′2m′ 14.4.51 2 3.1.6 8

2/m′ 5.4.15 4m′m′ 13.4.47 m’ 4.3.11 8
129.419 P4/n′m′m′ e, 1E 2E 2/m′ 5.4.15 4̄′2m′ 14.4.51 2 3.1.6 8

2/m′ 5.4.15 4m′m′ 13.4.47 m’ 4.3.11 8
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130.425 P4/n′cc b, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
130.425 P4/n′cc d,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16
1̄′ 2.3.5 4 9.1.29 1 1.1.1 16

130.427 P4′/ncc′ b, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
130.428 P4′/n′c′c d,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16
1̄′ 2.3.5 4′ 9.3.31 1 1.1.1 16

130.430 P4′/n′cc′ a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8
130.430 P4′/n′cc′ d,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16

1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16
1̄′ 2.3.5 4′ 9.3.31 1 1.1.1 16

130.431 P4/n′c′c′ d,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16
1̄′ 2.3.5 4 9.1.29 1 1.1.1 16

131.438 P4′2/mm
′c e,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4

131.438 P4′2/mm
′c f,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4

131.440 P4′2/m
′m′c a,E m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 4

131.440 P4′2/m
′m′c b,E m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 4

132.449 P42/m
′cm f, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 8

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
132.451 P4′2/mcm

′ b,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
132.451 P4′2/mcm

′ d,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
132.451 P4′2/mcm

′ e,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 8
222 6.1.17 2/m 5.1.12 2 3.1.6 8

132.452 P4′2/m
′c′m e,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
132.452 P4′2/m

′c′m f, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 8
2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

132.454 P4′2/m
′cm′ a,E m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 4

132.454 P4′2/m
′cm′ c,E m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 4

132.454 P4′2/m
′cm′ f, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
132.455 P42/m

′c′m′ e,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 8
222 6.1.17 2/m′ 5.4.15 2 3.1.6 8

132.455 P42/m
′c′m′ f, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
133.461 P42/n

′bc d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
133.461 P42/n

′bc e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16

133.462 P4′2/nb
′c c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

133.462 P4′2/nb
′c d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8

133.463 P4′2/nbc
′ a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

133.463 P4′2/nbc
′ b,E 222 6.1.17 4̄′ 10.3.34 2 3.1.6 8

133.463 P4′2/nbc
′ d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8

133.464 P4′2/n
′b′c a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

133.464 P4′2/n
′b′c b,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8

133.464 P4′2/n
′b′c e,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16

1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

133.466 P4′2/n
′bc′ c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

133.466 P4′2/n
′bc′ e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

133.467 P42/n
′b′c′ e,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16

1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16
134.473 P42/n

′nm e, 1E 2E 2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 8
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

134.473 P42/n
′nm f, 1E 2E 2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
134.474 P4′2/nn

′m d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
222 6.1.17 2/m 5.1.12 2 3.1.6 8

134.475 P4′2/nnm
′ c,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
134.476 P4′2/n

′n′m c,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 8
222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

134.476 P4′2/n
′n′m e, 1E 2E 2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
134.476 P4′2/n

′n′m f, 1E 2E 2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 8
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

134.478 P4′2/n
′nm′ d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
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222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
134.478 P4′2/n

′nm′ e, 1E 2E 2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 8
2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

134.478 P4′2/n
′nm′ f, 1E 2E 2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
134.479 P42/n

′n′m′ c,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 8
134.479 P42/n

′n′m′ e, 1E 2E 2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 8
2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

134.479 P42/n
′n′m′ f, 1E 2E 2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
134.479 P42/n

′n′m′ d,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
135.485 P42/m

′bc c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
135.485 P42/m

′bc a, 1E 2E 2/m′ 5.4.15 4̄′ 10.3.34 2 3.1.6 8
135.485 P42/m

′bc b, 1E 2E 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
135.486 P4′2/mb

′c b, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
135.486 P4′2/mb

′c d,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
135.487 P4′2/mbc

′ b, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
135.488 P4′2/m

′b′c a, 1E 2E 2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 8
135.488 P4′2/m

′b′c c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
135.490 P4′2/m

′bc′ a, 1E 2E 2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 8
135.490 P4′2/m

′bc′ c, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
135.490 P4′2/m

′bc′ d,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
136.497 P42/m

′nm c, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 8
2/m′ 5.4.15 4̄′ 10.3.34 2 3.1.6 8

136.497 P42/m
′nm d, 1E 2E 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8

136.498 P4′2/mn
′m d, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8

136.499 P4′2/mnm
′ d, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8

136.500 P4′2/m
′n′m c, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 8

2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 8
136.502 P4′2/m

′nm′ c, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8
2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 8

136.503 P42/m
′n′m′ c, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8

2/m′ 5.4.15 4̄′ 10.3.34 2 3.1.6 8
136.503 P42/m

′n′m′ d, 1E 2E 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
137.509 P42/n

′mc d,E mm2 7.1.20 4̄′2′m 14.3.50 m 4.1.9 8
137.509 P42/n

′mc e,AA 1̄′ 2.3.5 4̄′2′m 14.3.50 1 1.1.1 16
1̄′ 2.3.5 mm2 7.1.20 1 1.1.1 16

137.511 P4′2/nmc
′ d,E mm2 7.1.20 4̄′2′m 14.3.50 m 4.1.9 8

137.512 P4′2/n
′m′c e,AA 1̄′ 2.3.5 4̄2′m′ 14.5.52 1 1.1.1 16

1̄′ 2.3.5 m′m′2 7.4.23 1 1.1.1 16
137.514 P4′2/n

′mc′ d,E mm2 7.1.20 4̄2m 14.1.48 m 4.1.9 8
137.514 P4′2/n

′mc′ e,AA 1̄′ 2.3.5 4̄2m 14.1.48 1 1.1.1 16
1̄′ 2.3.5 mm2 7.1.20 1 1.1.1 16

137.515 P42/n
′m′c′ e,AA 1̄′ 2.3.5 4̄′2m′ 14.4.51 1 1.1.1 16

1̄′ 2.3.5 m′m′2 7.4.23 1 1.1.1 16
138.521 P42/n

′cm b, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
138.521 P42/n

′cm c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8

138.521 P42/n
′cm d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
138.521 P42/n

′cm e,E mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8
138.522 P4′2/nc

′m a,E 222 6.1.17 4̄′ 10.3.34 2 3.1.6 8
222 6.1.17 2/m 5.1.12 2 3.1.6 8

138.522 P4′2/nc
′m e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8

138.522 P4′2/nc
′m b, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8

138.523 P4′2/ncm
′ b, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8

138.524 P4′2/n
′c′m c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
138.524 P4′2/n

′c′m d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8

138.524 P4′2/n
′c′m e,E mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8

138.526 P4′2/n
′cm′ a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
138.526 P4′2/n

′cm′ c, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

138.526 P4′2/n
′cm′ d, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
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138.527 P42/n
′c′m′ c, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
138.527 P42/n

′c′m′ d, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

138.527 P42/n
′c′m′ a,E 222 6.1.17 4̄′ 10.3.34 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
138.527 P42/n

′c′m′ b, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
139.533 I4/m′mm c,E m′mm 8.3.26 4/m′mm 15.3.55 m’m2’ 7.3.22 4
139.533 I4/m′mm f, 1E 2E 2′/m 5.3.14 4/m′mm 15.3.55 m 4.1.9 8

2′/m 5.3.14 4̄′2′m 14.3.50 2’ 3.3.8 8
139.534 I4′/mm′m d,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
139.536 I4′/m′m′m c,E m′m′m′ 8.5.28 4′/m′m′m 15.5.57 m’m’2 7.4.23 4

m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
139.536 I4′/m′m′m f, 1E 2E 2′/m 5.3.14 4′/m′m′m 15.5.57 m 4.1.9 8

2′/m 5.3.14 4̄2′m′ 14.5.52 2’ 3.3.8 8
139.538 I4′/m′mm′ c,E m′mm 8.3.26 4′/m′m′m 15.5.57 m’m2’ 7.3.22 4
139.538 I4′/m′mm′ f, 1E 2E 2/m′ 5.4.15 4′/m′m′m 15.5.57 m’ 4.3.11 8

2/m′ 5.4.15 4̄2m 14.1.48 2 3.1.6 8
139.539 I4/m′m′m′ c,E m′m′m′ 8.5.28 4/m′m′m′ 15.7.59 m’m’2 7.4.23 4

m′m′m′ 8.5.28 4̄′2m′ 14.4.51 m’m’2 7.4.23 4
139.539 I4/m′m′m′ f, 1E 2E 2/m′ 5.4.15 4/m′m′m′ 15.7.59 m’ 4.3.11 8

2/m′ 5.4.15 4̄′2m′ 14.4.51 2 3.1.6 8
139.539 I4/m′m′m′ d,E 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 4
140.543 I4/m′cm c, 1E2

2E2 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
140.543 I4/m′cm c, 1E1

2E1 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 4
140.543 I4/m′cm e, 1E 2E 2′/m 5.3.14 42′2′ 12.4.43 2’ 3.3.8 8

2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 8
2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 8

140.545 I4′/mcm′ b,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 4
140.546 I4′/m′c′m e, 1E 2E 2′/m 5.3.14 4′22′ 12.3.42 2’ 3.3.8 8

2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 8
2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 8

140.548 I4′/m′cm′ d,E m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
140.548 I4′/m′cm′ e, 1E 2E 2/m′ 5.4.15 4′22′ 12.3.42 2 3.1.6 8

2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 8
2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8

140.549 I4/m′c′m′ e, 1E 2E 2/m′ 5.4.15 422 12.1.40 2 3.1.6 8
2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 8
2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8

141.553 I41/a
′md c, 1E 2E 2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 8

141.553 I41/a
′md d, 1E 2E 2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 8

141.556 I4′1/a
′m′d c, 1E 2E 2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 8

141.556 I4′1/a
′m′d d, 1E 2E 2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 8

141.558 I4′1/a
′md′ c, 1E 2E 2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 8

141.558 I4′1/a
′md′ d, 1E 2E 2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 8

141.559 I41/a
′m′d′ c, 1E 2E 2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 8

141.559 I41/a
′m′d′ d, 1E 2E 2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 8

142.563 I41/a
′cd a, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8

142.563 I41/a
′cd c,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16

1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

142.565 I4′1/acd
′ a, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8

142.566 I4′1/a
′c′d c,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 2 3.1.6 1 1.1.1 16

142.568 I4′1/a
′cd′ b,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8

142.568 I4′1/a
′cd′ c,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

142.569 I41/a
′c′d′ c,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16

1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 2 3.1.6 1 1.1.1 16

147.15 P 3̄′ e,AA 1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 6
1̄′ 2.3.5 3 16.1.60 1 1.1.1 6

147.15 P 3̄′ f,AA 1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 6
1̄′ 2.3.5 3 16.1.60 1 1.1.1 6

148.19 R3̄′ d,AA 1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 6
148.19 R3̄′ e,AA 1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 6
162.75 P 3̄′1m f, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 6

2′/m 5.3.14 3̄′1m 20.3.73 m 4.1.9 6
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2′/m 5.3.14 32′ 18.3.67 2’ 3.3.8 6
162.75 P 3̄′1m g, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 m 4.1.9 6

2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 6
2′/m 5.3.14 32′ 18.3.67 2’ 3.3.8 6

162.76 P 3̄′1m′ f, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 6
2/m′ 5.4.15 3̄′1m′ 20.4.74 m’ 4.3.11 6
2/m′ 5.4.15 32 18.1.65 2 3.1.6 6

162.76 P 3̄′1m′ g, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 m’ 4.3.11 6
2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 6
2/m′ 5.4.15 32 18.1.65 2 3.1.6 6

163.81 P 3̄′1c b,EE 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 4
163.81 P 3̄′1c b, 1E 2E 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 4
163.81 P 3̄′1c g,AA 1̄′ 2.3.5 32′ 18.3.67 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
163.82 P 3̄′1c′ b,EE 3̄′ 17.3.64 32 18.1.65 3 16.1.60 4
163.82 P 3̄′1c′ g,AA 1̄′ 2.3.5 32 18.1.65 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
164.87 P 3̄′m1 e, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 6

2′/m 5.3.14 3̄′1m 20.3.73 m 4.1.9 6
2′/m 5.3.14 3m 19.1.68 m 4.1.9 6

164.87 P 3̄′m1 f, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 m 4.1.9 6
2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 6
2′/m 5.3.14 3m 19.1.68 m 4.1.9 6

164.88 P 3̄′m′1 e, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 6
2/m′ 5.4.15 3̄′1m′ 20.4.74 m’ 4.3.11 6
2/m′ 5.4.15 3m′ 19.3.70 m’ 4.3.11 6

164.88 P 3̄′m′1 f, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 m’ 4.3.11 6
2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 6
2/m′ 5.4.15 3m′ 19.3.70 m’ 4.3.11 6

165.93 P 3̄′c1 b,EE 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 4
165.93 P 3̄′c1 b, 1E 2E 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 4
165.93 P 3̄′c1 e,AA 1̄′ 2.3.5 32′ 18.3.67 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
1̄′ 2.3.5 3 16.1.60 1 1.1.1 12

165.94 P 3̄′c′1 b,EE 3̄′ 17.3.64 32 18.1.65 3 16.1.60 4
165.94 P 3̄′c′1 e,AA 1̄′ 2.3.5 32 18.1.65 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
1̄′ 2.3.5 3 16.1.60 1 1.1.1 12

166.99 R3̄′m d, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 m 4.1.9 6
2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 6

166.99 R3̄′m e, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 6
2′/m 5.3.14 3̄′1m 20.3.73 m 4.1.9 6

166.100 R3̄′m′ d, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 m’ 4.3.11 6
2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 6

166.100 R3̄′m′ e, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 6
2/m′ 5.4.15 3̄′1m′ 20.4.74 m’ 4.3.11 6

167.105 R3̄′c b,EE 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 4
167.105 R3̄′c b, 1E 2E 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 4
167.105 R3̄′c d,AA 1̄′ 2.3.5 32′ 18.3.67 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
167.106 R3̄′c′ b,EE 3̄′ 17.3.64 32 18.1.65 3 16.1.60 4
167.106 R3̄′c′ d,AA 1̄′ 2.3.5 32 18.1.65 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
175.139 P6′/m f, 1E 2E 2′/m 5.3.14 6′/m 23.3.84 m 4.1.9 6

2′/m 5.3.14 6̄ 22.1.79 m 4.1.9 6
175.139 P6′/m g, 1E 2E 2′/m 5.3.14 6′/m 23.3.84 m 4.1.9 6

2′/m 5.3.14 6̄ 22.1.79 m 4.1.9 6
175.140 P6/m′ f, 1E 2E 2/m′ 5.4.15 6/m′ 23.4.85 m’ 4.3.11 6

2/m′ 5.4.15 6̄′ 22.3.81 m’ 4.3.11 6
175.140 P6/m′ g, 1E 2E 2/m′ 5.4.15 6/m′ 23.4.85 m’ 4.3.11 6

2/m′ 5.4.15 6̄′ 22.3.81 m’ 4.3.11 6
176.145 P6′3/m b,EE 3̄′ 17.3.64 6̄ 22.1.79 3 16.1.60 4
176.145 P6′3/m b, 1E 2E 3̄′ 17.3.64 6̄ 22.1.79 3 16.1.60 4
176.145 P6′3/m g,AA 1̄′ 2.3.5 6̄ 22.1.79 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
176.146 P63/m

′ b,EE 3̄′ 17.3.64 6̄′ 22.3.81 3 16.1.60 4
176.146 P63/m

′ g,AA 1̄′ 2.3.5 6̄′ 22.3.81 1 1.1.1 12
1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12

176.147 P6′3/m
′ a, 1E 2E 6̄′ 22.3.81 3̄ 17.1.62 3 16.1.60 4

182.181 P6′32′2 b,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 4
182.182 P6′322′ a,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 4
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188.218 P 6̄′c2′ b, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 4
188.218 P 6̄′c2′ d, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 4
188.218 P 6̄′c2′ f, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 4
190.229 P 6̄′2′c b, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 4
191.235 P6/m′mm f,E m′mm 8.3.26 6/m′mm 27.3.102 m’m2’ 7.3.22 6

m′mm 8.3.26 6̄′m2′ 26.4.98 m’m2’ 7.3.22 6
191.235 P6/m′mm g,E m′mm 8.3.26 6/m′mm 27.3.102 m’m2’ 7.3.22 6

m′mm 8.3.26 6̄′m2′ 26.4.98 m’m2’ 7.3.22 6
191.236 P6′/mm′m f,E m′mm 8.3.26 6̄m′2′ 26.5.99 m’m2’ 7.3.22 6
191.236 P6′/mm′m g,E m′mm 8.3.26 6̄m′2′ 26.5.99 m’m2’ 7.3.22 6
191.237 P6′/mmm′ f,E m′mm 8.3.26 6′/mmm′ 27.4.103 m’m2’ 7.3.22 6
191.237 P6′/mmm′ g,E m′mm 8.3.26 6′/mmm′ 27.4.103 m’m2’ 7.3.22 6
191.241 P6/m′m′m′ f,E m′m′m′ 8.5.28 6/m′m′m′ 27.7.106 m’m’2 7.4.23 6

m′m′m′ 8.5.28 6̄′m′2 26.3.97 m’m’2 7.4.23 6
191.241 P6/m′m′m′ g,E m′m′m′ 8.5.28 6/m′m′m′ 27.7.106 m’m’2 7.4.23 6

m′m′m′ 8.5.28 6̄′m′2 26.3.97 m’m’2 7.4.23 6
192.245 P6/m′cc b, 1E1

2E1 6/m′ 23.4.85 62′2′ 24.4.90 6 21.1.76 4
192.245 P6/m′cc b, 1E3 2E3 6/m′ 23.4.85 62′2′ 24.4.90 6 21.1.76 4
192.245 P6/m′cc b, 1E2

2E2 6/m′ 23.4.85 62′2′ 24.4.90 6 21.1.76 4
192.245 P6/m′cc d, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 8
192.245 P6/m′cc g, 1E 2E 2/m′ 5.4.15 6/m′ 23.4.85 m’ 4.3.11 12

2/m′ 5.4.15 6̄′ 22.3.81 m’ 4.3.11 12
2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 12

192.246 P6′/mc′c b, 1E1
2E1 6′/m 23.3.84 6′22′ 24.3.89 6’ 21.3.78 4

192.246 P6′/mc′c g, 1E 2E 2′/m 5.3.14 6′/m 23.3.84 m 4.1.9 12
2′/m 5.3.14 6̄ 22.1.79 m 4.1.9 12
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 12

192.247 P6′/mcc′ b, 1E1
2E1 6′/m 23.3.84 6′22′ 24.3.89 6’ 21.3.78 4

192.247 P6′/mcc′ c,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 8
192.247 P6′/mcc′ g, 1E 2E 2′/m 5.3.14 6′/m 23.3.84 m 4.1.9 12

2′/m 5.3.14 6̄ 22.1.79 m 4.1.9 12
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 12

192.249 P6′/m′cc′ d, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 8
192.251 P6/m′c′c′ f,E 222 6.1.17 622 24.1.87 2 3.1.6 12

222 6.1.17 32 18.1.65 2 3.1.6 12
222 6.1.17 2/m′ 5.4.15 2 3.1.6 12

192.251 P6/m′c′c′ g, 1E 2E 2/m′ 5.4.15 6/m′ 23.4.85 m’ 4.3.11 12
2/m′ 5.4.15 6̄′ 22.3.81 m’ 4.3.11 12
2/m′ 5.4.15 222 6.1.17 2 3.1.6 12

193.255 P63/m
′cm b, 1E 2E 3̄′1m 20.3.73 6̄′m2′ 26.4.98 31m 19.1.68 4

193.255 P63/m
′cm c, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 8

193.255 P63/m
′cm f, 1E 2E 2′/m 5.3.14 6̄′m2′ 26.4.98 m 4.1.9 12

2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 12
2′/m 5.3.14 32′ 18.3.67 2’ 3.3.8 12

193.256 P6′3/mc
′m f, 1E 2E 2′/m 5.3.14 6̄m2 26.1.95 m 4.1.9 12

2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 12
2′/m 5.3.14 32′ 18.3.67 2’ 3.3.8 12

193.257 P6′3/mcm
′ b, 1E 2E 3̄′1m′ 20.4.74 6̄m′2′ 26.5.99 31m’ 19.3.70 4

193.257 P6′3/mcm
′ b,E1 3̄′1m′ 20.4.74 6̄m′2′ 26.5.99 31m’ 19.3.70 4

193.257 P6′3/mcm
′ d,E1 32 18.1.65 6̄ 22.1.79 3 16.1.60 8

193.257 P6′3/mcm
′ f, 1E 2E 2/m′ 5.4.15 6̄m′2′ 26.5.99 m’ 4.3.11 12

2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 12
2/m′ 5.4.15 32 18.1.65 2 3.1.6 12

193.259 P6′3/m
′cm′ a,E1 6̄′m′2 26.3.97 3̄1m′ 20.5.75 31m’ 19.3.70 4

193.259 P6′3/m
′cm′ c, 1E 2E 6̄′ 22.3.81 32′ 18.3.67 3 16.1.60 8

193.261 P63/m
′c′m′ b, 1E 2E 3̄′1m′ 20.4.74 6̄′m′2 26.3.97 31m’ 19.3.70 4

193.261 P63/m
′c′m′ f, 1E 2E 2/m′ 5.4.15 6̄′m′2 26.3.97 m’ 4.3.11 12

2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 12
2/m′ 5.4.15 32 18.1.65 2 3.1.6 12

194.265 P63/m
′mc a, 1E 2E 3̄′1m 20.3.73 6̄′m2′ 26.4.98 31m 19.1.68 4

194.265 P63/m
′mc g, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 12

2′/m 5.3.14 6̄′m2′ 26.4.98 m 4.1.9 12
194.266 P6′3/mm

′c a, 1E 2E 3̄′1m′ 20.4.74 6̄m′2′ 26.5.99 31m’ 19.3.70 4
194.266 P6′3/mm

′c a,E1 3̄′1m′ 20.4.74 6̄m′2′ 26.5.99 31m’ 19.3.70 4
194.266 P6′3/mm

′c g, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 12
2/m′ 5.4.15 6̄m′2′ 26.5.99 m’ 4.3.11 12

194.267 P6′3/mmc
′ g, 1E 2E 2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 12

2′/m 5.3.14 6̄m2 26.1.95 m 4.1.9 12
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194.268 P6′3/m
′m′c b,E1 6̄′m′2 26.3.97 3̄1m′ 20.5.75 31m’ 19.3.70 4

194.271 P63/m
′m′c′ a, 1E 2E 3̄′1m′ 20.4.74 6̄′m′2 26.3.97 31m’ 19.3.70 4

194.271 P63/m
′m′c′ g, 1E 2E 2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 12

2/m′ 5.4.15 6̄′m′2 26.3.97 m’ 4.3.11 12
200.16 Pm′3̄′ c,E m′m′m′ 8.5.28 m′3̄′ 29.3.111 m’m’2 7.4.23 6
200.16 Pm′3̄′ d,E m′m′m′ 8.5.28 m′3̄′ 29.3.111 m’m’2 7.4.23 6
201.20 Pn′3̄′ b,EE 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
201.20 Pn′3̄′ b, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
201.20 Pn′3̄′ c,EE 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
201.20 Pn′3̄′ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
201.20 Pn′3̄′ d,E 222 6.1.17 23 28.1.107 2 3.1.6 12
202.24 Fm′3̄′ d, 1E 2E 2/m′ 5.4.15 m′3̄′ 29.3.111 m’ 4.3.11 12

2/m′ 5.4.15 23 28.1.107 2 3.1.6 12
203.28 Fd′3̄′ c,EE 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
203.28 Fd′3̄′ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
203.28 Fd′3̄′ d,EE 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
203.28 Fd′3̄′ d, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 8
204.32 Im′3̄′ b,E m′m′m′ 8.5.28 m′3̄′ 29.3.111 m’m’2 7.4.23 6
204.32 Im′3̄′ c,EE 3̄′ 17.3.64 m′3̄′ 29.3.111 3 16.1.60 8
204.32 Im′3̄′ c, 1E 2E 3̄′ 17.3.64 m′3̄′ 29.3.111 3 16.1.60 8
208.46 P4′232′ d,E 222 6.1.17 23 28.1.107 2 3.1.6 12

222 6.1.17 2′2′2 6.3.19 2 3.1.6 12
215.72 P 4̄′3m′ c,E 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 6
215.72 P 4̄′3m′ d,E 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 6
217.80 I 4̄′3m′ b,E 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 6
217.80 I 4̄′3m′ d, 1E 2E 4̄′ 10.3.34 4̄′2m′ 14.4.51 2 3.1.6 12
218.83 P 4̄′3n′ b,E 222 6.1.17 23 28.1.107 2 3.1.6 12

222 6.1.17 4̄′ 10.3.34 2 3.1.6 12
218.83 P 4̄′3n′ c, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 12
218.83 P 4̄′3n′ d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 12
219.87 F 4̄′3c′ c, 1E 2E 4̄′ 10.3.34 23 28.1.107 2 3.1.6 12
219.87 F 4̄′3c′ d, 1E 2E 4̄′ 10.3.34 23 28.1.107 2 3.1.6 12
221.96 Pm′3̄′m′ c,E2 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
221.96 Pm′3̄′m′ c,E1 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
221.96 Pm′3̄′m′ d,E2 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
221.96 Pm′3̄′m′ d,E1 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
222.100 Pn′3̄′n c,EE 3̄′ 17.3.64 4′32′ 30.3.114 3 16.1.60 16
222.100 Pn′3̄′n c, 1E 2E 3̄′ 17.3.64 4′32′ 30.3.114 3 16.1.60 16
222.101 Pn3̄n′ d, 1E 2E 4̄′ 10.3.34 4′22′ 12.3.42 2 3.1.6 24
222.102 Pn′3̄′n′ b,E2 422 12.1.40 432 30.1.112 4 9.1.29 12
222.102 Pn′3̄′n′ b,E1 422 12.1.40 432 30.1.112 4 9.1.29 12
222.102 Pn′3̄′n′ c,EE 3̄′ 17.3.64 432 30.1.112 3 16.1.60 16
222.102 Pn′3̄′n′ c, 1E 2E 3̄′ 17.3.64 432 30.1.112 3 16.1.60 16
222.102 Pn′3̄′n′ d, 1E 2E 4̄′ 10.3.34 422 12.1.40 2 3.1.6 24
223.106 Pm′3̄′n b,E m′m′m′ 8.5.28 m′3̄′ 29.3.111 m’m’2 7.4.23 12

m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 12
223.108 Pm′3̄′n′ b,E m′m′m′ 8.5.28 m′3̄′ 29.3.111 m’m’2 7.4.23 12

m′m′m′ 8.5.28 4̄′2m′ 14.4.51 m’m’2 7.4.23 12
223.108 Pm′3̄′n′ e,E1 32 18.1.65 m′3̄′ 29.3.111 3 16.1.60 16
223.108 Pm′3̄′n′ c,E 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 12
223.108 Pm′3̄′n′ d,E 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 12
224.113 Pn3̄m′ d,E 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 12
224.114 Pn′3̄′m′ b, 1E 2E 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
224.114 Pn′3̄′m′ b,E1 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
224.114 Pn′3̄′m′ c, 1E 2E 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
224.114 Pn′3̄′m′ c,E1 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
224.114 Pn′3̄′m′ d,E 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 12
224.114 Pn′3̄′m′ f,E 222 6.1.17 3̄′1m′ 20.4.74 2 3.1.6 24

222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 24
225.118 Fm′3̄′m c,F 4̄3m 31.1.115 m′3̄′m 32.3.120 31m 19.1.68 8
225.118 Fm′3̄′m d,E m′mm 8.3.26 m′3̄′m 32.3.120 m’m2’ 7.3.22 12
225.120 Fm′3̄′m′ d,E m′m′m′ 8.5.28 m′3̄′m′ 32.5.122 m’m’2 7.4.23 12

m′m′m′ 8.5.28 4̄′3m′ 31.3.117 m’m’2 7.4.23 12
226.126 Fm′3̄′c′ c,E 4̄′2m′ 14.4.51 m′3̄′ 29.3.111 m’m’2 7.4.23 12
226.126 Fm′3̄′c′ d, 1E2

2E2 4/m′ 11.4.38 432 30.1.112 4 9.1.29 12
226.126 Fm′3̄′c′ d, 1E1

2E1 4/m′ 11.4.38 432 30.1.112 4 9.1.29 12
227.132 Fd′3̄′m′ c, 1E 2E 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
227.132 Fd′3̄′m′ c,E1 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
227.132 Fd′3̄′m′ d, 1E 2E 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
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227.132 Fd′3̄′m′ d,E1 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 8
228.136 Fd′3̄′c c,EE 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 16
228.136 Fd′3̄′c c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 16
228.137 Fd3̄c′ d, 1E 2E 4̄′ 10.3.34 23 28.1.107 2 3.1.6 24
228.138 Fd′3̄′c′ b,E1 32 18.1.65 23 28.1.107 3 16.1.60 16

32 18.1.65 3̄′ 17.3.64 3 16.1.60 16
228.138 Fd′3̄′c′ c,EE 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 32 18.1.65 3 16.1.60 16
228.138 Fd′3̄′c′ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 32 18.1.65 3 16.1.60 16
228.138 Fd′3̄′c′ d, 1E 2E 4̄′ 10.3.34 23 28.1.107 2 3.1.6 24
229.142 Im′3̄′m c, 1E 2E 3̄′1m 20.3.73 m′3̄′m 32.3.120 31m 19.1.68 8
229.144 Im′3̄′m′ b,E2 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
229.144 Im′3̄′m′ b,E1 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 6
229.144 Im′3̄′m′ c, 1E 2E 3̄′1m′ 20.4.74 m′3̄′m′ 32.5.122 31m’ 19.3.70 8
229.144 Im′3̄′m′ c,E1 3̄′1m′ 20.4.74 m′3̄′m′ 32.5.122 31m’ 19.3.70 8
229.144 Im′3̄′m′ d,E 4̄′2m′ 14.4.51 4/m′m′m′ 15.7.59 m’m’2 7.4.23 12
230.147 Ia′3̄′d a,EE 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 16
230.147 Ia′3̄′d a, 1E 2E 3̄′ 17.3.64 32′ 18.3.67 3 16.1.60 16
230.148 Ia3̄d′ d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 24
230.149 Ia′3̄′d′ a,EE 3̄′ 17.3.64 32 18.1.65 3 16.1.60 16
230.149 Ia′3̄′d′ c,E 222 6.1.17 32 18.1.65 2 3.1.6 24

222 6.1.17 4̄′ 10.3.34 2 3.1.6 24
230.149 Ia′3̄′d′ d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 24

f. Exceptional Composite Band Coreps in the Type-IV Single MSGs

TABLE XXII: Exceptional composite band coreps induced from site-
symmetry coreps in the Type-IV single MSGs (Appendix B 4). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the single-valued corep of the site-symmetry group Gq,
the symbol of the MSG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS91–94 and
the number of the MSG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group Gq′ , the symbol and number of the MPG isomor-
phic to the intersection group Gq0 = Gq ∩Gq′ , and the dimension d of
the exceptional composite band corep. See Appendix E 3 a for further
information regarding exceptional composite band coreps.

MSG Corep Gq Gq′ Gq0 d
81.36 Pc4̄ b,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
81.36 Pc4̄ d,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
82.42 Ic4̄ b,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
82.42 Ic4̄ c,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
83.48 Pc4/m b, 1E 2E 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
83.48 Pc4/m d, 1E 2E 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
83.50 PI4/m d,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
84.57 PC42/m f,BB 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
85.64 Pc4/n b,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
86.72 Pc42/n a,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
86.73 PC42/n e,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
86.74 PI42/n d,BB 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
87.80 Ic4/m b, 1E 2E 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
88.86 Ic41/a b,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
89.92 Pc422 a,E 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
89.92 Pc422 c,E 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
97.156 Ic422 a,E 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
111.258 PI 4̄2m d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
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112.264 Pc4̄2c b,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
112.264 Pc4̄2c c,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
112.265 PC 4̄2c d,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
113.272 Pc4̄21m b,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
114.280 Pc4̄21c a,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
114.281 PC 4̄21c c,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
114.282 PI 4̄21c d,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
116.296 Pc4̄c2 a,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
116.296 Pc4̄c2 b,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
116.297 PC 4̄c2 f,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
116.298 PI 4̄c2 c,BB 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
117.304 Pc4̄b2 b,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
117.306 PI 4̄b2 c,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
118.312 Pc4̄n2 a,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
118.313 PC 4̄n2 e,BB 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
120.326 Ic4̄c2 a,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
120.326 Ic4̄c2 b,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
121.332 Ic4̄2m b,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
122.338 Ic4̄2d b,BB 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
123.350 PI4/mmm d,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 8
124.360 Pc4/mcc b,E 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
124.360 Pc4/mcc d,E 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
124.361 PC4/mcc a,E 422 12.1.40 4/m 11.1.35 4 9.1.29 8
124.362 PI4/mcc a,E 422 12.1.40 4/m 11.1.35 4 9.1.29 8
124.362 PI4/mcc b,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
125.372 Pc4/nbm a,E 422 12.1.40 42′2′ 12.4.43 4 9.1.29 8
125.374 PI4/nbm b,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 8
126.384 Pc4/nnc b,E 422 12.1.40 42′2′ 12.4.43 4 9.1.29 8
126.384 Pc4/nnc d,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
127.396 Pc4/mbm b, 1E 2E 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 8
127.398 PI4/mbm b,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 8
128.408 Pc4/mnc b, 1E 2E 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 8
128.410 PI4/mnc d,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
129.422 PI4/nmm d,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 8
130.432 Pc4/ncc b,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
130.433 PC4/ncc b, 1E 2E 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 8
130.434 PI4/ncc c, 1E 2E 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 8
131.445 PC42/mmc b,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 8
131.445 PC42/mmc d,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 8
131.446 PI42/mmc d,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 8
132.457 PC42/mcm e,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 8
132.457 PC42/mcm f,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
132.458 PI42/mcm b,E 4̄2m 14.1.48 mmm 8.1.24 mm2 7.1.20 8
133.468 Pc42/nbc c,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
133.469 PC42/nbc d,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 8
133.470 PI42/nbc b,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 8
134.481 PC42/nnm e,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 8
134.481 PC42/nnm f,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 8
134.482 PI42/nnm d,B2B3 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 8
135.493 PC42/mbc b,B2B3 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
136.505 PC42/mnm f,B1B2 4̄′2′m 14.3.50 mmm 8.1.24 mm2 7.1.20 8
137.517 PC42/nmc b,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 8
137.517 PC42/nmc d,E 4̄2m 14.1.48 m′mm 8.3.26 mm2 7.1.20 8
137.518 PI42/nmc d,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 8
138.528 Pc42/ncm a,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
138.529 PC42/ncm e,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 8
138.530 PI42/ncm b,B1B2 4̄′2′m 14.3.50 m′mm 8.3.26 mm2 7.1.20 8
140.550 Ic4/mcm b,E 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
142.570 Ic41/acd b,B2B3 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
147.16 Pc3̄ b, 1E 2E 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 4
148.20 RI 3̄ b, 1E 2E 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 4
149.24 Pc312 a,E 32 18.1.65 32′1 18.3.67 3 16.1.60 4
149.24 Pc312 c,E 32 18.1.65 32′1 18.3.67 3 16.1.60 4
149.24 Pc312 e,E 32 18.1.65 32′1 18.3.67 3 16.1.60 4
150.28 Pc321 a,E 32 18.1.65 32′1 18.3.67 3 16.1.60 4
155.48 RI32 a,E 32 18.1.65 32′1 18.3.67 3 16.1.60 4
162.78 Pc3̄1m c,E 32 18.1.65 32′1 18.3.67 3 16.1.60 8
163.84 Pc3̄1c b,E 3̄′m′1 20.4.74 3̄m′1 20.5.75 3m’1 19.3.70 4
163.84 Pc3̄1c d,E 32 18.1.65 32′1 18.3.67 3 16.1.60 8
165.96 Pc3̄c1 b,E 3̄′m′1 20.4.74 3̄m′1 20.5.75 3m’1 19.3.70 4
167.108 RI 3̄c b,E 3̄′m′1 20.4.74 3̄m′1 20.5.75 3m’1 19.3.70 4
174.136 Pc6̄ b, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 4
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174.136 Pc6̄ d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 4
174.136 Pc6̄ f, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 4
175.142 Pc6/m b, 1E1

2E1 6/m′ 23.4.85 6/m 23.1.82 6 21.1.76 4
175.142 Pc6/m b, 1E2

2E2 6/m′ 23.4.85 6/m 23.1.82 6 21.1.76 4
175.142 Pc6/m d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
176.148 Pc63/m d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
177.154 Pc622 a,E2 622 24.1.87 62′2′ 24.4.90 6 21.1.76 4
177.154 Pc622 a,E1 622 24.1.87 62′2′ 24.4.90 6 21.1.76 4
177.154 Pc622 c,E 32 18.1.65 32′1 18.3.67 3 16.1.60 8
182.184 Pc6322 d,E 32 18.1.65 32′1 18.3.67 3 16.1.60 8
188.220 Pc6̄c2 a,E 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 3m’1 19.3.70 4
188.220 Pc6̄c2 c,E 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 3m’1 19.3.70 4
188.220 Pc6̄c2 e,E 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 3m’1 19.3.70 4
189.226 Pc6̄2m d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
190.232 Pc6̄2c a,E 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 3m’1 19.3.70 4
190.232 Pc6̄2c c, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
192.252 Pc6/mcc b,E2 6/m′m′m′ 27.7.106 6/mm′m′ 27.6.105 6m’m’ 25.4.94 4
192.252 Pc6/mcc b,E1 6/m′m′m′ 27.7.106 6/mm′m′ 27.6.105 6m’m’ 25.4.94 4
192.252 Pc6/mcc d,E 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 3m’1 19.3.70 8
193.262 Pc63/mcm d,E 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 3m’1 19.3.70 8
200.17 PIm3̄ c, 1E 2E 3̄′ 17.3.64 m3̄ 29.1.109 3 16.1.60 16
203.29 FSd3̄ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 16
205.36 PIa3̄ a, 1E 2E 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 16
207.43 PI432 b,E 422 12.1.40 432 30.1.112 4 9.1.29 12
208.47 PI4232 c,E 32 18.1.65 4′32′ 30.3.114 3 16.1.60 16
210.55 FS4132 b,E 32 18.1.65 23 28.1.107 3 16.1.60 16

32 18.1.65 32′1 18.3.67 3 16.1.60 16
212.62 PI4332 a,E 32 18.1.65 32′1 18.3.67 3 16.1.60 16
213.66 PI4132 b,E 32 18.1.65 32′1 18.3.67 3 16.1.60 16
215.73 PI 4̄3m b,E 4̄2m 14.1.48 4̄3m 31.1.115 mm2 7.1.20 12
215.73 PI 4̄3m d,BB 4̄′ 10.3.34 4̄2m 14.1.48 2 3.1.6 24
216.77 FS 4̄3m c,B1B2 4̄′2′m 14.3.50 4̄3m 31.1.115 mm2 7.1.20 12
216.77 FS 4̄3m d,B1B2 4̄′2′m 14.3.50 4̄3m 31.1.115 mm2 7.1.20 12
218.84 PI 4̄3n b,B2B3 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 12
221.97 PIm3̄m d,B1B2 4̄′2′m 14.3.50 4/mmm 15.1.53 mm2 7.1.20 24
222.103 PIn3̄n b,E 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 12
223.109 PIm3̄n c,E 3̄′m′1 20.4.74 m3̄m′ 32.4.121 3m’1 19.3.70 16
223.109 PIm3̄n d,E 4̄2m 14.1.48 4′/mm′m 15.4.56 mm2 7.1.20 24
224.115 PIn3̄m d,B2B3 4̄′2m′ 14.4.51 4′/m′m′m 15.5.57 m’m’2 7.4.23 24
227.133 FSd3̄m d,B1B2 4̄′2′m 14.3.50 4̄3m 31.1.115 mm2 7.1.20 24
228.139 FSd3̄c c,E 3̄′m′1 20.4.74 4̄′3m′ 31.3.117 3m’1 19.3.70 16

3̄′m′1 20.4.74 3̄m′1 20.5.75 3m’1 19.3.70 16
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g. Exceptional Composite Band Coreps in the Type-IV Double MSGs

TABLE XXIII: Exceptional composite band coreps induced from site-
symmetry coreps in the Type-IV double MSGs (Appendix B 4). In order,
the columns in this table list the number of the MSG in the BNS setting
and the symbol of the MSG, the letter of the maximal Wyckoff position
containing q and the double-valued corep of the site-symmetry groupGq,
the symbol of the MSG isomorphic to the site-symmetry group Gq in the
Hermann-Mauguin notation of the MPOINT tool on the BCS91–94 and
the number of the MSG isomorphic to Gq in the convention established
by Litvin in Ref. 12, the symbol and number of the MPG isomorphic to
the reducing group Gq′ , the symbol and number of the MPG isomor-
phic to the intersection group Gq0 = Gq ∩Gq′ , and the dimension d of
the exceptional composite band corep. See Appendix E 3 a for further
information regarding exceptional composite band coreps.

MSG Corep Gq Gq′ Gq0 d
2.7 PS 1̄ b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 4
2.7 PS 1̄ f,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 4
2.7 PS 1̄ g,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 4
2.7 PS 1̄ h,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 4

10.47 Pa2/m d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
10.47 Pa2/m e, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
10.47 Pa2/m g, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
10.47 Pa2/m h, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
10.48 Pb2/m b, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 4
10.48 Pb2/m e, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 4
10.48 Pb2/m f, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 4
10.48 Pb2/m h, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 4
10.49 PC2/m e,AA 1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 8
10.49 PC2/m f,AA 1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 8
11.55 Pa21/m b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
11.55 Pa21/m d,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 m 4.1.9 1 1.1.1 8
11.56 Pb21/m a, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 4
11.56 Pb21/m c, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 4
11.56 Pb21/m d, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 4
11.56 Pb21/m g, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 4
12.63 Cc2/m c, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
12.63 Cc2/m d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
12.63 Cc2/m f,AA 1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 8

1̄′ 2.3.5 2′/m 5.3.14 1 1.1.1 8
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

12.64 Ca2/m b, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 4
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4

12.64 Ca2/m d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 4

12.64 Ca2/m f, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 4
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4

12.64 Ca2/m g, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 4
2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 4

13.70 Pa2/c b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

13.70 Pa2/c d,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

13.71 Pb2/c b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

13.71 Pb2/c c,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8

13.72 Pc2/c a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4
13.72 Pc2/c b, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4
13.72 Pc2/c d, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4
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13.72 Pc2/c e, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4
13.74 PC2/c c,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
13.74 PC2/c d,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
14.80 Pa21/c b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
14.80 Pa21/c d,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
14.81 Pb21/c a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
14.81 Pb21/c d,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
14.82 Pc21/c a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
14.82 Pc21/c b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 8
14.83 PA21/c e,AA 1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 8
14.83 PA21/c f,AA 1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 8
14.84 PC21/c a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
14.84 PC21/c b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8
15.90 Cc2/c a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4
15.90 Cc2/c b, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 4
15.90 Cc2/c e,AA 1̄′ 2.3.5 2/m′ 5.4.15 1 1.1.1 8

1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 8
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8

15.91 Ca2/c c,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

15.91 Ca2/c d,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 8
1̄′ 2.3.5 2 3.1.6 1 1.1.1 8
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 8

16.4 Pa222 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
16.4 Pa222 c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
16.4 Pa222 d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
16.4 Pa222 g,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
21.42 Cc222 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
21.42 Cc222 b,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
21.43 Ca222 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
21.43 Ca222 d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
22.48 FS222 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
22.48 FS222 h,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
23.52 Ic222 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
23.52 Ic222 b,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 4
25.62 Pamm2 a,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
25.62 Pamm2 b,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
35.170 Camm2 a,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
38.192 Aamm2 a,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
38.193 Abmm2 a,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
38.193 Abmm2 c,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
42.223 FSmm2 a,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
44.234 Iamm2 a,E mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 4
47.255 PCmmm e, 1E 2E 2′/m 5.3.14 mmm 8.1.24 m 4.1.9 8
47.255 PCmmm f, 1E 2E 2′/m 5.3.14 mmm 8.1.24 m 4.1.9 8
47.256 PImmm k,AA 1̄′ 2.3.5 mmm 8.1.24 1 1.1.1 16
48.262 Pcnnn c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
48.262 Pcnnn d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
48.262 Pcnnn f,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

48.263 PCnnn c, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8

48.263 PCnnn d, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8

48.263 PCnnn a,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
48.263 PCnnn b,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
49.272 Paccm b, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
49.272 Paccm d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
49.272 Paccm e,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
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222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
49.272 Paccm g,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
49.273 Pcccm c,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
49.273 Pcccm d,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
49.273 Pcccm g,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
49.273 Pcccm h,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
49.274 PBccm a,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
49.274 PBccm b,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
49.274 PBccm e, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
49.274 PBccm f, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
49.275 PCccm a,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
49.275 PCccm b,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
49.275 PCccm e, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
49.275 PCccm f, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
49.276 PIccm a,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
49.276 PIccm b,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8
49.276 PIccm e,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16

1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16
50.284 Paban a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
50.284 Paban c, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
50.284 Paban e,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
50.284 Paban g,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
50.285 Pcban a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
50.285 Pcban b,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
50.285 Pcban f,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16

1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

50.286 PAban c,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

51.298 Pamma a,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
51.298 Pamma c,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
51.298 Pamma e,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
51.298 Pamma g,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
51.299 Pbmma b, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8

2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
51.299 Pbmma d, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8

2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
51.299 Pbmma e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8

mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 8
51.300 Pcmma c, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
51.300 Pcmma d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
51.300 Pcmma e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8

mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8
51.300 Pcmma f,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8

mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8
51.301 PAmma c,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8
51.301 PAmma d,AA 1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16

1̄′ 2.3.5 mm2 7.1.20 1 1.1.1 16
51.303 PCmma c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
51.303 PCmma d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
51.303 PCmma g,E mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8

mm2 7.1.20 2/m 5.1.12 m 4.1.9 8
51.304 PImma e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8

mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8
51.304 PImma c, 1E 2E 2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
51.304 PImma d, 1E 2E 2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
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52.314 Panna c, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
52.314 Panna d, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
52.315 Pbnna e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
52.316 Pcnna b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

1̄′ 2.3.5 2 3.1.6 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

52.317 PAnna e, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
52.317 PAnna f, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
52.318 PBnna a, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
52.318 PBnna b, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
52.319 PCnna c,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2 3.1.6 1 1.1.1 16

52.320 PInna c, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
52.320 PInna d, 1E 2E 2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
53.330 Pamna b, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
53.330 Pamna d, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8

2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8
53.331 Pbmna c, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
53.331 Pbmna d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
53.332 Pcmna b, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
53.332 Pcmna d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
53.333 PAmna c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
53.333 PAmna d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
53.334 PBmna e, 1E 2E 2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 8
53.334 PBmna f, 1E 2E 2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 8
53.335 PCmna c,AA 1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16

1̄′ 2.3.5 2 3.1.6 1 1.1.1 16
53.336 PImna c, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
53.336 PImna d, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
54.346 Pacca a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
54.346 Pacca c, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8

2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
54.347 Pbcca b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

1̄′ 2.3.5 2 3.1.6 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

54.348 Pccca c, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

54.348 Pccca d, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

54.350 PBcca c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

54.350 PBcca d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

54.351 PCcca d,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2 3.1.6 1 1.1.1 16

54.352 PIcca b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16
1̄′ 2.3.5 2 3.1.6 1 1.1.1 16

55.360 Pabam a, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

55.360 Pabam b, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

55.361 Pcbam b, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
55.361 Pcbam d, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
55.362 PAbam c,AA 1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16
55.363 PCbam e, 1E 2E 2′/m 5.3.14 m′m′m 8.4.27 m 4.1.9 8
55.363 PCbam f, 1E 2E 2′/m 5.3.14 m′m′m 8.4.27 m 4.1.9 8
55.364 PIbam e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16
56.372 Pbccn a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16
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1̄′ 2.3.5 2 3.1.6 1 1.1.1 16
56.373 Pcccn d,AA 1̄′ 2.3.5 m′m′2 7.4.23 1 1.1.1 16

1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
56.374 PAccn c,AA 1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 16

1̄′ 2.3.5 2 3.1.6 1 1.1.1 16
56.375 PCccn c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8

2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
56.375 PCccn d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8

2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
56.376 PIccn c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
56.376 PIccn d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
57.386 Pabcm b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

1̄′ 2.3.5 2 3.1.6 1 1.1.1 16
1̄′ 2.3.5 m 4.1.9 1 1.1.1 16

57.387 Pbbcm a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8

57.387 Pbbcm b, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8

57.388 Pcbcm a, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

57.388 Pcbcm c, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

57.389 PAbcm c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

57.389 PAbcm d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

57.391 PCbcm a, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
57.391 PCbcm b, 1E 2E 2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8
57.392 PIbcm c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
57.392 PIbcm d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
58.400 Pannm a, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
58.400 Pannm b, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
58.401 Pcnnm b, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
58.401 Pcnnm d, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
58.402 PBnnm d,AA 1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16

1̄′ 2.3.5 m′m2′ 7.3.22 1 1.1.1 16
58.403 PCnnm e, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
58.403 PCnnm f, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
58.404 PInnm k,AA 1̄′ 2.3.5 m′m′m 8.4.27 1 1.1.1 16
59.412 Pbmmn a, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
59.412 Pbmmn c, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8

2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8
59.412 Pbmmn e,E mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8

mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 8
59.413 Pcmmn d,AA 1̄′ 2.3.5 mm2 7.1.20 1 1.1.1 16

1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
60.426 Pabcn a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16
1̄′ 2.3.5 2 3.1.6 1 1.1.1 16

60.427 Pbbcn b,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2 3.1.6 1 1.1.1 16
1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 16

60.428 Pcbcn a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
60.428 Pcbcn b, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
60.430 PBbcn d,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16

1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

60.431 PCbcn d,AA 1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 16
1̄′ 2.3.5 m′m′2 7.4.23 1 1.1.1 16

60.432 PIbcn e,AA 1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 16

61.438 Pabca a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16
1̄′ 2.3.5 m′ 4.3.11 1 1.1.1 16

61.439 PCbca c,AA 1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

61.440 PIbca a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

62.450 Panma c,AA 1̄′ 2.3.5 m′m2′ 7.3.22 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

62.451 Pbnma a, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
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62.451 Pbnma c, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
62.452 Pcnma a,AA 1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16
1̄′ 2.3.5 m 4.1.9 1 1.1.1 16

62.453 PAnma a, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8
62.453 PAnma b, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8
62.454 PBnma d,AA 1̄′ 2.3.5 2′/m′ 5.5.16 1 1.1.1 16

1̄′ 2.3.5 m′m2′ 7.3.22 1 1.1.1 16
62.456 PInma c, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8
62.456 PInma d, 1E 2E 2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8
63.466 Ccmcm c,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
63.466 Ccmcm d,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
63.466 Ccmcm f, 1E 2E 2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 8

2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
63.467 Camcm b, 1E 2E 2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8

2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8

63.467 Camcm c, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8

63.467 Camcm e,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8
mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8
mm2 7.1.20 m′m2′ 7.3.22 m 4.1.9 8

63.468 CAmcm e, 1E 2E 2′/m 5.3.14 m′mm 8.3.26 m 4.1.9 8
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

64.478 Ccmca c, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8

64.478 Ccmca e, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

64.479 Camca a, 1E 2E 2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

64.479 Camca d, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

64.480 CAmca c, 1E 2E 2′/m 5.3.14 m′m′m 8.4.27 m 4.1.9 8
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8

64.480 CAmca d, 1E 2E 2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 8
2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8

65.488 Ccmmm f, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 8
2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8

65.489 Cammm b,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
65.489 Cammm d,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
65.489 Cammm e,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
65.489 Cammm g,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
65.490 CAmmm c, 1E 2E 2′/m 5.3.14 mmm 8.1.24 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
65.490 CAmmm d, 1E 2E 2′/m 5.3.14 mmm 8.1.24 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
66.498 Ccccm c,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
66.498 Ccccm d,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
66.498 Ccccm f, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8

2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
66.499 Caccm c, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
66.499 Caccm d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
66.499 Caccm e,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
66.500 CAccm c, 1E 2E 2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
66.500 CAccm d, 1E 2E 2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
66.500 CAccm f,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8

222 6.1.17 2/m 5.1.12 2 3.1.6 8
67.508 Ccmma a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

222 6.1.17 2/m 5.1.12 2 3.1.6 8
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67.508 Ccmma d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8

67.508 Ccmma f, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8

67.508 Ccmma g,E mm2 7.1.20 2/m 5.1.12 m 4.1.9 8
mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8

67.509 Camma a,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
67.509 Camma c,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
67.509 Camma f,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
67.509 Camma h,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
67.510 CAmma e, 1E 2E 2/m′ 5.4.15 m′mm 8.3.26 m’ 4.3.11 8

2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
67.510 CAmma f,E 222 6.1.17 2/m 5.1.12 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
68.518 Cccca b,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
68.518 Cccca d, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

68.518 Cccca f, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

68.519 Cacca a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8

68.519 Cacca b, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 222 6.1.17 2 3.1.6 8

68.519 Cacca h,E 222 6.1.17 2/m′ 5.4.15 2 3.1.6 8
222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

68.520 CAcca e, 1E 2E 2/m′ 5.4.15 m′m′m′ 8.5.28 m’ 4.3.11 8
2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8

69.526 FSmmm b,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
69.526 FSmmm c,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
69.526 FSmmm e,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
69.526 FSmmm h,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
70.532 FSddd a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
70.532 FSddd f,AA 1̄′ 2.3.5 222 6.1.17 1 1.1.1 16

1̄′ 2.3.5 2′2′2 6.3.19 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

71.538 Icmmm e, 1E 2E 2′/m 5.3.14 mmm 8.1.24 m 4.1.9 8
2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8

72.546 Icbam c,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
72.546 Icbam d,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 4
72.546 Icbam e, 1E 2E 2′/m 5.3.14 m′m′m 8.4.27 m 4.1.9 8

2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8
72.547 Ibbam a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

222 6.1.17 2/m 5.1.12 2 3.1.6 8
222 6.1.17 2/m′ 5.4.15 2 3.1.6 8

72.547 Ibbam d, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 m′m2′ 7.3.22 m 4.1.9 8

72.547 Ibbam e, 1E 2E 2/m′ 5.4.15 222 6.1.17 2 3.1.6 8
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m2′ 7.3.22 m’ 4.3.11 8

73.553 Icbca d, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

73.553 Icbca e, 1E 2E 2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 8
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 m′m′2 7.4.23 m’ 4.3.11 8

74.561 Icmma c, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8

74.561 Icmma f, 1E 2E 2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 8
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
2′/m 5.3.14 mm2 7.1.20 m 4.1.9 8

74.561 Icmma g,E mm2 7.1.20 2′/m 5.3.14 m 4.1.9 8
mm2 7.1.20 2/m 5.1.12 m 4.1.9 8
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74.562 Ibmma a,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
74.562 Ibmma b,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 4
74.562 Ibmma f, 1E 2E 2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 8

2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
81.36 Pc4̄ b, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
81.36 Pc4̄ d, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
82.42 Ic4̄ b, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
82.42 Ic4̄ c, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 4
83.48 Pc4/m b, 1E2

2E2 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
83.48 Pc4/m b, 1E1

2E1 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
83.48 Pc4/m d, 1E2

2E2 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
83.48 Pc4/m d, 1E1

2E1 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
83.48 Pc4/m f, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 8

2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8
83.49 PC4/m e, 1E 2E 2′/m 5.3.14 4/m 11.1.35 m 4.1.9 8

2′/m 5.3.14 4′/m 11.3.37 m 4.1.9 8
83.49 PC4/m f, 1E 2E 2′/m 5.3.14 4/m 11.1.35 m 4.1.9 8

2′/m 5.3.14 4′/m 11.3.37 m 4.1.9 8
83.50 PI4/m d, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
83.50 PI4/m f,AA 1̄′ 2.3.5 4/m 11.1.35 1 1.1.1 16

1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16
1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16

84.56 Pc42/m f, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 8
2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 8

84.57 PC42/m c, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
84.57 PC42/m d, 1E 2E 2′/m 5.3.14 2/m 5.1.12 m 4.1.9 8
84.57 PC42/m f, 1E 2E 4̄′ 10.3.34 2/m 5.1.12 2 3.1.6 8
84.58 PI42/m f,AA 1̄′ 2.3.5 4′/m 11.3.37 1 1.1.1 16

1̄′ 2.3.5 2/m 5.1.12 1 1.1.1 16
1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

85.64 Pc4/n b, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
85.64 Pc4/n e,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16
1̄′ 2.3.5 4 9.1.29 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

85.66 PI4/n c, 1E 2E 2/m′ 5.4.15 4/m′ 11.4.38 m’ 4.3.11 8
2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 8

86.72 Pc42/n a, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
86.72 Pc42/n e,AA 1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16

1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16
1̄′ 2.3.5 4′ 9.3.31 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16

86.73 PC42/n a, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 4̄′ 10.3.34 2 3.1.6 8

86.73 PC42/n b, 1E 2E 2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 8
2/m′ 5.4.15 4̄ 10.1.32 2 3.1.6 8

86.73 PC42/n e, 1E 2E 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
86.74 PI42/n c, 1E 2E 2/m′ 5.4.15 4′/m′ 11.5.39 m’ 4.3.11 8

2/m′ 5.4.15 4̄′ 10.3.34 2 3.1.6 8
86.74 PI42/n d, 1E 2E 4̄′ 10.3.34 2/m′ 5.4.15 2 3.1.6 8
87.80 Ic4/m b, 1E2

2E2 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
87.80 Ic4/m b, 1E1

2E1 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 4
87.80 Ic4/m e, 1E 2E 2′/m 5.3.14 4/m 11.1.35 m 4.1.9 8

2′/m 5.3.14 4′/m 11.3.37 m 4.1.9 8
2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 8

88.86 Ic41/a b, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
88.86 Ic41/a d,AA 1̄′ 2.3.5 4̄ 10.1.32 1 1.1.1 16

1̄′ 2.3.5 4̄′ 10.3.34 1 1.1.1 16
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 16
1̄′ 2.3.5 2′ 3.3.8 1 1.1.1 16

89.92 Pc422 a,E2 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
89.92 Pc422 a,E1 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
89.92 Pc422 c,E2 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
89.92 Pc422 c,E1 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
89.92 Pc422 e,E 222 6.1.17 422 12.1.40 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
89.94 PI422 c,E 222 6.1.17 422 12.1.40 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
90.100 Pc4212 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
90.102 PI4212 d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
93.124 Pc4222 e,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 8
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222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
93.125 PC4222 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
93.125 PC4222 f,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
93.126 PI4222 c,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 8
94.132 Pc42212 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
94.133 PC42212 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
97.156 Ic422 a,E2 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
97.156 Ic422 a,E1 422 12.1.40 42′2′ 12.4.43 4 9.1.29 4
98.162 Ic4122 d,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
99.168 Pc4mm c,E mm2 7.1.20 4mm 13.1.44 m 4.1.9 8
99.170 PI4mm b,E mm2 7.1.20 4mm 13.1.44 m 4.1.9 8
105.216 Pc42mc c,E mm2 7.1.20 4′m′m 13.3.46 m 4.1.9 8
105.218 PI42mc b,E mm2 7.1.20 4′m′m 13.3.46 m 4.1.9 8
111.256 Pc4̄2m e,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
111.258 PI 4̄2m c,E 222 6.1.17 4̄2m 14.1.48 2 3.1.6 8

222 6.1.17 4̄′ 10.3.34 2 3.1.6 8
111.258 PI 4̄2m d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
112.264 Pc4̄2c b,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
112.264 Pc4̄2c c,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
112.264 Pc4̄2c f,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 8

222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
112.265 PC 4̄2c a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8
112.265 PC 4̄2c b,E 222 6.1.17 4̄′ 10.3.34 2 3.1.6 8
112.265 PC 4̄2c d, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
112.266 PI 4̄2c c,E 222 6.1.17 4̄′2m′ 14.4.51 2 3.1.6 8

222 6.1.17 4̄ 10.1.32 2 3.1.6 8
113.272 Pc4̄21m b, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
114.280 Pc4̄21c a, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
114.281 PC 4̄21c c, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
114.282 PI 4̄21c d, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
115.288 Pc4̄m2 g,E mm2 7.1.20 4̄2m 14.1.48 m 4.1.9 8

mm2 7.1.20 4̄′2′m 14.3.50 m 4.1.9 8
116.296 Pc4̄c2 a,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
116.296 Pc4̄c2 b,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
116.297 PC 4̄c2 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

222 6.1.17 4̄ 10.1.32 2 3.1.6 8
116.297 PC 4̄c2 f, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
116.298 PI 4̄c2 a,E 222 6.1.17 4̄ 10.1.32 2 3.1.6 8
116.298 PI 4̄c2 c, 1E 2E 4̄′ 10.3.34 2′2′2 6.3.19 2 3.1.6 8
117.304 Pc4̄b2 b, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
117.304 Pc4̄b2 c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
118.312 Pc4̄n2 a, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
118.312 Pc4̄n2 c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8
118.313 PC 4̄n2 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 8

222 6.1.17 4̄′ 10.3.34 2 3.1.6 8
118.313 PC 4̄n2 e, 1E 2E 4̄′ 10.3.34 222 6.1.17 2 3.1.6 8
120.326 Ic4̄c2 a,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
120.326 Ic4̄c2 b,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
121.332 Ic4̄2m b,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 4
122.338 Ic4̄2d b, 1E 2E 4̄′ 10.3.34 4̄ 10.1.32 2 3.1.6 8
123.348 Pc4/mmm e,E m′mm 8.3.26 4/m′mm 15.3.55 m’m2’ 7.3.22 8
123.349 PC4/mmm e,E m′mm 8.3.26 4′/mm′m 15.4.56 m’m2’ 7.3.22 8
123.349 PC4/mmm f,E m′mm 8.3.26 4′/mm′m 15.4.56 m’m2’ 7.3.22 8
123.350 PI4/mmm f, 1E 2E 2′/m 5.3.14 4/mmm 15.1.53 m 4.1.9 16

2′/m 5.3.14 4̄′2′m 14.3.50 2’ 3.3.8 16
124.360 Pc4/mcc b,E2 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
124.360 Pc4/mcc b,E1 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
124.360 Pc4/mcc d,E2 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
124.360 Pc4/mcc d,E1 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
124.360 Pc4/mcc e,E m′m′m′ 8.5.28 4/m′m′m′ 15.7.59 m’m’2 7.4.23 8

m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 8
124.361 PC4/mcc a,E2 422 12.1.40 4/m 11.1.35 4 9.1.29 8
124.361 PC4/mcc a,E1 422 12.1.40 4/m 11.1.35 4 9.1.29 8
124.361 PC4/mcc e, 1E 2E 2′/m 5.3.14 4/m 11.1.35 m 4.1.9 16

2′/m 5.3.14 4′/m 11.3.37 m 4.1.9 16
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 16

124.362 PI4/mcc a,E2 422 12.1.40 4/m 11.1.35 4 9.1.29 8
124.362 PI4/mcc a,E1 422 12.1.40 4/m 11.1.35 4 9.1.29 8
124.362 PI4/mcc b,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
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124.362 PI4/mcc e, 1E 2E 2/m′ 5.4.15 422 12.1.40 2 3.1.6 16
2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 16
2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 16

125.372 Pc4/nbm a,E2 422 12.1.40 42′2′ 12.4.43 4 9.1.29 8
125.372 Pc4/nbm a,E1 422 12.1.40 42′2′ 12.4.43 4 9.1.29 8
125.372 Pc4/nbm f, 1E 2E 2′/m 5.3.14 42′2′ 12.4.43 2’ 3.3.8 16

2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 16
2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 16
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 16

126.384 Pc4/nnc b,E2 422 12.1.40 42′2′ 12.4.43 4 9.1.29 8
126.384 Pc4/nnc b,E1 422 12.1.40 42′2′ 12.4.43 4 9.1.29 8
126.384 Pc4/nnc d,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
126.384 Pc4/nnc f, 1E 2E 2/m′ 5.4.15 422 12.1.40 2 3.1.6 16

2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 16
2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 16
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 16

126.386 PI4/nnc c,E m′m′m′ 8.5.28 4/m′m′m′ 15.7.59 m’m’2 7.4.23 8
m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 8

127.396 Pc4/mbm b, 1E2
2E2 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 8

127.396 Pc4/mbm b, 1E1
2E1 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 8

127.397 PC4/mbm e,E m′mm 8.3.26 4/mm′m′ 15.6.58 m’m2’ 7.3.22 8
127.397 PC4/mbm f,E m′mm 8.3.26 4/mm′m′ 15.6.58 m’m2’ 7.3.22 8
127.398 PI4/mbm e, 1E 2E 2′/m 5.3.14 42′2′ 12.4.43 2’ 3.3.8 16

2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 16
2′/m 5.3.14 mmm 8.1.24 m 4.1.9 16

128.408 Pc4/mnc b, 1E2
2E2 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 8

128.408 Pc4/mnc b, 1E1
2E1 4/m′ 11.4.38 4/m 11.1.35 4 9.1.29 8

128.408 Pc4/mnc c,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 8
128.409 PC4/mnc e, 1E 2E 2′/m 5.3.14 4′/m 11.3.37 m 4.1.9 16

2′/m 5.3.14 4/m 11.1.35 m 4.1.9 16
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 16

128.410 PI4/mnc d,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
128.410 PI4/mnc f, 1E 2E 2/m′ 5.4.15 4/mm′m′ 15.6.58 m’ 4.3.11 16

2/m′ 5.4.15 4̄′2m′ 14.4.51 2 3.1.6 16
129.420 Pc4/nmm e, 1E 2E 2′/m 5.3.14 4̄′2′m 14.3.50 2’ 3.3.8 16

2′/m 5.3.14 4mm 13.1.44 m 4.1.9 16
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 16

129.422 PI4/nmm c,E m′mm 8.3.26 4/m′mm 15.3.55 m’m2’ 7.3.22 8
130.432 Pc4/ncc b,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
130.432 Pc4/ncc e, 1E 2E 2/m′ 5.4.15 4̄′2m′ 14.4.51 2 3.1.6 16

2/m′ 5.4.15 4m′m′ 13.4.47 m’ 4.3.11 16
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 16

130.433 PC4/ncc b, 1E2
2E2 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 8

130.433 PC4/ncc b, 1E1
2E1 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 8

130.434 PI4/ncc c, 1E2
2E2 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 8

130.434 PI4/ncc c, 1E1
2E1 4/m′ 11.4.38 42′2′ 12.4.43 4 9.1.29 8

130.434 PI4/ncc d,E m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
131.444 Pc42/mmc e,E m′mm 8.3.26 4′/m′m′m 15.5.57 m’m2’ 7.3.22 8
131.445 PC42/mmc f, 1E 2E 2′/m 5.3.14 mmm 8.1.24 m 4.1.9 16

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 16
131.446 PI42/mmc f, 1E 2E 2/m′ 5.4.15 4′/mm′m 15.4.56 m’ 4.3.11 16

2/m′ 5.4.15 4̄2m 14.1.48 2 3.1.6 16
132.456 Pc42/mcm e,E m′m′m′ 8.5.28 4′/m′m′m 15.5.57 m’m’2 7.4.23 8

m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 8
132.457 PC42/mcm c,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
132.457 PC42/mcm d,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
132.457 PC42/mcm f,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
132.458 PI42/mcm e, 1E 2E 2′/m 5.3.14 4′22′ 12.3.42 2’ 3.3.8 16

2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 16
2′/m 5.3.14 mmm 8.1.24 m 4.1.9 16

133.468 Pc42/nbc c,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
133.468 Pc42/nbc f, 1E 2E 2/m′ 5.4.15 4′22′ 12.3.42 2 3.1.6 16

2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 16
2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 16
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 16

133.469 PC42/nbc a,E m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
133.469 PC42/nbc c,E m′m′m′ 8.5.28 4̄′2m′ 14.4.51 m’m’2 7.4.23 8
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133.469 PC42/nbc d,E 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 8
134.480 Pc42/nnm f, 1E 2E 2′/m 5.3.14 4′22′ 12.3.42 2’ 3.3.8 16

2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 16
2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 16
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 16

134.481 PC42/nnm a,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
134.481 PC42/nnm b,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 8

m′m′m′ 8.5.28 4̄′2m′ 14.4.51 m’m’2 7.4.23 8
134.481 PC42/nnm f,E 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 8
134.482 PI42/nnm c,E m′m′m′ 8.5.28 4′/m′m′m 15.5.57 m’m’2 7.4.23 8

m′m′m′ 8.5.28 4̄′2m′ 14.4.51 m’m’2 7.4.23 8
134.482 PI42/nnm d,E 4̄′2m′ 14.4.51 m′m′m′ 8.5.28 m’m’2 7.4.23 8
135.492 Pc42/mbc c,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 8
135.493 PC42/mbc b,E 4̄′2m′ 14.4.51 m′m′m 8.4.27 m’m’2 7.4.23 8
135.493 PC42/mbc f, 1E 2E 2′/m 5.3.14 m′m′m 8.4.27 m 4.1.9 16

2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 16
135.494 PI42/mbc e, 1E 2E 2/m′ 5.4.15 4′22′ 12.3.42 2 3.1.6 16

2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 16
2/m′ 5.4.15 m′m′m 8.4.27 m’ 4.3.11 16

136.505 PC42/mnm c,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
136.505 PC42/mnm d,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
136.506 PI42/mnm f, 1E 2E 2′/m 5.3.14 4′/mm′m 15.4.56 m 4.1.9 16

2′/m 5.3.14 4̄2′m′ 14.5.52 2’ 3.3.8 16
137.516 Pc42/nmc e, 1E 2E 2/m′ 5.4.15 4̄2m 14.1.48 2 3.1.6 16

2/m′ 5.4.15 4′m′m 13.3.46 m’ 4.3.11 16
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 16

137.518 PI42/nmc c,E m′mm 8.3.26 4′/m′m′m 15.5.57 m’m2’ 7.3.22 8
138.528 Pc42/ncm a,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
138.528 Pc42/ncm e, 1E 2E 2′/m 5.3.14 4̄2′m′ 14.5.52 2’ 3.3.8 16

2′/m 5.3.14 4′m′m 13.3.46 m 4.1.9 16
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 16

138.529 PC42/ncm a,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
138.529 PC42/ncm b,E m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 8

m′m′m′ 8.5.28 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
139.540 Ic4/mmm f,E m′mm 8.3.26 4′/mm′m 15.4.56 m’m2’ 7.3.22 8

m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
140.550 Ic4/mcm b,E2 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
140.550 Ic4/mcm b,E1 4/m′m′m′ 15.7.59 4/mm′m′ 15.6.58 4m’m’ 13.4.47 4
140.550 Ic4/mcm f,E m′mm 8.3.26 4/mm′m′ 15.6.58 m’m2’ 7.3.22 8

m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 8
141.560 Ic41/amd f, 1E 2E 2′/m 5.3.14 4̄2m 14.1.48 m 4.1.9 16

2′/m 5.3.14 4̄′2′m 14.3.50 m 4.1.9 16
2′/m 5.3.14 2′2′2 6.3.19 2’ 3.3.8 16
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 16

142.570 Ic41/acd b,E 4̄′2m′ 14.4.51 4̄2′m′ 14.5.52 m’m’2 7.4.23 8
142.570 Ic41/acd f, 1E 2E 2/m′ 5.4.15 4̄2′m′ 14.5.52 m’ 4.3.11 16

2/m′ 5.4.15 4̄′2m′ 14.4.51 m’ 4.3.11 16
2/m′ 5.4.15 2′2′2 6.3.19 2 3.1.6 16
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 16

147.16 Pc3̄ b,EE 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 4
147.16 Pc3̄ b, 1E 2E 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 4
147.16 Pc3̄ f,AA 1̄′ 2.3.5 3̄ 17.1.62 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
1̄′ 2.3.5 3 16.1.60 1 1.1.1 12
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 12

148.20 RI 3̄ b,EE 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 4
148.20 RI 3̄ b, 1E 2E 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 4
148.20 RI 3̄ d,AA 1̄′ 2.3.5 3̄ 17.1.62 1 1.1.1 12

1̄′ 2.3.5 3̄′ 17.3.64 1 1.1.1 12
1̄′ 2.3.5 1̄ 2.1.3 1 1.1.1 12

149.24 Pc312 a,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 4
149.24 Pc312 c,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 4
149.24 Pc312 e,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 4
150.28 Pc321 a,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 4
155.48 RI32 a,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 4
162.78 Pc3̄1m b, 1E 2E 3̄′1m 20.3.73 3̄1m 20.1.71 31m 19.1.68 4
162.78 Pc3̄1m c,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 8
162.78 Pc3̄1m g, 1E 2E 2′/m 5.3.14 3̄1m 20.1.71 m 4.1.9 12

2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 12
2′/m 5.3.14 32′ 18.3.67 2’ 3.3.8 12
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2′/m 5.3.14 2/m 5.1.12 m 4.1.9 12
163.84 Pc3̄1c b, 1E 2E 3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 4
163.84 Pc3̄1c b,E1 3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 4
163.84 Pc3̄1c d,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 8
163.84 Pc3̄1c g, 1E 2E 2/m′ 5.4.15 3̄1m′ 20.5.75 m’ 4.3.11 12

2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 12
2/m′ 5.4.15 32 18.1.65 2 3.1.6 12
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 12

164.90 Pc3̄m1 b, 1E 2E 3̄′1m 20.3.73 3̄1m 20.1.71 31m 19.1.68 4
164.90 Pc3̄m1 f, 1E 2E 2′/m 5.3.14 3̄1m 20.1.71 m 4.1.9 12

2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 12
2′/m 5.3.14 3m 19.1.68 m 4.1.9 12
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 12

165.96 Pc3̄c1 b, 1E 2E 3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 4
165.96 Pc3̄c1 b,E1 3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 4
165.96 Pc3̄c1 f, 1E 2E 2/m′ 5.4.15 3̄1m′ 20.5.75 m’ 4.3.11 12

2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 12
2/m′ 5.4.15 3m′ 19.3.70 m’ 4.3.11 12
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 12

166.102 RI 3̄m b, 1E 2E 3̄′1m 20.3.73 3̄1m 20.1.71 31m 19.1.68 4
166.102 RI 3̄m d, 1E 2E 2′/m 5.3.14 3̄1m 20.1.71 m 4.1.9 12

2′/m 5.3.14 3̄′1m 20.3.73 2’ 3.3.8 12
2′/m 5.3.14 2/m 5.1.12 m 4.1.9 12

167.108 RI 3̄c b, 1E 2E 3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 4
167.108 RI 3̄c b,E1 3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 4
167.108 RI 3̄c d, 1E 2E 2/m′ 5.4.15 3̄1m′ 20.5.75 m’ 4.3.11 12

2/m′ 5.4.15 3̄′1m′ 20.4.74 2 3.1.6 12
2/m′ 5.4.15 2′/m′ 5.5.16 m’ 4.3.11 12

174.136 Pc6̄ b, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 4
174.136 Pc6̄ d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 4
174.136 Pc6̄ f, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 4
175.142 Pc6/m b, 1E1

2E1 6/m′ 23.4.85 6/m 23.1.82 6 21.1.76 4
175.142 Pc6/m b, 1E3 2E3 6/m′ 23.4.85 6/m 23.1.82 6 21.1.76 4
175.142 Pc6/m b, 1E2

2E2 6/m′ 23.4.85 6/m 23.1.82 6 21.1.76 4
175.142 Pc6/m d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
175.142 Pc6/m g, 1E 2E 2/m′ 5.4.15 6/m′ 23.4.85 m’ 4.3.11 12

2/m′ 5.4.15 6̄′ 22.3.81 m’ 4.3.11 12
2/m′ 5.4.15 2/m 5.1.12 2 3.1.6 12

176.148 Pc63/m a, 1E1
2E1 6′/m 23.3.84 6′/m′ 23.5.86 6’ 21.3.78 4

176.148 Pc63/m d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
176.148 Pc63/m f, 1E 2E 2′/m 5.3.14 6′/m 23.3.84 m 4.1.9 12

2′/m 5.3.14 6̄ 22.1.79 m 4.1.9 12
2′/m 5.3.14 2′/m′ 5.5.16 2’ 3.3.8 12

177.154 Pc622 a,E3 622 24.1.87 62′2′ 24.4.90 6 21.1.76 4
177.154 Pc622 a,E2 622 24.1.87 62′2′ 24.4.90 6 21.1.76 4
177.154 Pc622 a,E1 622 24.1.87 62′2′ 24.4.90 6 21.1.76 4
177.154 Pc622 c,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 8
177.154 Pc622 f,E 222 6.1.17 622 24.1.87 2 3.1.6 12

222 6.1.17 32 18.1.65 2 3.1.6 12
222 6.1.17 2′2′2 6.3.19 2 3.1.6 12

180.172 Pc6222 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 12
180.172 Pc6222 c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 12
181.178 Pc6422 a,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 12
181.178 Pc6422 c,E 222 6.1.17 2′2′2 6.3.19 2 3.1.6 12
182.184 Pc6322 d,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 8
183.190 Pc6mm c,E mm2 7.1.20 6mm 25.1.91 m 4.1.9 12

mm2 7.1.20 3m 19.1.68 m 4.1.9 12
187.214 Pc6̄m2 a,E3 6̄m2 26.1.95 6̄′m2′ 26.4.98 31m 19.1.68 4
187.214 Pc6̄m2 c,E3 6̄m2 26.1.95 6̄′m2′ 26.4.98 31m 19.1.68 4
187.214 Pc6̄m2 e,E3 6̄m2 26.1.95 6̄′m2′ 26.4.98 31m 19.1.68 4
188.220 Pc6̄c2 a,E1 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 31m’ 19.3.70 4
188.220 Pc6̄c2 c,E1 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 31m’ 19.3.70 4
188.220 Pc6̄c2 e,E1 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 31m’ 19.3.70 4
189.226 Pc6̄2m a,E3 6̄m2 26.1.95 6̄′m2′ 26.4.98 31m 19.1.68 4
189.226 Pc6̄2m d, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
190.232 Pc6̄2c a,E1 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 31m’ 19.3.70 4
190.232 Pc6̄2c c, 1E 2E 6̄′ 22.3.81 6̄ 22.1.79 3 16.1.60 8
191.242 Pc6/mmm c,E3 6̄m2 26.1.95 6̄′m2′ 26.4.98 31m 19.1.68 8
191.242 Pc6/mmm g,E m′mm 8.3.26 6/m′mm 27.3.102 m’m2’ 7.3.22 12
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m′mm 8.3.26 6̄′m2′ 26.4.98 m’m2’ 7.3.22 12
192.252 Pc6/mcc b,E3 6/m′m′m′ 27.7.106 6/mm′m′ 27.6.105 6m’m’ 25.4.94 4
192.252 Pc6/mcc b,E2 6/m′m′m′ 27.7.106 6/mm′m′ 27.6.105 6m’m’ 25.4.94 4
192.252 Pc6/mcc b,E1 6/m′m′m′ 27.7.106 6/mm′m′ 27.6.105 6m’m’ 25.4.94 4
192.252 Pc6/mcc d,E1 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 31m’ 19.3.70 8
192.252 Pc6/mcc g,E m′m′m′ 8.5.28 6/m′m′m′ 27.7.106 m’m’2 7.4.23 12

m′m′m′ 8.5.28 6̄′m′2 26.3.97 m’m’2 7.4.23 12
m′m′m′ 8.5.28 m′m′m 8.4.27 m’m’2 7.4.23 12

193.262 Pc63/mcm a,E3 6′/mmm′ 27.4.103 6′/m′mm′ 27.5.104 6’mm’ 25.3.93 4
193.262 Pc63/mcm d,E1 6̄′m′2 26.3.97 6̄m′2′ 26.5.99 31m’ 19.3.70 8
193.262 Pc63/mcm f,E m′mm 8.3.26 6̄m′2′ 26.5.99 m’m2’ 7.3.22 12

m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 12
194.272 Pc63/mmc a,E3 6′/mmm′ 27.4.103 6′/m′mm′ 27.5.104 6’mm’ 25.3.93 4
194.272 Pc63/mmc c,E3 6̄m2 26.1.95 6̄′m2′ 26.4.98 31m 19.1.68 8
194.272 Pc63/mmc f,E m′mm 8.3.26 6′/mmm′ 27.4.103 m’m2’ 7.3.22 12

m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 12
195.3 PI23 b,E 222 6.1.17 23 28.1.107 2 3.1.6 12
200.17 PIm3̄ c,EE 3̄′ 17.3.64 m3̄ 29.1.109 3 16.1.60 16
200.17 PIm3̄ c, 1E 2E 3̄′ 17.3.64 m3̄ 29.1.109 3 16.1.60 16
201.21 PIn3̄ b,E m′m′m′ 8.5.28 m′3̄′ 29.3.111 m’m’2 7.4.23 12
202.25 FSm3̄ d,E m′mm 8.3.26 m′m′m 8.4.27 m’m2’ 7.3.22 12
203.29 FSd3̄ c,EE 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 16
203.29 FSd3̄ c, 1E 2E 3̄′ 17.3.64 23 28.1.107 3 16.1.60 16

3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 16
205.36 PIa3̄ a,EE 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 16
205.36 PIa3̄ a, 1E 2E 3̄′ 17.3.64 3̄ 17.1.62 3 16.1.60 16
207.43 PI432 b,E2 422 12.1.40 432 30.1.112 4 9.1.29 12
207.43 PI432 b,E1 422 12.1.40 432 30.1.112 4 9.1.29 12
208.47 PI4232 c,E1 32 18.1.65 4′32′ 30.3.114 3 16.1.60 16
208.47 PI4232 d,E 222 6.1.17 4′22′ 12.3.42 2 3.1.6 24

222 6.1.17 32 18.1.65 2 3.1.6 24
210.55 FS4132 b,E1 32 18.1.65 23 28.1.107 3 16.1.60 16

32 18.1.65 32′ 18.3.67 3 16.1.60 16
212.62 PI4332 a,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 16
213.66 PI4132 b,E1 32 18.1.65 32′ 18.3.67 3 16.1.60 16
215.73 PI 4̄3m d, 1E 2E 4̄′ 10.3.34 4̄2m 14.1.48 2 3.1.6 24
218.84 PI 4̄3n b,E 4̄′2m′ 14.4.51 4̄′3m′ 31.3.117 m’m’2 7.4.23 12
221.97 PIm3̄m c, 1E 2E 3̄′1m 20.3.73 m3̄m 32.1.118 31m 19.1.68 16
222.103 PIn3̄n b,E2 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 12
222.103 PIn3̄n b,E1 4/m′m′m′ 15.7.59 m′3̄′m′ 32.5.122 4m’m’ 13.4.47 12
223.109 PIm3̄n c, 1E 2E 3̄′1m′ 20.4.74 m3̄m′ 32.4.121 31m’ 19.3.70 16
223.109 PIm3̄n c,E1 3̄′1m′ 20.4.74 m3̄m′ 32.4.121 31m’ 19.3.70 16
224.115 PIn3̄m d,E 4̄′2m′ 14.4.51 4′/m′m′m 15.5.57 m’m’2 7.4.23 24
227.133 FSd3̄m a,F 4̄3m 31.1.115 3̄1m 20.1.71 31m 19.1.68 16

4̄3m 31.1.115 3̄′1m 20.3.73 31m 19.1.68 16
227.133 FSd3̄m c, 1E 2E 3̄′1m 20.3.73 4̄3m 31.1.115 31m 19.1.68 16

3̄′1m 20.3.73 3̄1m 20.1.71 31m 19.1.68 16
228.139 FSd3̄c c, 1E 2E 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 16

3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 16
228.139 FSd3̄c c,E1 3̄′1m′ 20.4.74 4̄′3m′ 31.3.117 31m’ 19.3.70 16

3̄′1m′ 20.4.74 3̄1m′ 20.5.75 31m’ 19.3.70 16
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2. Maximum and Minimum Dimensions of the Single- and Double-Valued MEBRs

In this section we provide a complete tabulation of the maximum (M) and minimum (m) EBR dimension in each
single and double SSG. As discussed in Appendix E 3, the EBRs are composed of the MEBRs of the Type-I MSGs
and the PEBRs of the Type-II SGs previously computed for TQC5,57,58,60,85,86, as well as the MEBRs of the Type-III
and Type-IV MSGs that were calculated for the present work. For each EBR ρ̃Gq , the dimension of ρ̃Gq is defined as

χρ̃q(E) × n, where ρ̃q is the (co)rep of the site-symmetry group Gq from which ρ̃Gq is induced [see Eq. (E19) and
the surrounding text], and where n is the multiplicity of the Wyckoff position indexed by q [see the text surrounding
Eq. (E20)]. For each single and double SSG, we have confirmed that the minimum EBR dimension m is consistent
with the minimum atomic insulator dimension previously calculated in Ref. 16. We emphasize that the maximum
EBR dimension M does not always coincide with the maximum band connectivity in an SSG, due to the possibility of
decomposable [i.e. disconnected or split] EBRs (see Refs. 5,6,56–58,86,141 and the text surrounding Tables X and XI).
To calculate the maximum band connectivity in the 1,651 SSGs, one must perform the intermediate tabulation of
the basic bands141, which for each SSG are composed of the disconnected branches of the decomposable EBRs, the
connected [indecomposable] EBRs, and the connected topological bands in the SSG (Appendix F). The basic bands of
the Type-II double SGs were previously tabulated in Ref. 141; we leave the complete enumeration of the basic bands
of the single SSGs and the double MSGs for future works.

a. Maximum and Minimum Dimensions of the Single-Valued EBRs of the 1,651 Single SSGs

TABLE XXIV: Maximum and minimum dimensions of the single-valued
EBRs of the 1,651 single SSGs. In order, the columns in this table list
the symbol of the SSG, the number of the SSG in the BNS setting126,
the maximum EBR dimension in the SSG (M), and the minimum EBR
dimension in the SSG (m).

Symbol BNS Number M m Symbol BNS Number M m Symbol BNS Number M m Symbol BNS Number M m
P1 1.1 1 1 P11′ 1.2 1 1 PS1 1.3 2 2 P 1̄ 2.4 1 1
P 1̄1′ 2.5 1 1 P 1̄′ 2.6 1 1 PS 1̄ 2.7 2 2 P2 3.1 1 1
P21′ 3.2 1 1 P2′ 3.3 1 1 Pa2 3.4 2 2 Pb2 3.5 2 2
PC2 3.6 2 2 P21 4.7 2 2 P211′ 4.8 2 2 P2′1 4.9 2 2
Pa21 4.10 4 4 Pb21 4.11 2 2 PC21 4.12 2 2 C2 5.13 1 1
C21′ 5.14 1 1 C2′ 5.15 1 1 Cc2 5.16 2 2 Ca2 5.17 2 2
Pm 6.18 1 1 Pm1′ 6.19 1 1 Pm′ 6.20 1 1 Pam 6.21 2 2
Pbm 6.22 2 2 PCm 6.23 2 2 Pc 7.24 2 2 Pc1′ 7.25 2 2
Pc′ 7.26 2 2 Pac 7.27 4 4 Pcc 7.28 2 2 Pbc 7.29 4 4
PCc 7.30 4 4 PAc 7.31 2 2 Cm 8.32 1 1 Cm1′ 8.33 1 1
Cm′ 8.34 1 1 Ccm 8.35 2 2 Cam 8.36 2 2 Cc 9.37 2 2
Cc1′ 9.38 2 2 Cc′ 9.39 2 2 Ccc 9.40 2 2 Cac 9.41 4 4
P2/m 10.42 1 1 P2/m1′ 10.43 1 1 P2′/m 10.44 1 1 P2/m′ 10.45 1 1
P2′/m′ 10.46 1 1 Pa2/m 10.47 2 2 Pb2/m 10.48 2 2 PC2/m 10.49 4 2
P21/m 11.50 2 2 P21/m1′ 11.51 2 2 P2′1/m 11.52 2 2 P21/m

′ 11.53 2 2
P2′1/m

′ 11.54 2 2 Pa21/m 11.55 4 4 Pb21/m 11.56 2 2 PC21/m 11.57 4 2
C2/m 12.58 2 1 C2/m1′ 12.59 2 1 C2′/m 12.60 2 1 C2/m′ 12.61 2 1
C2′/m′ 12.62 2 1 Cc2/m 12.63 4 2 Ca2/m 12.64 2 2 P2/c 13.65 2 2
P2/c1′ 13.66 2 2 P2′/c 13.67 2 2 P2/c′ 13.68 2 2 P2′/c′ 13.69 2 2
Pa2/c 13.70 4 4 Pb2/c 13.71 4 4 Pc2/c 13.72 2 2 PA2/c 13.73 4 2
PC2/c 13.74 4 4 P21/c 14.75 2 2 P21/c1

′ 14.76 2 2 P2′1/c 14.77 2 2
P21/c

′ 14.78 2 2 P2′1/c
′ 14.79 2 2 Pa21/c 14.80 4 4 Pb21/c 14.81 4 4

Pc21/c 14.82 4 4 PA21/c 14.83 4 2 PC21/c 14.84 4 4 C2/c 15.85 2 2
C2/c1′ 15.86 2 2 C2′/c 15.87 2 2 C2/c′ 15.88 2 2 C2′/c′ 15.89 2 2
Cc2/c 15.90 4 2 Ca2/c 15.91 4 4 P222 16.1 1 1 P2221′ 16.2 1 1
P2′2′2 16.3 1 1 Pa222 16.4 2 2 PC222 16.5 4 2 PI222 16.6 2 2
P2221 17.7 2 2 P22211′ 17.8 2 2 P2′2′21 17.9 2 2 P22′2′1 17.10 2 2
Pa2221 17.11 4 4 Pc2221 17.12 2 2 PB2221 17.13 4 2 PC2221 17.14 4 4
PI2221 17.15 4 4 P21212 18.16 2 2 P212121′ 18.17 2 2 P2′12′12 18.18 2 2
P212′12′ 18.19 2 2 Pb21212 18.20 4 4 Pc21212 18.21 4 4 PB21212 18.22 4 4
PC21212 18.23 4 2 PI21212 18.24 2 2 P212121 19.25 4 4 P2121211′ 19.26 4 4
P2′12′121 19.27 4 4 Pc212121 19.28 4 4 PC212121 19.29 4 4 PI212121 19.30 4 4
C2221 20.31 2 2 C22211′ 20.32 2 2 C2′2′21 20.33 2 2 C22′2′1 20.34 2 2
Cc2221 20.35 4 2 Ca2221 20.36 4 4 CA2221 20.37 2 2 C222 21.38 2 1
C2221′ 21.39 2 1 C2′2′2 21.40 2 1 C22′2′ 21.41 2 1 Cc222 21.42 4 2
Ca222 21.43 2 2 CA222 21.44 2 2 F222 22.45 1 1 F2221′ 22.46 1 1
F2′2′2 22.47 1 1 FS222 22.48 2 2 I222 23.49 1 1 I2221′ 23.50 1 1
I2′2′2 23.51 1 1 Ic222 23.52 4 2 I212121 24.53 2 2 I2121211′ 24.54 2 2
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I2′12′121 24.55 2 2 Ic212121 24.56 4 2 Pmm2 25.57 1 1 Pmm21′ 25.58 1 1
Pm′m2′ 25.59 1 1 Pm′m′2 25.60 1 1 Pcmm2 25.61 2 2 Pamm2 25.62 2 2
PCmm2 25.63 4 2 PAmm2 25.64 2 2 PImm2 25.65 2 2 Pmc21 26.66 2 2
Pmc211′ 26.67 2 2 Pm′c2′1 26.68 2 2 Pmc′2′1 26.69 2 2 Pm′c′21 26.70 2 2
Pamc21 26.71 4 4 Pbmc21 26.72 4 4 Pcmc21 26.73 2 2 PAmc21 26.74 2 2
PBmc21 26.75 4 4 PCmc21 26.76 4 4 PImc21 26.77 4 4 Pcc2 27.78 2 2
Pcc21′ 27.79 2 2 Pc′c2′ 27.80 2 2 Pc′c′2 27.81 2 2 Pccc2 27.82 2 2
Pacc2 27.83 4 4 PCcc2 27.84 4 4 PAcc2 27.85 4 4 PIcc2 27.86 4 4
Pma2 28.87 2 2 Pma21′ 28.88 2 2 Pm′a2′ 28.89 2 2 Pma′2′ 28.90 2 2
Pm′a′2 28.91 2 2 Pama2 28.92 2 2 Pbma2 28.93 4 4 Pcma2 28.94 4 4
PAma2 28.95 4 4 PBma2 28.96 4 4 PCma2 28.97 4 2 PIma2 28.98 4 4
Pca21 29.99 4 4 Pca211′ 29.100 4 4 Pc′a2′1 29.101 4 4 Pca′2′1 29.102 4 4
Pc′a′21 29.103 4 4 Paca21 29.104 4 4 Pbca21 29.105 8 8 Pcca21 29.106 4 4
PAca21 29.107 4 4 PBca21 29.108 4 4 PCca21 29.109 4 4 PIca21 29.110 4 4
Pnc2 30.111 2 2 Pnc21′ 30.112 2 2 Pn′c2′ 30.113 2 2 Pnc′2′ 30.114 2 2
Pn′c′2 30.115 2 2 Panc2 30.116 4 4 Pbnc2 30.117 4 4 Pcnc2 30.118 4 4
PAnc2 30.119 2 2 PBnc2 30.120 4 4 PCnc2 30.121 4 4 PInc2 30.122 4 4
Pmn21 31.123 2 2 Pmn211′ 31.124 2 2 Pm′n2′1 31.125 2 2 Pmn′2′1 31.126 2 2
Pm′n′21 31.127 2 2 Pamn21 31.128 4 4 Pbmn21 31.129 4 4 Pcmn21 31.130 4 4
PAmn21 31.131 4 4 PBmn21 31.132 2 2 PCmn21 31.133 4 4 PImn21 31.134 2 2
Pba2 32.135 2 2 Pba21′ 32.136 2 2 Pb′a2′ 32.137 2 2 Pb′a′2 32.138 2 2
Pcba2 32.139 4 4 Pbba2 32.140 4 4 PCba2 32.141 4 2 PAba2 32.142 4 4
PIba2 32.143 4 4 Pna21 33.144 4 4 Pna211′ 33.145 4 4 Pn′a2′1 33.146 4 4
Pna′2′1 33.147 4 4 Pn′a′21 33.148 4 4 Pana21 33.149 4 4 Pbna21 33.150 8 8
Pcna21 33.151 4 4 PAna21 33.152 4 4 PBna21 33.153 4 4 PCna21 33.154 4 4
PIna21 33.155 4 4 Pnn2 34.156 2 2 Pnn21′ 34.157 2 2 Pn′n2′ 34.158 2 2
Pn′n′2 34.159 2 2 Pann2 34.160 4 4 Pcnn2 34.161 4 4 PAnn2 34.162 4 4
PCnn2 34.163 4 4 PInn2 34.164 2 2 Cmm2 35.165 2 1 Cmm21′ 35.166 2 1
Cm′m2′ 35.167 2 1 Cm′m′2 35.168 2 1 Ccmm2 35.169 4 2 Camm2 35.170 2 2
CAmm2 35.171 4 2 Cmc21 36.172 2 2 Cmc211′ 36.173 2 2 Cm′c2′1 36.174 2 2
Cmc′2′1 36.175 2 2 Cm′c′21 36.176 2 2 Ccmc21 36.177 4 2 Camc21 36.178 4 4
CAmc21 36.179 4 2 Ccc2 37.180 2 2 Ccc21′ 37.181 2 2 Cc′c2′ 37.182 2 2
Cc′c′2 37.183 2 2 Cccc2 37.184 4 2 Cacc2 37.185 4 4 CAcc2 37.186 4 2
Amm2 38.187 1 1 Amm21′ 38.188 1 1 Am′m2′ 38.189 1 1 Amm′2′ 38.190 1 1
Am′m′2 38.191 1 1 Aamm2 38.192 2 2 Abmm2 38.193 2 2 ABmm2 38.194 4 2
Abm2 39.195 2 2 Abm21′ 39.196 2 2 Ab′m2′ 39.197 2 2 Abm′2′ 39.198 2 2
Ab′m′2 39.199 2 2 Aabm2 39.200 4 4 Abbm2 39.201 2 2 ABbm2 39.202 4 2
Ama2 40.203 2 2 Ama21′ 40.204 2 2 Am′a2′ 40.205 2 2 Ama′2′ 40.206 2 2
Am′a′2 40.207 2 2 Aama2 40.208 2 2 Abma2 40.209 4 4 ABma2 40.210 4 2
Aba2 41.211 2 2 Aba21′ 41.212 2 2 Ab′a2′ 41.213 2 2 Aba′2′ 41.214 2 2
Ab′a′2 41.215 2 2 Aaba2 41.216 4 4 Abba2 41.217 4 4 ABba2 41.218 4 2
Fmm2 42.219 2 1 Fmm21′ 42.220 2 1 Fm′m2′ 42.221 2 1 Fm′m′2 42.222 2 1
FSmm2 42.223 2 2 Fdd2 43.224 2 2 Fdd21′ 43.225 2 2 Fd′d2′ 43.226 2 2
Fd′d′2 43.227 2 2 FSdd2 43.228 4 4 Imm2 44.229 1 1 Imm21′ 44.230 1 1
Im′m2′ 44.231 1 1 Im′m′2 44.232 1 1 Icmm2 44.233 4 2 Iamm2 44.234 2 2
Iba2 45.235 2 2 Iba21′ 45.236 2 2 Ib′a2′ 45.237 2 2 Ib′a′2 45.238 2 2
Icba2 45.239 4 2 Iaba2 45.240 4 4 Ima2 46.241 2 2 Ima21′ 46.242 2 2
Im′a2′ 46.243 2 2 Ima′2′ 46.244 2 2 Im′a′2 46.245 2 2 Icma2 46.246 4 2
Iama2 46.247 2 2 Ibma2 46.248 4 4 Pmmm 47.249 1 1 Pmmm1′ 47.250 1 1
Pm′mm 47.251 1 1 Pm′m′m 47.252 1 1 Pm′m′m′ 47.253 1 1 Pammm 47.254 2 2
PCmmm 47.255 4 2 PImmm 47.256 8 2 Pnnn 48.257 4 2 Pnnn1′ 48.258 4 2
Pn′nn 48.259 4 2 Pn′n′n 48.260 4 2 Pn′n′n′ 48.261 4 2 Pcnnn 48.262 8 4
PCnnn 48.263 4 4 PInnn 48.264 8 2 Pccm 49.265 2 2 Pccm1′ 49.266 2 2
Pc′cm 49.267 2 2 Pccm′ 49.268 2 2 Pc′c′m 49.269 2 2 Pc′cm′ 49.270 2 2
Pc′c′m′ 49.271 2 2 Paccm 49.272 4 4 Pcccm 49.273 2 2 PBccm 49.274 4 4
PCccm 49.275 4 4 PIccm 49.276 8 4 Pban 50.277 4 2 Pban1′ 50.278 4 2
Pb′an 50.279 4 2 Pban′ 50.280 4 2 Pb′a′n 50.281 4 2 Pb′an′ 50.282 4 2
Pb′a′n′ 50.283 4 2 Paban 50.284 4 4 Pcban 50.285 8 4 PAban 50.286 8 4
PCban 50.287 4 2 PIban 50.288 8 4 Pmma 51.289 2 2 Pmma1′ 51.290 2 2
Pm′ma 51.291 2 2 Pmm′a 51.292 2 2 Pmma′ 51.293 2 2 Pm′m′a 51.294 2 2
Pmm′a′ 51.295 2 2 Pm′ma′ 51.296 2 2 Pm′m′a′ 51.297 2 2 Pamma 51.298 2 2
Pbmma 51.299 4 4 Pcmma 51.300 4 4 PAmma 51.301 8 4 PBmma 51.302 4 2
PCmma 51.303 4 4 PImma 51.304 4 4 Pnna 52.305 4 4 Pnna1′ 52.306 4 4
Pn′na 52.307 4 4 Pnn′a 52.308 4 4 Pnna′ 52.309 4 4 Pn′n′a 52.310 4 4
Pnn′a′ 52.311 4 4 Pn′na′ 52.312 4 4 Pn′n′a′ 52.313 4 4 Panna 52.314 8 4
Pbnna 52.315 8 4 Pcnna 52.316 8 8 PAnna 52.317 4 4 PBnna 52.318 8 4
PCnna 52.319 8 4 PInna 52.320 4 4 Pmna 53.321 4 2 Pmna1′ 53.322 4 2
Pm′na 53.323 4 2 Pmn′a 53.324 4 2 Pmna′ 53.325 4 2 Pm′n′a 53.326 4 2
Pmn′a′ 53.327 4 2 Pm′na′ 53.328 4 2 Pm′n′a′ 53.329 4 2 Pamna 53.330 4 4
Pbmna 53.331 8 4 Pcmna 53.332 4 4 PAmna 53.333 4 4 PBmna 53.334 4 2
PCmna 53.335 8 4 PImna 53.336 4 4 Pcca 54.337 4 4 Pcca1′ 54.338 4 4
Pc′ca 54.339 4 4 Pcc′a 54.340 4 4 Pcca′ 54.341 4 4 Pc′c′a 54.342 4 4
Pcc′a′ 54.343 4 4 Pc′ca′ 54.344 4 4 Pc′c′a′ 54.345 4 4 Pacca 54.346 4 4
Pbcca 54.347 8 8 Pccca 54.348 4 4 PAcca 54.349 8 4 PBcca 54.350 4 4
PCcca 54.351 8 4 PIcca 54.352 8 8 Pbam 55.353 2 2 Pbam1′ 55.354 2 2
Pb′am 55.355 2 2 Pbam′ 55.356 2 2 Pb′a′m 55.357 2 2 Pb′am′ 55.358 2 2
Pb′a′m′ 55.359 2 2 Pabam 55.360 4 4 Pcbam 55.361 4 4 PAbam 55.362 8 4
PCbam 55.363 4 2 PIbam 55.364 8 4 Pccn 56.365 4 4 Pccn1′ 56.366 4 4
Pc′cn 56.367 4 4 Pccn′ 56.368 4 4 Pc′c′n 56.369 4 4 Pc′cn′ 56.370 4 4
Pc′c′n′ 56.371 4 4 Pbccn 56.372 8 8 Pcccn 56.373 8 4 PAccn 56.374 8 4
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PCccn 56.375 4 4 PIccn 56.376 8 4 Pbcm 57.377 4 4 Pbcm1′ 57.378 4 4
Pb′cm 57.379 4 4 Pbc′m 57.380 4 4 Pbcm′ 57.381 4 4 Pb′c′m 57.382 4 4
Pbc′m′ 57.383 4 4 Pb′cm′ 57.384 4 4 Pb′c′m′ 57.385 4 4 Pabcm 57.386 8 8
Pbbcm 57.387 4 4 Pcbcm 57.388 4 4 PAbcm 57.389 4 4 PBbcm 57.390 8 4
PCbcm 57.391 8 4 PIbcm 57.392 8 4 Pnnm 58.393 2 2 Pnnm1′ 58.394 2 2
Pn′nm 58.395 2 2 Pnnm′ 58.396 2 2 Pn′n′m 58.397 2 2 Pnn′m′ 58.398 2 2
Pn′n′m′ 58.399 2 2 Pannm 58.400 8 4 Pcnnm 58.401 4 4 PBnnm 58.402 8 4
PCnnm 58.403 4 4 PInnm 58.404 8 2 Pmmn 59.405 4 2 Pmmn1′ 59.406 4 2
Pm′mn 59.407 4 2 Pmmn′ 59.408 4 2 Pm′m′n 59.409 4 2 Pmm′n′ 59.410 4 2
Pm′m′n′ 59.411 4 2 Pbmmn 59.412 4 4 Pcmmn 59.413 8 4 PBmmn 59.414 8 4
PCmmn 59.415 4 2 PImmn 59.416 8 2 Pbcn 60.417 4 4 Pbcn1′ 60.418 4 4
Pb′cn 60.419 4 4 Pbc′n 60.420 4 4 Pbcn′ 60.421 4 4 Pb′c′n 60.422 4 4
Pbc′n′ 60.423 4 4 Pb′cn′ 60.424 4 4 Pb′c′n′ 60.425 4 4 Pabcn 60.426 8 8
Pbbcn 60.427 8 8 Pcbcn 60.428 8 4 PAbcn 60.429 8 4 PBbcn 60.430 8 4
PCbcn 60.431 8 4 PIbcn 60.432 8 4 Pbca 61.433 4 4 Pbca1′ 61.434 4 4
Pb′ca 61.435 4 4 Pb′c′a 61.436 4 4 Pb′c′a′ 61.437 4 4 Pabca 61.438 8 8
PCbca 61.439 8 4 PIbca 61.440 8 8 Pnma 62.441 4 4 Pnma1′ 62.442 4 4
Pn′ma 62.443 4 4 Pnm′a 62.444 4 4 Pnma′ 62.445 4 4 Pn′m′a 62.446 4 4
Pnm′a′ 62.447 4 4 Pn′ma′ 62.448 4 4 Pn′m′a′ 62.449 4 4 Panma 62.450 8 4
Pbnma 62.451 4 4 Pcnma 62.452 8 8 PAnma 62.453 8 4 PBnma 62.454 8 4
PCnma 62.455 8 4 PInma 62.456 4 4 Cmcm 63.457 4 2 Cmcm1′ 63.458 4 2
Cm′cm 63.459 4 2 Cmc′m 63.460 4 2 Cmcm′ 63.461 4 2 Cm′c′m 63.462 4 2
Cmc′m′ 63.463 4 2 Cm′cm′ 63.464 4 2 Cm′c′m′ 63.465 4 2 Ccmcm 63.466 4 2
Camcm 63.467 4 4 CAmcm 63.468 4 2 Cmca 64.469 4 2 Cmca1′ 64.470 4 2
Cm′ca 64.471 4 2 Cmc′a 64.472 4 2 Cmca′ 64.473 4 2 Cm′c′a 64.474 4 2
Cmc′a′ 64.475 4 2 Cm′ca′ 64.476 4 2 Cm′c′a′ 64.477 4 2 Ccmca 64.478 4 4
Camca 64.479 4 4 CAmca 64.480 4 2 Cmmm 65.481 2 1 Cmmm1′ 65.482 2 1
Cm′mm 65.483 2 1 Cmmm′ 65.484 2 1 Cm′m′m 65.485 2 1 Cmm′m′ 65.486 2 1
Cm′m′m′ 65.487 2 1 Ccmmm 65.488 4 2 Cammm 65.489 2 2 CAmmm 65.490 4 2
Cccm 66.491 2 2 Cccm1′ 66.492 2 2 Cc′cm 66.493 2 2 Cccm′ 66.494 2 2
Cc′c′m 66.495 2 2 Ccc′m′ 66.496 2 2 Cc′c′m′ 66.497 2 2 Ccccm 66.498 4 2
Caccm 66.499 4 4 CAccm 66.500 4 2 Cmma 67.501 2 2 Cmma1′ 67.502 2 2
Cm′ma 67.503 2 2 Cmma′ 67.504 2 2 Cm′m′a 67.505 2 2 Cmm′a′ 67.506 2 2
Cm′m′a′ 67.507 2 2 Ccmma 67.508 4 4 Camma 67.509 2 2 CAmma 67.510 4 2
Ccca 68.511 4 2 Ccca1′ 68.512 4 2 Cc′ca 68.513 4 2 Ccca′ 68.514 4 2
Cc′c′a 68.515 4 2 Ccc′a′ 68.516 4 2 Cc′c′a′ 68.517 4 2 Cccca 68.518 4 4
Cacca 68.519 4 4 CAcca 68.520 4 2 Fmmm 69.521 2 1 Fmmm1′ 69.522 2 1
Fm′mm 69.523 2 1 Fm′m′m 69.524 2 1 Fm′m′m′ 69.525 2 1 FSmmm 69.526 2 2
Fddd 70.527 4 2 Fddd1′ 70.528 4 2 Fd′dd 70.529 4 2 Fd′d′d 70.530 4 2
Fd′d′d′ 70.531 4 2 FSddd 70.532 8 4 Immm 71.533 4 1 Immm1′ 71.534 4 1
Im′mm 71.535 4 1 Im′m′m 71.536 4 1 Im′m′m′ 71.537 4 1 Icmmm 71.538 4 2
Ibam 72.539 4 2 Ibam1′ 72.540 4 2 Ib′am 72.541 4 2 Ibam′ 72.542 4 2
Ib′a′m 72.543 4 2 Iba′m′ 72.544 4 2 Ib′a′m′ 72.545 4 2 Icbam 72.546 4 2
Ibbam 72.547 4 4 Ibca 73.548 4 4 Ibca1′ 73.549 4 4 Ib′ca 73.550 4 4
Ib′c′a 73.551 4 4 Ib′c′a′ 73.552 4 4 Icbca 73.553 4 4 Imma 74.554 2 2
Imma1′ 74.555 2 2 Im′ma 74.556 2 2 Imma′ 74.557 2 2 Im′m′a 74.558 2 2
Imm′a′ 74.559 2 2 Im′m′a′ 74.560 2 2 Icmma 74.561 4 4 Ibmma 74.562 4 2
P4 75.1 2 1 P41′ 75.2 2 1 P4′ 75.3 2 1 Pc4 75.4 4 2
PC4 75.5 4 2 PI4 75.6 4 2 P41 76.7 4 4 P411′ 76.8 4 4
P4′1 76.9 4 4 Pc41 76.10 4 4 PC41 76.11 8 8 PI41 76.12 4 4
P42 77.13 2 2 P421′ 77.14 2 2 P4′2 77.15 2 2 Pc42 77.16 4 2
PC42 77.17 4 4 PI42 77.18 4 2 P43 78.19 4 4 P431′ 78.20 4 4
P4′3 78.21 4 4 Pc43 78.22 4 4 PC43 78.23 8 8 PI43 78.24 4 4
I4 79.25 2 1 I41′ 79.26 2 1 I4′ 79.27 2 1 Ic4 79.28 4 2
I41 80.29 2 2 I411′ 80.30 2 2 I4′1 80.31 2 2 Ic41 80.32 4 4
P 4̄ 81.33 2 1 P 4̄1′ 81.34 2 1 P 4̄′ 81.35 2 1 Pc4̄ 81.36 4 2
PC 4̄ 81.37 4 2 PI 4̄ 81.38 4 2 I 4̄ 82.39 1 1 I 4̄1′ 82.40 2 1
I 4̄′ 82.41 2 1 Ic4̄ 82.42 4 2 P4/m 83.43 2 1 P4/m1′ 83.44 2 1
P4′/m 83.45 2 1 P4/m′ 83.46 2 1 P4′/m′ 83.47 2 1 Pc4/m 83.48 4 2
PC4/m 83.49 4 2 PI4/m 83.50 8 2 P42/m 84.51 2 2 P42/m1′ 84.52 2 2
P4′2/m 84.53 2 2 P42/m

′ 84.54 2 2 P4′2/m
′ 84.55 2 2 Pc42/m 84.56 4 2

PC42/m 84.57 4 4 PI42/m 84.58 8 2 P4/n 85.59 4 2 P4/n1′ 85.60 4 2
P4′/n 85.61 4 2 P4/n′ 85.62 4 2 P4′/n′ 85.63 4 2 Pc4/n 85.64 8 4
PC4/n 85.65 4 2 PI4/n 85.66 8 2 P42/n 86.67 4 2 P42/n1′ 86.68 4 2
P4′2/n 86.69 4 2 P42/n

′ 86.70 4 2 P4′2/n
′ 86.71 4 2 Pc42/n 86.72 8 4

PC42/n 86.73 4 4 PI42/n 86.74 8 2 I4/m 87.75 4 1 I4/m1′ 87.76 4 1
I4′/m 87.77 4 1 I4/m′ 87.78 4 1 I4′/m′ 87.79 4 1 Ic4/m 87.80 4 2
I41/a 88.81 4 2 I41/a1′ 88.82 4 2 I4′1/a 88.83 4 2 I41/a

′ 88.84 4 2
I4′1/a

′ 88.85 4 2 Ic41/a 88.86 8 4 P422 89.87 2 1 P4221′ 89.88 2 1
P4′22′ 89.89 2 1 P42′2′ 89.90 2 1 P4′2′2 89.91 2 1 Pc422 89.92 4 2
PC422 89.93 4 2 PI422 89.94 4 2 P4212 90.95 2 2 P42121′ 90.96 4 2
P4′212′ 90.97 4 2 P42′12′ 90.98 2 2 P4′2′12 90.99 4 2 Pc4212 90.100 4 4
PC4212 90.101 4 2 PI4212 90.102 4 2 P4122 91.103 4 4 P41221′ 91.104 4 4
P4′122′ 91.105 4 4 P412′2′ 91.106 4 4 P4′12′2 91.107 4 4 Pc4122 91.108 4 4
PC4122 91.109 8 8 PI4122 91.110 8 4 P41212 92.111 4 4 P412121′ 92.112 4 4
P4′1212′ 92.113 4 4 P412′12′ 92.114 4 4 P4′12′12 92.115 4 4 Pc41212 92.116 8 4
PC41212 92.117 8 8 PI41212 92.118 8 4 P4222 93.119 2 2 P42221′ 93.120 2 2
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P4′222′ 93.121 2 2 P422′2′ 93.122 2 2 P4′22′2 93.123 2 2 Pc4222 93.124 4 2
PC4222 93.125 4 4 PI4222 93.126 4 2 P42212 94.127 4 2 P422121′ 94.128 4 2
P4′2212′ 94.129 4 2 P422′12′ 94.130 4 2 P4′22′12 94.131 4 2 Pc42212 94.132 8 4
PC42212 94.133 4 4 PI42212 94.134 4 2 P4322 95.135 4 4 P43221′ 95.136 4 4
P4′322′ 95.137 4 4 P432′2′ 95.138 4 4 P4′32′2 95.139 4 4 Pc4322 95.140 4 4
PC4322 95.141 8 8 PI4322 95.142 8 4 P43212 96.143 4 4 P432121′ 96.144 4 4
P4′3212′ 96.145 4 4 P432′12′ 96.146 4 4 P4′32′12 96.147 4 4 Pc43212 96.148 8 4
PC43212 96.149 8 8 PI43212 96.150 8 4 I422 97.151 2 1 I4221′ 97.152 2 1
I4′22′ 97.153 2 1 I42′2′ 97.154 2 1 I4′2′2 97.155 2 1 Ic422 97.156 4 2
I4122 98.157 4 2 I41221′ 98.158 4 2 I4′122′ 98.159 4 2 I412′2′ 98.160 4 2
I4′12′2 98.161 4 2 Ic4122 98.162 4 4 P4mm 99.163 2 1 P4mm1′ 99.164 2 1
P4′m′m 99.165 2 1 P4′mm′ 99.166 2 1 P4m′m′ 99.167 2 1 Pc4mm 99.168 4 2
PC4mm 99.169 4 2 PI4mm 99.170 4 2 P4bm 100.171 2 2 P4bm1′ 100.172 4 2
P4′b′m 100.173 4 2 P4′bm′ 100.174 4 2 P4b′m′ 100.175 2 2 Pc4bm 100.176 4 4
PC4bm 100.177 4 2 PI4bm 100.178 4 4 P42cm 101.179 4 2 P42cm1′ 101.180 4 2
P4′2c

′m 101.181 4 2 P4′2cm
′ 101.182 4 2 P42c

′m′ 101.183 4 2 Pc42cm 101.184 4 2
PC42cm 101.185 4 4 PI42cm 101.186 8 4 P42nm 102.187 4 2 P42nm1′ 102.188 4 2
P4′2n

′m 102.189 4 2 P4′2nm
′ 102.190 4 2 P42n

′m′ 102.191 4 2 Pc42nm 102.192 8 4
PC42nm 102.193 4 4 PI42nm 102.194 4 2 P4cc 103.195 4 2 P4cc1′ 103.196 4 2
P4′c′c 103.197 4 2 P4′cc′ 103.198 4 2 P4c′c′ 103.199 4 2 Pc4cc 103.200 4 2
PC4cc 103.201 8 4 PI4cc 103.202 4 4 P4nc 104.203 4 2 P4nc1′ 104.204 4 2
P4′n′c 104.205 4 2 P4′nc′ 104.206 4 2 P4n′c′ 104.207 4 2 Pc4nc 104.208 4 4
PC4nc 104.209 8 4 PI4nc 104.210 4 2 P42mc 105.211 2 2 P42mc1

′ 105.212 2 2
P4′2m

′c 105.213 2 2 P4′2mc
′ 105.214 2 2 P42m

′c′ 105.215 2 2 Pc42mc 105.216 4 2
PC42mc 105.217 8 4 PI42mc 105.218 4 2 P42bc 106.219 4 4 P42bc1

′ 106.220 4 4
P4′2b

′c 106.221 4 4 P4′2bc
′ 106.222 4 4 P42b

′c′ 106.223 4 4 Pc42bc 106.224 8 4
PC42bc 106.225 8 4 PI42bc 106.226 8 4 I4mm 107.227 2 1 I4mm1′ 107.228 2 1
I4′m′m 107.229 2 1 I4′mm′ 107.230 2 1 I4m′m′ 107.231 2 1 Ic4mm 107.232 4 2
I4cm 108.233 2 2 I4cm1′ 108.234 4 2 I4′c′m 108.235 4 2 I4′cm′ 108.236 4 2
I4c′m′ 108.237 2 2 Ic4cm 108.238 4 2 I41md 109.239 2 2 I41md1′ 109.240 2 2
I4′1m

′d 109.241 2 2 I4′1md
′ 109.242 2 2 I41m

′d′ 109.243 2 2 Ic41md 109.244 8 4
I41cd 110.245 4 4 I41cd1′ 110.246 4 4 I4′1c

′d 110.247 4 4 I4′1cd
′ 110.248 4 4

I41c
′d′ 110.249 4 4 Ic41cd 110.250 8 4 P 4̄2m 111.251 2 1 P 4̄2m1′ 111.252 2 1

P 4̄′2′m 111.253 2 1 P 4̄′2m′ 111.254 2 1 P 4̄2′m′ 111.255 2 1 Pc4̄2m 111.256 4 2
PC 4̄2m 111.257 4 2 PI 4̄2m 111.258 4 2 P 4̄2c 112.259 2 2 P 4̄2c1′ 112.260 2 2
P 4̄′2′c 112.261 2 2 P 4̄′2c′ 112.262 2 2 P 4̄2′c′ 112.263 2 2 Pc4̄2c 112.264 4 2
PC 4̄2c 112.265 8 4 PI 4̄2c 112.266 4 2 P 4̄21m 113.267 2 2 P 4̄21m1′ 113.268 4 2
P 4̄′2′1m 113.269 4 2 P 4̄′21m

′ 113.270 4 2 P 4̄2′1m
′ 113.271 2 2 Pc4̄21m 113.272 4 4

PC 4̄21m 113.273 4 2 PI 4̄21m 113.274 4 2 P 4̄21c 114.275 4 2 P 4̄21c1
′ 114.276 4 2

P 4̄′2′1c 114.277 4 2 P 4̄′21c
′ 114.278 4 2 P 4̄2′1c

′ 114.279 4 2 Pc4̄21c 114.280 4 4
PC 4̄21c 114.281 8 4 PI 4̄21c 114.282 4 2 P 4̄m2 115.283 2 1 P 4̄m21′ 115.284 2 1
P 4̄′m′2 115.285 2 1 P 4̄′m2′ 115.286 2 1 P 4̄m′2′ 115.287 2 1 Pc4̄m2 115.288 4 2
PC 4̄m2 115.289 4 2 PI 4̄m2 115.290 4 2 P 4̄c2 116.291 4 2 P 4̄c21′ 116.292 4 2
P 4̄′c′2 116.293 4 2 P 4̄′c2′ 116.294 4 2 P 4̄c′2′ 116.295 4 2 Pc4̄c2 116.296 4 2
PC 4̄c2 116.297 4 4 PI 4̄c2 116.298 4 4 P 4̄b2 117.299 2 2 P 4̄b21′ 117.300 4 2
P 4̄′b′2 117.301 4 2 P 4̄′b2′ 117.302 4 2 P 4̄b′2′ 117.303 2 2 Pc4̄b2 117.304 4 4
PC 4̄b2 117.305 4 2 PI 4̄b2 117.306 4 4 P 4̄n2 118.307 2 2 P 4̄n21′ 118.308 4 2
P 4̄′n′2 118.309 4 2 P 4̄′n2′ 118.310 4 2 P 4̄n′2′ 118.311 2 2 Pc4̄n2 118.312 4 4
PC 4̄n2 118.313 4 4 PI 4̄n2 118.314 4 2 I 4̄m2 119.315 2 1 I 4̄m21′ 119.316 2 1
I 4̄′m′2 119.317 2 1 I 4̄′m2′ 119.318 2 1 I 4̄m′2′ 119.319 1 1 Ic4̄m2 119.320 4 2
I 4̄c2 120.321 2 2 I 4̄c21′ 120.322 2 2 I 4̄′c′2 120.323 2 2 I 4̄′c2′ 120.324 2 2
I 4̄c′2′ 120.325 2 2 Ic4̄c2 120.326 4 2 I 4̄2m 121.327 2 1 I 4̄2m1′ 121.328 2 1
I 4̄′2′m 121.329 2 1 I 4̄′2m′ 121.330 2 1 I 4̄2′m′ 121.331 2 1 Ic4̄2m 121.332 4 2
I 4̄2d 122.333 4 2 I 4̄2d1′ 122.334 4 2 I 4̄′2′d 122.335 4 2 I 4̄′2d′ 122.336 4 2
I 4̄2′d′ 122.337 4 2 Ic4̄2d 122.338 4 4 P4/mmm 123.339 2 1 P4/mmm1′ 123.340 2 1
P4/m′mm 123.341 2 1 P4′/mm′m 123.342 2 1 P4′/mmm′ 123.343 2 1 P4′/m′m′m 123.344 2 1
P4/mm′m′ 123.345 2 1 P4′/m′mm′ 123.346 2 1 P4/m′m′m′ 123.347 2 1 Pc4/mmm 123.348 4 2
PC4/mmm 123.349 4 2 PI4/mmm 123.350 8 2 P4/mcc 124.351 4 2 P4/mcc1′ 124.352 4 2
P4/m′cc 124.353 4 2 P4′/mc′c 124.354 4 2 P4′/mcc′ 124.355 4 2 P4′/m′c′c 124.356 4 2
P4/mc′c′ 124.357 4 2 P4′/m′cc′ 124.358 4 2 P4/m′c′c′ 124.359 4 2 Pc4/mcc 124.360 4 2
PC4/mcc 124.361 8 4 PI4/mcc 124.362 8 4 P4/nbm 125.363 4 2 P4/nbm1′ 125.364 4 2
P4/n′bm 125.365 4 2 P4′/nb′m 125.366 4 2 P4′/nbm′ 125.367 4 2 P4′/n′b′m 125.368 4 2
P4/nb′m′ 125.369 4 2 P4′/n′bm′ 125.370 4 2 P4/n′b′m′ 125.371 4 2 Pc4/nbm 125.372 8 4
PC4/nbm 125.373 4 2 PI4/nbm 125.374 8 4 P4/nnc 126.375 8 2 P4/nnc1′ 126.376 8 2
P4/n′nc 126.377 8 2 P4′/nn′c 126.378 8 2 P4′/nnc′ 126.379 8 2 P4′/n′n′c 126.380 8 2
P4/nn′c′ 126.381 8 2 P4′/n′nc′ 126.382 8 2 P4/n′n′c′ 126.383 8 2 Pc4/nnc 126.384 8 4
PC4/nnc 126.385 8 4 PI4/nnc 126.386 8 2 P4/mbm 127.387 2 2 P4/mbm1′ 127.388 4 2
P4/m′bm 127.389 4 2 P4′/mb′m 127.390 4 2 P4′/mbm′ 127.391 4 2 P4′/m′b′m 127.392 4 2
P4/mb′m′ 127.393 2 2 P4′/m′bm′ 127.394 4 2 P4/m′b′m′ 127.395 4 2 Pc4/mbm 127.396 4 4
PC4/mbm 127.397 4 2 PI4/mbm 127.398 8 4 P4/mnc 128.399 4 2 P4/mnc1′ 128.400 4 2
P4/m′nc 128.401 4 2 P4′/mn′c 128.402 4 2 P4′/mnc′ 128.403 4 2 P4′/m′n′c 128.404 4 2
P4/mn′c′ 128.405 4 2 P4′/m′nc′ 128.406 4 2 P4/m′n′c′ 128.407 4 2 Pc4/mnc 128.408 4 4
PC4/mnc 128.409 8 4 PI4/mnc 128.410 8 2 P4/nmm 129.411 4 2 P4/nmm1′ 129.412 4 2
P4/n′mm 129.413 4 2 P4′/nm′m 129.414 4 2 P4′/nmm′ 129.415 4 2 P4′/n′m′m 129.416 4 2
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P4/nm′m′ 129.417 4 2 P4′/n′mm′ 129.418 4 2 P4/n′m′m′ 129.419 4 2 Pc4/nmm 129.420 8 4
PC4/nmm 129.421 4 2 PI4/nmm 129.422 8 2 P4/ncc 130.423 8 4 P4/ncc1′ 130.424 8 4
P4/n′cc 130.425 8 4 P4′/nc′c 130.426 8 4 P4′/ncc′ 130.427 8 4 P4′/n′c′c 130.428 8 4
P4/nc′c′ 130.429 8 4 P4′/n′cc′ 130.430 8 4 P4/n′c′c′ 130.431 8 4 Pc4/ncc 130.432 8 4
PC4/ncc 130.433 8 4 PI4/ncc 130.434 8 4 P42/mmc 131.435 2 2 P42/mmc1

′ 131.436 2 2
P42/m

′mc 131.437 2 2 P4′2/mm
′c 131.438 2 2 P4′2/mmc

′ 131.439 2 2 P4′2/m
′m′c 131.440 2 2

P42/mm
′c′ 131.441 2 2 P4′2/m

′mc′ 131.442 2 2 P42/m
′m′c′ 131.443 2 2 Pc42/mmc 131.444 4 2

PC42/mmc 131.445 8 4 PI42/mmc 131.446 8 2 P42/mcm 132.447 4 2 P42/mcm1′ 132.448 4 2
P42/m

′cm 132.449 4 2 P4′2/mc
′m 132.450 4 2 P4′2/mcm

′ 132.451 4 2 P4′2/m
′c′m 132.452 4 2

P42/mc
′m′ 132.453 4 2 P4′2/m

′cm′ 132.454 4 2 P42/m
′c′m′ 132.455 4 2 Pc42/mcm 132.456 4 2

PC42/mcm 132.457 4 4 PI42/mcm 132.458 8 4 P42/nbc 133.459 8 4 P42/nbc1
′ 133.460 8 4

P42/n
′bc 133.461 8 4 P4′2/nb

′c 133.462 8 4 P4′2/nbc
′ 133.463 8 4 P4′2/n

′b′c 133.464 8 4
P42/nb

′c′ 133.465 8 4 P4′2/n
′bc′ 133.466 8 4 P42/n

′b′c′ 133.467 8 4 Pc42/nbc 133.468 8 4
PC42/nbc 133.469 8 4 PI42/nbc 133.470 8 4 P42/nnm 134.471 4 2 P42/nnm1′ 134.472 4 2
P42/n

′nm 134.473 4 2 P4′2/nn
′m 134.474 4 2 P4′2/nnm

′ 134.475 4 2 P4′2/n
′n′m 134.476 4 2

P42/nn
′m′ 134.477 4 2 P4′2/n

′nm′ 134.478 4 2 P42/n
′n′m′ 134.479 4 2 Pc42/nnm 134.480 8 4

PC42/nnm 134.481 4 4 PI42/nnm 134.482 8 2 P42/mbc 135.483 4 4 P42/mbc1
′ 135.484 4 4

P42/m
′bc 135.485 4 4 P4′2/mb

′c 135.486 4 4 P4′2/mbc
′ 135.487 4 4 P4′2/m

′b′c 135.488 4 4
P42/mb

′c′ 135.489 4 4 P4′2/m
′bc′ 135.490 4 4 P42/m

′b′c′ 135.491 4 4 Pc42/mbc 135.492 8 4
PC42/mbc 135.493 8 4 PI42/mbc 135.494 8 4 P42/mnm 136.495 4 2 P42/mnm1′ 136.496 4 2
P42/m

′nm 136.497 4 2 P4′2/mn
′m 136.498 4 2 P4′2/mnm

′ 136.499 4 2 P4′2/m
′n′m 136.500 4 2

P42/mn
′m′ 136.501 4 2 P4′2/m

′nm′ 136.502 4 2 P42/m
′n′m′ 136.503 4 2 Pc42/mnm 136.504 8 4

PC42/mnm 136.505 4 4 PI42/mnm 136.506 8 2 P42/nmc 137.507 8 2 P42/nmc1
′ 137.508 8 2

P42/n
′mc 137.509 8 2 P4′2/nm

′c 137.510 8 2 P4′2/nmc
′ 137.511 8 2 P4′2/n

′m′c 137.512 8 2
P42/nm

′c′ 137.513 8 2 P4′2/n
′mc′ 137.514 8 2 P42/n

′m′c′ 137.515 8 2 Pc42/nmc 137.516 8 4
PC42/nmc 137.517 8 4 PI42/nmc 137.518 8 2 P42/ncm 138.519 4 4 P42/ncm1′ 138.520 4 4
P42/n

′cm 138.521 4 4 P4′2/nc
′m 138.522 4 4 P4′2/ncm

′ 138.523 4 4 P4′2/n
′c′m 138.524 4 4

P42/nc
′m′ 138.525 4 4 P4′2/n

′cm′ 138.526 4 4 P42/n
′c′m′ 138.527 4 4 Pc42/ncm 138.528 8 4

PC42/ncm 138.529 4 4 PI42/ncm 138.530 8 4 I4/mmm 139.531 4 1 I4/mmm1′ 139.532 4 1
I4/m′mm 139.533 4 1 I4′/mm′m 139.534 4 1 I4′/mmm′ 139.535 4 1 I4′/m′m′m 139.536 4 1
I4/mm′m′ 139.537 4 1 I4′/m′mm′ 139.538 4 1 I4/m′m′m′ 139.539 4 1 Ic4/mmm 139.540 4 2
I4/mcm 140.541 4 2 I4/mcm1′ 140.542 4 2 I4/m′cm 140.543 4 2 I4′/mc′m 140.544 4 2
I4′/mcm′ 140.545 4 2 I4′/m′c′m 140.546 4 2 I4/mc′m′ 140.547 4 2 I4′/m′cm′ 140.548 4 2
I4/m′c′m′ 140.549 4 2 Ic4/mcm 140.550 4 2 I41/amd 141.551 4 2 I41/amd1′ 141.552 4 2
I41/a

′md 141.553 4 2 I4′1/am
′d 141.554 4 2 I4′1/amd

′ 141.555 4 2 I4′1/a
′m′d 141.556 4 2

I41/am
′d′ 141.557 4 2 I4′1/a

′md′ 141.558 4 2 I41/a
′m′d′ 141.559 4 2 Ic41/amd 141.560 8 4

I41/acd 142.561 8 4 I41/acd1′ 142.562 8 4 I41/a
′cd 142.563 8 4 I4′1/ac

′d 142.564 8 4
I4′1/acd

′ 142.565 8 4 I4′1/a
′c′d 142.566 8 4 I41/ac

′d′ 142.567 8 4 I4′1/a
′cd′ 142.568 8 4

I41/a
′c′d′ 142.569 8 4 Ic41/acd 142.570 8 4 P3 143.1 1 1 P31′ 143.2 2 1

Pc3 143.3 2 2 P31 144.4 3 3 P311′ 144.5 3 3 Pc31 144.6 6 6
P32 145.7 3 3 P321′ 145.8 3 3 Pc32 145.9 6 6 R3 146.10 1 1
R31′ 146.11 2 1 RI3 146.12 2 2 P 3̄ 147.13 3 1 P 3̄1′ 147.14 4 1
P 3̄′ 147.15 3 1 Pc3̄ 147.16 6 2 R3̄ 148.17 3 1 R3̄1′ 148.18 3 1
R3̄′ 148.19 3 1 RI 3̄ 148.20 6 2 P312 149.21 2 1 P3121′ 149.22 2 1
P312′ 149.23 1 1 Pc312 149.24 2 2 P321 150.25 2 1 P3211′ 150.26 4 1
P32′1 150.27 2 1 Pc321 150.28 4 2 P3112 151.29 3 3 P31121′ 151.30 3 3
P3112′ 151.31 3 3 Pc3112 151.32 6 6 P3121 152.33 3 3 P31211′ 152.34 3 3
P312′1 152.35 3 3 Pc3121 152.36 6 6 P3212 153.37 3 3 P32121′ 153.38 3 3
P3212′ 153.39 3 3 Pc3212 153.40 6 6 P3221 154.41 3 3 P32211′ 154.42 3 3
P322′1 154.43 3 3 Pc3221 154.44 6 6 R32 155.45 2 1 R321′ 155.46 2 1
R32′ 155.47 1 1 RI32 155.48 2 2 P3m1 156.49 2 1 P3m11′ 156.50 2 1
P3m′1 156.51 1 1 Pc3m1 156.52 4 2 P31m 157.53 2 1 P31m1′ 157.54 4 1
P31m′ 157.55 2 1 Pc31m 157.56 4 2 P3c1 158.57 2 2 P3c11′ 158.58 4 2
P3c′1 158.59 2 2 Pc3c1 158.60 2 2 P31c 159.61 2 2 P31c1′ 159.62 4 2
P31c′ 159.63 2 2 Pc31c 159.64 4 2 R3m 160.65 2 1 R3m1′ 160.66 2 1
R3m′ 160.67 1 1 RI3m 160.68 4 2 R3c 161.69 2 2 R3c1′ 161.70 4 2
R3c′ 161.71 2 2 RI3c 161.72 2 2 P 3̄1m 162.73 4 1 P 3̄1m1′ 162.74 4 1
P 3̄′1m 162.75 3 1 P 3̄′1m′ 162.76 4 1 P 3̄1m′ 162.77 3 1 Pc3̄1m 162.78 6 2
P 3̄1c 163.79 6 2 P 3̄1c1′ 163.80 6 2 P 3̄′1c 163.81 6 2 P 3̄′1c′ 163.82 6 2
P 3̄1c′ 163.83 6 2 Pc3̄1c 163.84 6 2 P 3̄m1 164.85 4 1 P 3̄m11′ 164.86 4 1
P 3̄′m1 164.87 4 1 P 3̄′m′1 164.88 3 1 P 3̄m′1 164.89 3 1 Pc3̄m1 164.90 8 2
P 3̄c1 165.91 6 2 P 3̄c11′ 165.92 8 2 P 3̄′c1 165.93 6 2 P 3̄′c′1 165.94 6 2
P 3̄c′1 165.95 6 2 Pc3̄c1 165.96 6 2 R3̄m 166.97 3 1 R3̄m1′ 166.98 3 1
R3̄′m 166.99 3 1 R3̄′m′ 166.100 3 1 R3̄m′ 166.101 3 1 RI 3̄m 166.102 6 2
R3̄c 167.103 6 2 R3̄c1′ 167.104 6 2 R3̄′c 167.105 6 2 R3̄′c′ 167.106 6 2
R3̄c′ 167.107 6 2 RI 3̄c 167.108 6 2 P6 168.109 3 1 P61′ 168.110 4 1
P6′ 168.111 3 1 Pc6 168.112 6 2 P61 169.113 6 6 P611′ 169.114 6 6
P6′1 169.115 6 6 Pc61 169.116 6 6 P65 170.117 6 6 P651′ 170.118 6 6
P6′5 170.119 6 6 Pc65 170.120 6 6 P62 171.121 3 3 P621′ 171.122 3 3
P6′2 171.123 3 3 Pc62 171.124 6 6 P64 172.125 3 3 P641′ 172.126 3 3
P6′4 172.127 3 3 Pc64 172.128 6 6 P63 173.129 2 2 P631′ 173.130 4 2
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P6′3 173.131 2 2 Pc63 173.132 6 2 P 6̄ 174.133 1 1 P 6̄1′ 174.134 2 1
P 6̄′ 174.135 2 1 Pc6̄ 174.136 2 2 P6/m 175.137 3 1 P6/m1′ 175.138 4 1
P6′/m 175.139 3 1 P6/m′ 175.140 4 1 P6′/m′ 175.141 4 1 Pc6/m 175.142 6 2
P63/m 176.143 6 2 P63/m1′ 176.144 6 2 P6′3/m 176.145 6 2 P63/m

′ 176.146 6 2
P6′3/m

′ 176.147 6 2 Pc63/m 176.148 6 2 P622 177.149 4 1 P6221′ 177.150 4 1
P6′2′2 177.151 4 1 P6′22′ 177.152 3 1 P62′2′ 177.153 3 1 Pc622 177.154 6 2
P6122 178.155 6 6 P61221′ 178.156 6 6 P6′12′2 178.157 6 6 P6′122′ 178.158 6 6
P612′2′ 178.159 6 6 Pc6122 178.160 6 6 P6522 179.161 6 6 P65221′ 179.162 6 6
P6′52′2 179.163 6 6 P6′522′ 179.164 6 6 P652′2′ 179.165 6 6 Pc6522 179.166 6 6
P6222 180.167 3 3 P62221′ 180.168 3 3 P6′22′2 180.169 3 3 P6′222′ 180.170 3 3
P622′2′ 180.171 3 3 Pc6222 180.172 6 6 P6422 181.173 3 3 P64221′ 181.174 3 3
P6′42′2 181.175 3 3 P6′422′ 181.176 3 3 P642′2′ 181.177 3 3 Pc6422 181.178 6 6
P6322 182.179 4 2 P63221′ 182.180 4 2 P6′32′2 182.181 4 2 P6′322′ 182.182 2 2
P632′2′ 182.183 2 2 Pc6322 182.184 6 2 P6mm 183.185 4 1 P6mm1′ 183.186 4 1
P6′m′m 183.187 3 1 P6′mm′ 183.188 4 1 P6m′m′ 183.189 3 1 Pc6mm 183.190 8 2
P6cc 184.191 6 2 P6cc1′ 184.192 8 2 P6′c′c 184.193 6 2 P6′cc′ 184.194 6 2
P6c′c′ 184.195 6 2 Pc6cc 184.196 6 2 P63cm 185.197 4 2 P63cm1′ 185.198 8 2
P6′3c

′m 185.199 4 2 P6′3cm
′ 185.200 4 2 P63c

′m′ 185.201 4 2 Pc63cm 185.202 6 2
P63mc 186.203 4 2 P63mc1

′ 186.204 4 2 P6′3m
′c 186.205 2 2 P6′3mc

′ 186.206 4 2
P63m

′c′ 186.207 2 2 Pc63mc 186.208 8 2 P 6̄m2 187.209 2 1 P 6̄m21′ 187.210 2 1
P 6̄′m′2 187.211 2 1 P 6̄′m2′ 187.212 2 1 P 6̄m′2′ 187.213 1 1 Pc6̄m2 187.214 4 2
P 6̄c2 188.215 2 2 P 6̄c21′ 188.216 4 2 P 6̄′c′2 188.217 4 2 P 6̄′c2′ 188.218 2 2
P 6̄c′2′ 188.219 2 2 Pc6̄c2 188.220 2 2 P 6̄2m 189.221 2 1 P 6̄2m1′ 189.222 4 1
P 6̄′2′m 189.223 4 1 P 6̄′2m′ 189.224 4 1 P 6̄2′m′ 189.225 2 1 Pc6̄2m 189.226 4 2
P 6̄2c 190.227 2 2 P 6̄2c1′ 190.228 4 2 P 6̄′2′c 190.229 4 2 P 6̄′2c′ 190.230 4 2
P 6̄2′c′ 190.231 2 2 Pc6̄2c 190.232 4 2 P6/mmm 191.233 4 1 P6/mmm1′ 191.234 4 1
P6/m′mm 191.235 4 1 P6′/mm′m 191.236 3 1 P6′/mmm′ 191.237 4 1 P6′/m′m′m 191.238 4 1
P6′/m′mm′ 191.239 4 1 P6/mm′m′ 191.240 3 1 P6/m′m′m′ 191.241 4 1 Pc6/mmm 191.242 8 2
P6/mcc 192.243 6 2 P6/mcc1′ 192.244 8 2 P6/m′cc 192.245 6 2 P6′/mc′c 192.246 6 2
P6′/mcc′ 192.247 6 2 P6′/m′c′c 192.248 8 2 P6′/m′cc′ 192.249 6 2 P6/mc′c′ 192.250 6 2
P6/m′c′c′ 192.251 8 2 Pc6/mcc 192.252 6 2 P63/mcm 193.253 6 2 P63/mcm1′ 193.254 8 2
P63/m

′cm 193.255 6 2 P6′3/mc
′m 193.256 6 2 P6′3/mcm

′ 193.257 6 2 P6′3/m
′c′m 193.258 8 2

P6′3/m
′cm′ 193.259 6 2 P63/mc

′m′ 193.260 6 2 P63/m
′c′m′ 193.261 8 2 Pc63/mcm 193.262 6 2

P63/mmc 194.263 6 2 P63/mmc1
′ 194.264 6 2 P63/m

′mc 194.265 6 2 P6′3/mm
′c 194.266 6 2

P6′3/mmc
′ 194.267 6 2 P6′3/m

′m′c 194.268 6 2 P6′3/m
′mc′ 194.269 6 2 P63/mm

′c′ 194.270 6 2
P63/m

′m′c′ 194.271 6 2 Pc63/mmc 194.272 8 2 P23 195.1 3 1 P231′ 195.2 3 1
PI23 195.3 6 2 F23 196.4 3 1 F231′ 196.5 3 1 FS23 196.6 6 2
I23 197.7 3 1 I231′ 197.8 3 1 P213 198.9 4 4 P2131′ 198.10 8 4
PI213 198.11 12 8 I213 199.12 6 4 I2131′ 199.13 8 4 Pm3̄ 200.14 3 1
Pm3̄1′ 200.15 3 1 Pm′3̄′ 200.16 3 1 PIm3̄ 200.17 8 2 Pn3̄ 201.18 6 2
Pn3̄1′ 201.19 8 2 Pn′3̄′ 201.20 6 2 PIn3̄ 201.21 8 2 Fm3̄ 202.22 6 1
Fm3̄1′ 202.23 6 1 Fm′3̄′ 202.24 6 1 FSm3̄ 202.25 6 2 Fd3̄ 203.26 6 2
Fd3̄1′ 203.27 8 2 Fd′3̄′ 203.28 6 2 FSd3̄ 203.29 12 4 Im3̄ 204.30 4 1
Im3̄1′ 204.31 8 1 Im′3̄′ 204.32 4 1 Pa3̄ 205.33 4 4 Pa3̄1′ 205.34 8 4
Pa′3̄′ 205.35 8 4 PIa3̄ 205.36 24 8 Ia3̄ 206.37 12 4 Ia3̄1′ 206.38 12 4
Ia′3̄′ 206.39 12 4 P432 207.40 3 1 P4321′ 207.41 6 1 P4′32′ 207.42 6 1
PI432 207.43 12 2 P4232 208.44 6 2 P42321′ 208.45 8 2 P4′232′ 208.46 6 2
PI4232 208.47 12 2 F432 209.48 6 1 F4321′ 209.49 6 1 F4′32′ 209.50 6 1
FS432 209.51 12 2 F4132 210.52 6 2 F41321′ 210.53 8 2 F4′132′ 210.54 6 2
FS4132 210.55 12 4 I432 211.56 6 1 I4321′ 211.57 8 1 I4′32′ 211.58 6 1
P4332 212.59 8 4 P43321′ 212.60 8 4 P4′332′ 212.61 4 4 PI4332 212.62 12 8
P4132 213.63 8 4 P41321′ 213.64 8 4 P4′132′ 213.65 4 4 PI4132 213.66 12 8
I4132 214.67 8 4 I41321′ 214.68 8 4 I4′132′ 214.69 6 4 P 4̄3m 215.70 3 1
P 4̄3m1′ 215.71 3 1 P 4̄′3m′ 215.72 3 1 PI 4̄3m 215.73 12 2 F 4̄3m 216.74 3 1
F 4̄3m1′ 216.75 3 1 F 4̄′3m′ 216.76 3 1 FS 4̄3m 216.77 6 2 I 4̄3m 217.78 6 1
I 4̄3m1′ 217.79 6 1 I 4̄′3m′ 217.80 6 1 P 4̄3n 218.81 6 2 P 4̄3n1′ 218.82 6 2
P 4̄′3n′ 218.83 6 2 PI 4̄3n 218.84 12 2 F 4̄3c 219.85 6 2 F 4̄3c1′ 219.86 6 2
F 4̄′3c′ 219.87 6 2 FS 4̄3c 219.88 6 2 I 4̄3d 220.89 8 6 I 4̄3d1′ 220.90 16 6
I 4̄′3d′ 220.91 12 6 Pm3̄m 221.92 6 1 Pm3̄m1′ 221.93 6 1 Pm′3̄′m 221.94 6 1
Pm3̄m′ 221.95 6 1 Pm′3̄′m′ 221.96 3 1 PIm3̄m 221.97 16 2 Pn3̄n 222.98 12 2
Pn3̄n1′ 222.99 16 2 Pn′3̄′n 222.100 12 2 Pn3̄n′ 222.101 12 2 Pn′3̄′n′ 222.102 12 2
PIn3̄n 222.103 12 2 Pm3̄n 223.104 8 2 Pm3̄n1′ 223.105 16 2 Pm′3̄′n 223.106 8 2
Pm3̄n′ 223.107 8 2 Pm′3̄′n′ 223.108 8 2 PIm3̄n 223.109 12 2 Pn3̄m 224.110 12 2
Pn3̄m1′ 224.111 12 2 Pn′3̄′m 224.112 12 2 Pn3̄m′ 224.113 12 2 Pn′3̄′m′ 224.114 12 2
PIn3̄m 224.115 16 2 Fm3̄m 225.116 6 1 Fm3̄m1′ 225.117 6 1 Fm′3̄′m 225.118 6 1
Fm3̄m′ 225.119 6 1 Fm′3̄′m′ 225.120 6 1 FSm3̄m 225.121 12 2 Fm3̄c 226.122 6 2
Fm3̄c1′ 226.123 12 2 Fm′3̄′c 226.124 12 2 Fm3̄c′ 226.125 12 2 Fm′3̄′c′ 226.126 6 2
FSm3̄c 226.127 12 2 Fd3̄m 227.128 8 2 Fd3̄m1′ 227.129 8 2 Fd′3̄′m 227.130 8 2
Fd3̄m′ 227.131 6 2 Fd′3̄′m′ 227.132 6 2 FSd3̄m 227.133 24 4 Fd3̄c 228.134 12 4
Fd3̄c1′ 228.135 16 4 Fd′3̄′c 228.136 12 4 Fd3̄c′ 228.137 12 4 Fd′3̄′c′ 228.138 12 4
FSd3̄c 228.139 24 4 Im3̄m 229.140 8 1 Im3̄m1′ 229.141 8 1 Im′3̄′m 229.142 8 1
Im3̄m′ 229.143 6 1 Im′3̄′m′ 229.144 6 1 Ia3̄d 230.145 12 8 Ia3̄d1′ 230.146 16 8
Ia′3̄′d 230.147 12 8 Ia3̄d′ 230.148 12 8 Ia′3̄′d′ 230.149 16 8
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b. Maximum and Minimum Dimensions of the Double-Valued EBRs of the 1,651 Double SSGs

TABLE XXV: Maximum and minimum dimensions of the double-valued
EBRs of the 1,651 double SSGs. In order, the columns in this table list
the symbol of the SSG, the number of the SSG in the BNS setting126,
the maximum EBR dimension in the SSG (M), and the minimum EBR
dimension in the SSG (m).

Symbol BNS Number M m Symbol BNS Number M m Symbol BNS Number M m Symbol BNS Number M m
P1 1.1 1 1 P11′ 1.2 2 2 PS1 1.3 2 2 P 1̄ 2.4 1 1
P 1̄1′ 2.5 2 2 P 1̄′ 2.6 2 2 PS 1̄ 2.7 2 2 P2 3.1 1 1
P21′ 3.2 2 2 P2′ 3.3 1 1 Pa2 3.4 2 2 Pb2 3.5 2 2
PC2 3.6 2 2 P21 4.7 2 2 P211′ 4.8 4 4 P2′1 4.9 2 2
Pa21 4.10 4 4 Pb21 4.11 2 2 PC21 4.12 2 2 C2 5.13 1 1
C21′ 5.14 2 2 C2′ 5.15 1 1 Cc2 5.16 2 2 Ca2 5.17 2 2
Pm 6.18 1 1 Pm1′ 6.19 2 2 Pm′ 6.20 1 1 Pam 6.21 2 2
Pbm 6.22 2 2 PCm 6.23 2 2 Pc 7.24 2 2 Pc1′ 7.25 4 4
Pc′ 7.26 2 2 Pac 7.27 4 4 Pcc 7.28 2 2 Pbc 7.29 4 4
PCc 7.30 4 4 PAc 7.31 2 2 Cm 8.32 1 1 Cm1′ 8.33 2 2
Cm′ 8.34 1 1 Ccm 8.35 2 2 Cam 8.36 2 2 Cc 9.37 2 2
Cc1′ 9.38 4 4 Cc′ 9.39 2 2 Ccc 9.40 2 2 Cac 9.41 4 4
P2/m 10.42 1 1 P2/m1′ 10.43 2 2 P2′/m 10.44 2 2 P2/m′ 10.45 2 2
P2′/m′ 10.46 1 1 Pa2/m 10.47 2 2 Pb2/m 10.48 2 2 PC2/m 10.49 2 2
P21/m 11.50 2 2 P21/m1′ 11.51 4 4 P2′1/m 11.52 2 2 P21/m

′ 11.53 2 2
P2′1/m

′ 11.54 2 2 Pa21/m 11.55 4 4 Pb21/m 11.56 2 2 PC21/m 11.57 4 4
C2/m 12.58 2 1 C2/m1′ 12.59 4 2 C2′/m 12.60 2 2 C2/m′ 12.61 2 2
C2′/m′ 12.62 2 1 Cc2/m 12.63 4 2 Ca2/m 12.64 2 2 P2/c 13.65 2 2
P2/c1′ 13.66 4 4 P2′/c 13.67 2 2 P2/c′ 13.68 2 2 P2′/c′ 13.69 2 2
Pa2/c 13.70 4 4 Pb2/c 13.71 4 4 Pc2/c 13.72 2 2 PA2/c 13.73 4 4
PC2/c 13.74 4 4 P21/c 14.75 2 2 P21/c1

′ 14.76 4 4 P2′1/c 14.77 4 4
P21/c

′ 14.78 4 4 P2′1/c
′ 14.79 2 2 Pa21/c 14.80 4 4 Pb21/c 14.81 4 4

Pc21/c 14.82 4 4 PA21/c 14.83 2 2 PC21/c 14.84 4 4 C2/c 15.85 2 2
C2/c1′ 15.86 4 4 C2′/c 15.87 2 2 C2/c′ 15.88 2 2 C2′/c′ 15.89 2 2
Cc2/c 15.90 4 2 Ca2/c 15.91 4 4 P222 16.1 2 2 P2221′ 16.2 2 2
P2′2′2 16.3 1 1 Pa222 16.4 2 2 PC222 16.5 4 4 PI222 16.6 4 4
P2221 17.7 2 2 P22211′ 17.8 4 4 P2′2′21 17.9 2 2 P22′2′1 17.10 2 2
Pa2221 17.11 4 4 Pc2221 17.12 2 2 PB2221 17.13 4 2 PC2221 17.14 4 4
PI2221 17.15 4 4 P21212 18.16 2 2 P212121′ 18.17 4 4 P2′12′12 18.18 2 2
P212′12′ 18.19 2 2 Pb21212 18.20 4 4 Pc21212 18.21 4 4 PB21212 18.22 4 4
PC21212 18.23 4 2 PI21212 18.24 2 2 P212121 19.25 4 4 P2121211′ 19.26 8 8
P2′12′121 19.27 4 4 Pc212121 19.28 4 4 PC212121 19.29 4 4 PI212121 19.30 4 4
C2221 20.31 2 2 C22211′ 20.32 4 4 C2′2′21 20.33 2 2 C22′2′1 20.34 2 2
Cc2221 20.35 4 2 Ca2221 20.36 4 4 CA2221 20.37 2 2 C222 21.38 2 2
C2221′ 21.39 4 2 C2′2′2 21.40 2 1 C22′2′ 21.41 2 1 Cc222 21.42 4 2
Ca222 21.43 2 2 CA222 21.44 4 2 F222 22.45 2 2 F2221′ 22.46 2 2
F2′2′2 22.47 1 1 FS222 22.48 2 2 I222 23.49 2 2 I2221′ 23.50 2 2
I2′2′2 23.51 1 1 Ic222 23.52 4 2 I212121 24.53 2 2 I2121211′ 24.54 4 4
I2′12′121 24.55 2 2 Ic212121 24.56 4 2 Pmm2 25.57 2 2 Pmm21′ 25.58 2 2
Pm′m2′ 25.59 1 1 Pm′m′2 25.60 1 1 Pcmm2 25.61 4 4 Pamm2 25.62 2 2
PCmm2 25.63 4 4 PAmm2 25.64 4 4 PImm2 25.65 4 4 Pmc21 26.66 2 2
Pmc211′ 26.67 4 4 Pm′c2′1 26.68 2 2 Pmc′2′1 26.69 2 2 Pm′c′21 26.70 2 2
Pamc21 26.71 4 4 Pbmc21 26.72 4 4 Pcmc21 26.73 2 2 PAmc21 26.74 2 2
PBmc21 26.75 4 4 PCmc21 26.76 4 4 PImc21 26.77 4 4 Pcc2 27.78 2 2
Pcc21′ 27.79 4 4 Pc′c2′ 27.80 2 2 Pc′c′2 27.81 2 2 Pccc2 27.82 2 2
Pacc2 27.83 4 4 PCcc2 27.84 4 4 PAcc2 27.85 4 4 PIcc2 27.86 4 4
Pma2 28.87 2 2 Pma21′ 28.88 4 4 Pm′a2′ 28.89 2 2 Pma′2′ 28.90 2 2
Pm′a′2 28.91 2 2 Pama2 28.92 2 2 Pbma2 28.93 4 4 Pcma2 28.94 4 4
PAma2 28.95 4 4 PBma2 28.96 4 4 PCma2 28.97 4 2 PIma2 28.98 4 4
Pca21 29.99 4 4 Pca211′ 29.100 8 8 Pc′a2′1 29.101 4 4 Pca′2′1 29.102 4 4
Pc′a′21 29.103 4 4 Paca21 29.104 4 4 Pbca21 29.105 8 8 Pcca21 29.106 4 4
PAca21 29.107 4 4 PBca21 29.108 4 4 PCca21 29.109 4 4 PIca21 29.110 4 4
Pnc2 30.111 2 2 Pnc21′ 30.112 4 4 Pn′c2′ 30.113 2 2 Pnc′2′ 30.114 2 2
Pn′c′2 30.115 2 2 Panc2 30.116 4 4 Pbnc2 30.117 4 4 Pcnc2 30.118 4 4
PAnc2 30.119 2 2 PBnc2 30.120 4 4 PCnc2 30.121 4 4 PInc2 30.122 4 4
Pmn21 31.123 2 2 Pmn211′ 31.124 4 4 Pm′n2′1 31.125 2 2 Pmn′2′1 31.126 2 2
Pm′n′21 31.127 2 2 Pamn21 31.128 4 4 Pbmn21 31.129 4 4 Pcmn21 31.130 4 4
PAmn21 31.131 4 4 PBmn21 31.132 2 2 PCmn21 31.133 4 4 PImn21 31.134 2 2
Pba2 32.135 2 2 Pba21′ 32.136 4 4 Pb′a2′ 32.137 2 2 Pb′a′2 32.138 2 2
Pcba2 32.139 4 4 Pbba2 32.140 4 4 PCba2 32.141 4 2 PAba2 32.142 4 4
PIba2 32.143 4 4 Pna21 33.144 4 4 Pna211′ 33.145 8 8 Pn′a2′1 33.146 4 4
Pna′2′1 33.147 4 4 Pn′a′21 33.148 4 4 Pana21 33.149 4 4 Pbna21 33.150 8 8
Pcna21 33.151 4 4 PAna21 33.152 4 4 PBna21 33.153 4 4 PCna21 33.154 4 4
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PIna21 33.155 4 4 Pnn2 34.156 2 2 Pnn21′ 34.157 4 4 Pn′n2′ 34.158 2 2
Pn′n′2 34.159 2 2 Pann2 34.160 4 4 Pcnn2 34.161 4 4 PAnn2 34.162 4 4
PCnn2 34.163 4 4 PInn2 34.164 2 2 Cmm2 35.165 2 2 Cmm21′ 35.166 4 2
Cm′m2′ 35.167 2 1 Cm′m′2 35.168 2 1 Ccmm2 35.169 4 4 Camm2 35.170 2 2
CAmm2 35.171 4 4 Cmc21 36.172 2 2 Cmc211′ 36.173 4 4 Cm′c2′1 36.174 2 2
Cmc′2′1 36.175 2 2 Cm′c′21 36.176 2 2 Ccmc21 36.177 4 2 Camc21 36.178 4 4
CAmc21 36.179 4 2 Ccc2 37.180 2 2 Ccc21′ 37.181 4 4 Cc′c2′ 37.182 2 2
Cc′c′2 37.183 2 2 Cccc2 37.184 4 2 Cacc2 37.185 4 4 CAcc2 37.186 4 2
Amm2 38.187 2 2 Amm21′ 38.188 2 2 Am′m2′ 38.189 1 1 Amm′2′ 38.190 1 1
Am′m′2 38.191 1 1 Aamm2 38.192 2 2 Abmm2 38.193 2 2 ABmm2 38.194 4 4
Abm2 39.195 2 2 Abm21′ 39.196 4 4 Ab′m2′ 39.197 2 2 Abm′2′ 39.198 2 2
Ab′m′2 39.199 2 2 Aabm2 39.200 4 4 Abbm2 39.201 2 2 ABbm2 39.202 4 2
Ama2 40.203 2 2 Ama21′ 40.204 4 4 Am′a2′ 40.205 2 2 Ama′2′ 40.206 2 2
Am′a′2 40.207 2 2 Aama2 40.208 2 2 Abma2 40.209 4 4 ABma2 40.210 4 2
Aba2 41.211 2 2 Aba21′ 41.212 4 4 Ab′a2′ 41.213 2 2 Aba′2′ 41.214 2 2
Ab′a′2 41.215 2 2 Aaba2 41.216 4 4 Abba2 41.217 4 4 ABba2 41.218 4 2
Fmm2 42.219 2 2 Fmm21′ 42.220 4 2 Fm′m2′ 42.221 2 1 Fm′m′2 42.222 2 1
FSmm2 42.223 2 2 Fdd2 43.224 2 2 Fdd21′ 43.225 4 4 Fd′d2′ 43.226 2 2
Fd′d′2 43.227 2 2 FSdd2 43.228 4 4 Imm2 44.229 2 2 Imm21′ 44.230 2 2
Im′m2′ 44.231 1 1 Im′m′2 44.232 1 1 Icmm2 44.233 4 4 Iamm2 44.234 2 2
Iba2 45.235 2 2 Iba21′ 45.236 4 4 Ib′a2′ 45.237 2 2 Ib′a′2 45.238 2 2
Icba2 45.239 4 2 Iaba2 45.240 4 4 Ima2 46.241 2 2 Ima21′ 46.242 4 4
Im′a2′ 46.243 2 2 Ima′2′ 46.244 2 2 Im′a′2 46.245 2 2 Icma2 46.246 4 2
Iama2 46.247 2 2 Ibma2 46.248 4 4 Pmmm 47.249 2 2 Pmmm1′ 47.250 2 2
Pm′mm 47.251 2 2 Pm′m′m 47.252 1 1 Pm′m′m′ 47.253 2 2 Pammm 47.254 4 4
PCmmm 47.255 4 4 PImmm 47.256 4 4 Pnnn 48.257 4 4 Pnnn1′ 48.258 8 4
Pn′nn 48.259 2 2 Pn′n′n 48.260 4 2 Pn′n′n′ 48.261 4 4 Pcnnn 48.262 8 4
PCnnn 48.263 4 4 PInnn 48.264 8 4 Pccm 49.265 2 2 Pccm1′ 49.266 4 4
Pc′cm 49.267 2 2 Pccm′ 49.268 2 2 Pc′c′m 49.269 2 2 Pc′cm′ 49.270 2 2
Pc′c′m′ 49.271 4 4 Paccm 49.272 4 4 Pcccm 49.273 2 2 PBccm 49.274 4 4
PCccm 49.275 4 4 PIccm 49.276 4 4 Pban 50.277 4 4 Pban1′ 50.278 8 4
Pb′an 50.279 2 2 Pban′ 50.280 2 2 Pb′a′n 50.281 4 2 Pb′an′ 50.282 4 2
Pb′a′n′ 50.283 4 4 Paban 50.284 4 4 Pcban 50.285 8 4 PAban 50.286 8 8
PCban 50.287 4 4 PIban 50.288 8 8 Pmma 51.289 2 2 Pmma1′ 51.290 4 4
Pm′ma 51.291 2 2 Pmm′a 51.292 2 2 Pmma′ 51.293 4 4 Pm′m′a 51.294 2 2
Pmm′a′ 51.295 2 2 Pm′ma′ 51.296 2 2 Pm′m′a′ 51.297 2 2 Pamma 51.298 2 2
Pbmma 51.299 4 4 Pcmma 51.300 4 4 PAmma 51.301 4 4 PBmma 51.302 4 4
PCmma 51.303 4 4 PImma 51.304 4 4 Pnna 52.305 4 4 Pnna1′ 52.306 8 8
Pn′na 52.307 4 4 Pnn′a 52.308 4 4 Pnna′ 52.309 4 4 Pn′n′a 52.310 4 4
Pnn′a′ 52.311 4 4 Pn′na′ 52.312 4 4 Pn′n′a′ 52.313 4 4 Panna 52.314 8 4
Pbnna 52.315 8 4 Pcnna 52.316 8 8 PAnna 52.317 4 4 PBnna 52.318 8 4
PCnna 52.319 8 4 PInna 52.320 4 4 Pmna 53.321 4 2 Pmna1′ 53.322 8 4
Pm′na 53.323 4 4 Pmn′a 53.324 4 4 Pmna′ 53.325 4 4 Pm′n′a 53.326 4 2
Pmn′a′ 53.327 4 2 Pm′na′ 53.328 4 2 Pm′n′a′ 53.329 4 4 Pamna 53.330 4 4
Pbmna 53.331 8 4 Pcmna 53.332 4 4 PAmna 53.333 4 4 PBmna 53.334 2 2
PCmna 53.335 8 4 PImna 53.336 4 4 Pcca 54.337 4 4 Pcca1′ 54.338 8 8
Pc′ca 54.339 4 4 Pcc′a 54.340 4 4 Pcca′ 54.341 4 4 Pc′c′a 54.342 4 4
Pcc′a′ 54.343 4 4 Pc′ca′ 54.344 4 4 Pc′c′a′ 54.345 4 4 Pacca 54.346 4 4
Pbcca 54.347 8 8 Pccca 54.348 4 4 PAcca 54.349 8 8 PBcca 54.350 4 4
PCcca 54.351 8 4 PIcca 54.352 8 8 Pbam 55.353 2 2 Pbam1′ 55.354 4 4
Pb′am 55.355 4 4 Pbam′ 55.356 4 4 Pb′a′m 55.357 2 2 Pb′am′ 55.358 2 2
Pb′a′m′ 55.359 4 4 Pabam 55.360 4 4 Pcbam 55.361 4 4 PAbam 55.362 8 4
PCbam 55.363 2 2 PIbam 55.364 4 4 Pccn 56.365 4 4 Pccn1′ 56.366 8 8
Pc′cn 56.367 4 4 Pccn′ 56.368 4 4 Pc′c′n 56.369 4 4 Pc′cn′ 56.370 4 4
Pc′c′n′ 56.371 4 4 Pbccn 56.372 8 8 Pcccn 56.373 8 4 PAccn 56.374 8 4
PCccn 56.375 4 4 PIccn 56.376 8 4 Pbcm 57.377 4 4 Pbcm1′ 57.378 8 8
Pb′cm 57.379 4 4 Pbc′m 57.380 4 4 Pbcm′ 57.381 4 4 Pb′c′m 57.382 4 4
Pbc′m′ 57.383 4 4 Pb′cm′ 57.384 4 4 Pb′c′m′ 57.385 4 4 Pabcm 57.386 8 8
Pbbcm 57.387 4 4 Pcbcm 57.388 4 4 PAbcm 57.389 4 4 PBbcm 57.390 8 8
PCbcm 57.391 8 4 PIbcm 57.392 8 4 Pnnm 58.393 2 2 Pnnm1′ 58.394 4 4
Pn′nm 58.395 4 4 Pnnm′ 58.396 4 4 Pn′n′m 58.397 2 2 Pnn′m′ 58.398 2 2
Pn′n′m′ 58.399 4 4 Pannm 58.400 8 4 Pcnnm 58.401 4 4 PBnnm 58.402 4 4
PCnnm 58.403 4 4 PInnm 58.404 2 2 Pmmn 59.405 4 4 Pmmn1′ 59.406 8 4
Pm′mn 59.407 2 2 Pmmn′ 59.408 4 4 Pm′m′n 59.409 4 2 Pmm′n′ 59.410 4 2
Pm′m′n′ 59.411 2 2 Pbmmn 59.412 4 4 Pcmmn 59.413 8 8 PBmmn 59.414 8 8
PCmmn 59.415 4 4 PImmn 59.416 8 4 Pbcn 60.417 4 4 Pbcn1′ 60.418 8 8
Pb′cn 60.419 4 4 Pbc′n 60.420 4 4 Pbcn′ 60.421 4 4 Pb′c′n 60.422 4 4
Pbc′n′ 60.423 4 4 Pb′cn′ 60.424 4 4 Pb′c′n′ 60.425 4 4 Pabcn 60.426 8 8
Pbbcn 60.427 8 8 Pcbcn 60.428 8 4 PAbcn 60.429 8 8 PBbcn 60.430 8 4
PCbcn 60.431 4 4 PIbcn 60.432 4 4 Pbca 61.433 4 4 Pbca1′ 61.434 8 8
Pb′ca 61.435 8 8 Pb′c′a 61.436 4 4 Pb′c′a′ 61.437 8 8 Pabca 61.438 8 8
PCbca 61.439 8 4 PIbca 61.440 8 8 Pnma 62.441 4 4 Pnma1′ 62.442 8 8
Pn′ma 62.443 4 4 Pnm′a 62.444 4 4 Pnma′ 62.445 4 4 Pn′m′a 62.446 4 4
Pnm′a′ 62.447 4 4 Pn′ma′ 62.448 4 4 Pn′m′a′ 62.449 4 4 Panma 62.450 8 4
Pbnma 62.451 4 4 Pcnma 62.452 8 8 PAnma 62.453 8 4 PBnma 62.454 4 4
PCnma 62.455 8 8 PInma 62.456 4 4 Cmcm 63.457 4 2 Cmcm1′ 63.458 8 4
Cm′cm 63.459 2 2 Cmc′m 63.460 4 4 Cmcm′ 63.461 2 2 Cm′c′m 63.462 4 2
Cmc′m′ 63.463 4 2 Cm′cm′ 63.464 4 2 Cm′c′m′ 63.465 2 2 Ccmcm 63.466 4 2
Camcm 63.467 4 4 CAmcm 63.468 4 4 Cmca 64.469 4 2 Cmca1′ 64.470 8 4
Cm′ca 64.471 4 4 Cmc′a 64.472 4 4 Cmca′ 64.473 4 4 Cm′c′a 64.474 4 2
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Cmc′a′ 64.475 4 2 Cm′ca′ 64.476 4 2 Cm′c′a′ 64.477 4 4 Ccmca 64.478 4 4
Camca 64.479 4 4 CAmca 64.480 4 2 Cmmm 65.481 2 2 Cmmm1′ 65.482 4 2
Cm′mm 65.483 2 2 Cmmm′ 65.484 2 2 Cm′m′m 65.485 2 1 Cmm′m′ 65.486 2 1
Cm′m′m′ 65.487 2 2 Ccmmm 65.488 4 4 Cammm 65.489 4 2 CAmmm 65.490 4 4
Cccm 66.491 2 2 Cccm1′ 66.492 4 4 Cc′cm 66.493 2 2 Cccm′ 66.494 2 2
Cc′c′m 66.495 2 2 Ccc′m′ 66.496 2 2 Cc′c′m′ 66.497 4 4 Ccccm 66.498 4 2
Caccm 66.499 4 4 CAccm 66.500 4 2 Cmma 67.501 2 2 Cmma1′ 67.502 4 4
Cm′ma 67.503 2 2 Cmma′ 67.504 2 2 Cm′m′a 67.505 2 2 Cmm′a′ 67.506 2 2
Cm′m′a′ 67.507 2 2 Ccmma 67.508 4 4 Camma 67.509 2 2 CAmma 67.510 4 4
Ccca 68.511 4 4 Ccca1′ 68.512 8 4 Cc′ca 68.513 4 2 Ccca′ 68.514 4 2
Cc′c′a 68.515 4 2 Ccc′a′ 68.516 4 2 Cc′c′a′ 68.517 4 4 Cccca 68.518 4 4
Cacca 68.519 4 4 CAcca 68.520 4 4 Fmmm 69.521 2 2 Fmmm1′ 69.522 4 2
Fm′mm 69.523 2 2 Fm′m′m 69.524 2 1 Fm′m′m′ 69.525 2 2 FSmmm 69.526 4 2
Fddd 70.527 4 4 Fddd1′ 70.528 8 4 Fd′dd 70.529 2 2 Fd′d′d 70.530 4 2
Fd′d′d′ 70.531 4 4 FSddd 70.532 8 4 Immm 71.533 4 2 Immm1′ 71.534 8 2
Im′mm 71.535 2 2 Im′m′m 71.536 4 1 Im′m′m′ 71.537 2 2 Icmmm 71.538 4 4
Ibam 72.539 4 2 Ibam1′ 72.540 8 4 Ib′am 72.541 2 2 Ibam′ 72.542 2 2
Ib′a′m 72.543 4 2 Iba′m′ 72.544 4 2 Ib′a′m′ 72.545 4 4 Icbam 72.546 4 2
Ibbam 72.547 4 4 Ibca 73.548 4 4 Ibca1′ 73.549 8 8 Ib′ca 73.550 4 4
Ib′c′a 73.551 4 4 Ib′c′a′ 73.552 4 4 Icbca 73.553 4 4 Imma 74.554 2 2
Imma1′ 74.555 4 4 Im′ma 74.556 2 2 Imma′ 74.557 4 4 Im′m′a 74.558 2 2
Imm′a′ 74.559 2 2 Im′m′a′ 74.560 2 2 Icmma 74.561 4 4 Ibmma 74.562 4 2
P4 75.1 2 1 P41′ 75.2 4 2 P4′ 75.3 2 2 Pc4 75.4 4 2
PC4 75.5 4 2 PI4 75.6 4 2 P41 76.7 4 4 P411′ 76.8 8 8
P4′1 76.9 4 4 Pc41 76.10 4 4 PC41 76.11 8 8 PI41 76.12 4 4
P42 77.13 2 2 P421′ 77.14 4 4 P4′2 77.15 2 2 Pc42 77.16 4 4
PC42 77.17 4 4 PI42 77.18 4 4 P43 78.19 4 4 P431′ 78.20 8 8
P4′3 78.21 4 4 Pc43 78.22 4 4 PC43 78.23 8 8 PI43 78.24 4 4
I4 79.25 2 1 I41′ 79.26 4 2 I4′ 79.27 2 2 Ic4 79.28 4 2
I41 80.29 2 2 I411′ 80.30 4 4 I4′1 80.31 2 2 Ic41 80.32 4 4
P 4̄ 81.33 2 1 P 4̄1′ 81.34 4 2 P 4̄′ 81.35 2 2 Pc4̄ 81.36 4 2
PC 4̄ 81.37 4 2 PI 4̄ 81.38 4 2 I 4̄ 82.39 1 1 I 4̄1′ 82.40 2 2
I 4̄′ 82.41 2 2 Ic4̄ 82.42 4 2 P4/m 83.43 2 1 P4/m1′ 83.44 4 2
P4′/m 83.45 2 2 P4/m′ 83.46 2 2 P4′/m′ 83.47 2 2 Pc4/m 83.48 4 2
PC4/m 83.49 4 2 PI4/m 83.50 4 2 P42/m 84.51 2 2 P42/m1′ 84.52 4 4
P4′2/m 84.53 2 2 P42/m

′ 84.54 4 4 P4′2/m
′ 84.55 2 2 Pc42/m 84.56 4 4

PC42/m 84.57 4 4 PI42/m 84.58 4 4 P4/n 85.59 4 2 P4/n1′ 85.60 8 4
P4′/n 85.61 4 4 P4/n′ 85.62 4 2 P4′/n′ 85.63 4 2 Pc4/n 85.64 8 4
PC4/n 85.65 4 4 PI4/n 85.66 8 4 P42/n 86.67 4 2 P42/n1′ 86.68 8 4
P4′2/n 86.69 4 4 P42/n

′ 86.70 4 4 P4′2/n
′ 86.71 4 2 Pc42/n 86.72 8 4

PC42/n 86.73 4 4 PI42/n 86.74 8 4 I4/m 87.75 4 1 I4/m1′ 87.76 8 2
I4′/m 87.77 4 2 I4/m′ 87.78 2 2 I4′/m′ 87.79 2 2 Ic4/m 87.80 4 2
I41/a 88.81 4 2 I41/a1′ 88.82 8 4 I4′1/a 88.83 4 4 I41/a

′ 88.84 4 4
I4′1/a

′ 88.85 2 2 Ic41/a 88.86 8 4 P422 89.87 2 2 P4221′ 89.88 4 2
P4′22′ 89.89 2 2 P42′2′ 89.90 2 1 P4′2′2 89.91 2 2 Pc422 89.92 4 2
PC422 89.93 4 4 PI422 89.94 4 4 P4212 90.95 4 2 P42121′ 90.96 4 4
P4′212′ 90.97 4 2 P42′12′ 90.98 2 2 P4′2′12 90.99 4 4 Pc4212 90.100 4 4
PC4212 90.101 4 2 PI4212 90.102 4 2 P4122 91.103 4 4 P41221′ 91.104 8 8
P4′122′ 91.105 4 4 P412′2′ 91.106 4 4 P4′12′2 91.107 4 4 Pc4122 91.108 4 4
PC4122 91.109 8 8 PI4122 91.110 8 4 P41212 92.111 4 4 P412121′ 92.112 8 8
P4′1212′ 92.113 4 4 P412′12′ 92.114 4 4 P4′12′12 92.115 4 4 Pc41212 92.116 8 4
PC41212 92.117 8 8 PI41212 92.118 8 4 P4222 93.119 4 4 P42221′ 93.120 4 4
P4′222′ 93.121 2 2 P422′2′ 93.122 2 2 P4′22′2 93.123 2 2 Pc4222 93.124 4 4
PC4222 93.125 4 4 PI4222 93.126 4 4 P42212 94.127 4 4 P422121′ 94.128 8 4
P4′2212′ 94.129 4 2 P422′12′ 94.130 4 2 P4′22′12 94.131 4 4 Pc42212 94.132 8 4
PC42212 94.133 4 4 PI42212 94.134 4 4 P4322 95.135 4 4 P43221′ 95.136 8 8
P4′322′ 95.137 4 4 P432′2′ 95.138 4 4 P4′32′2 95.139 4 4 Pc4322 95.140 4 4
PC4322 95.141 8 8 PI4322 95.142 8 4 P43212 96.143 4 4 P432121′ 96.144 8 8
P4′3212′ 96.145 4 4 P432′12′ 96.146 4 4 P4′32′12 96.147 4 4 Pc43212 96.148 8 4
PC43212 96.149 8 8 PI43212 96.150 8 4 I422 97.151 2 2 I4221′ 97.152 4 2
I4′22′ 97.153 2 2 I42′2′ 97.154 2 1 I4′2′2 97.155 2 2 Ic422 97.156 4 2
I4122 98.157 4 4 I41221′ 98.158 8 4 I4′122′ 98.159 4 2 I412′2′ 98.160 4 2
I4′12′2 98.161 4 4 Ic4122 98.162 4 4 P4mm 99.163 2 2 P4mm1′ 99.164 4 2
P4′m′m 99.165 2 2 P4′mm′ 99.166 2 2 P4m′m′ 99.167 2 1 Pc4mm 99.168 4 4
PC4mm 99.169 4 4 PI4mm 99.170 4 4 P4bm 100.171 4 2 P4bm1′ 100.172 4 4
P4′b′m 100.173 4 4 P4′bm′ 100.174 4 2 P4b′m′ 100.175 2 2 Pc4bm 100.176 8 4
PC4bm 100.177 4 2 PI4bm 100.178 8 4 P42cm 101.179 4 4 P42cm1′ 101.180 8 4
P4′2c

′m 101.181 4 4 P4′2cm
′ 101.182 4 2 P42c

′m′ 101.183 4 2 Pc42cm 101.184 4 4
PC42cm 101.185 8 4 PI42cm 101.186 8 8 P42nm 102.187 4 4 P42nm1′ 102.188 8 4
P4′2n

′m 102.189 4 4 P4′2nm
′ 102.190 4 2 P42n

′m′ 102.191 4 2 Pc42nm 102.192 8 8
PC42nm 102.193 8 4 PI42nm 102.194 4 4 P4cc 103.195 4 2 P4cc1′ 103.196 8 4
P4′c′c 103.197 4 4 P4′cc′ 103.198 4 4 P4c′c′ 103.199 4 2 Pc4cc 103.200 4 2
PC4cc 103.201 8 4 PI4cc 103.202 4 4 P4nc 104.203 4 2 P4nc1′ 104.204 8 4
P4′n′c 104.205 4 4 P4′nc′ 104.206 4 4 P4n′c′ 104.207 4 2 Pc4nc 104.208 4 4
PC4nc 104.209 8 4 PI4nc 104.210 4 2 P42mc 105.211 4 4 P42mc1

′ 105.212 4 4
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P4′2m
′c 105.213 2 2 P4′2mc

′ 105.214 4 4 P42m
′c′ 105.215 2 2 Pc42mc 105.216 4 4

PC42mc 105.217 8 8 PI42mc 105.218 4 4 P42bc 106.219 4 4 P42bc1
′ 106.220 8 8

P4′2b
′c 106.221 4 4 P4′2bc

′ 106.222 4 4 P42b
′c′ 106.223 4 4 Pc42bc 106.224 8 4

PC42bc 106.225 8 4 PI42bc 106.226 8 4 I4mm 107.227 2 2 I4mm1′ 107.228 4 2
I4′m′m 107.229 2 2 I4′mm′ 107.230 2 2 I4m′m′ 107.231 2 1 Ic4mm 107.232 4 4
I4cm 108.233 4 2 I4cm1′ 108.234 4 4 I4′c′m 108.235 4 4 I4′cm′ 108.236 4 2
I4c′m′ 108.237 2 2 Ic4cm 108.238 4 2 I41md 109.239 4 4 I41md1′ 109.240 4 4
I4′1m

′d 109.241 2 2 I4′1md
′ 109.242 4 4 I41m

′d′ 109.243 2 2 Ic41md 109.244 8 8
I41cd 110.245 4 4 I41cd1′ 110.246 8 8 I4′1c

′d 110.247 4 4 I4′1cd
′ 110.248 4 4

I41c
′d′ 110.249 4 4 Ic41cd 110.250 8 4 P 4̄2m 111.251 2 2 P 4̄2m1′ 111.252 4 2

P 4̄′2′m 111.253 2 2 P 4̄′2m′ 111.254 2 2 P 4̄2′m′ 111.255 2 1 Pc4̄2m 111.256 4 4
PC 4̄2m 111.257 4 4 PI 4̄2m 111.258 4 4 P 4̄2c 112.259 2 2 P 4̄2c1′ 112.260 4 4
P 4̄′2′c 112.261 2 2 P 4̄′2c′ 112.262 4 4 P 4̄2′c′ 112.263 2 2 Pc4̄2c 112.264 4 2
PC 4̄2c 112.265 8 4 PI 4̄2c 112.266 4 4 P 4̄21m 113.267 4 2 P 4̄21m1′ 113.268 4 4
P 4̄′2′1m 113.269 4 4 P 4̄′21m

′ 113.270 4 2 P 4̄2′1m
′ 113.271 2 2 Pc4̄21m 113.272 8 4

PC 4̄21m 113.273 4 2 PI 4̄21m 113.274 4 4 P 4̄21c 114.275 4 2 P 4̄21c1
′ 114.276 8 4

P 4̄′2′1c 114.277 4 4 P 4̄′21c
′ 114.278 4 4 P 4̄2′1c

′ 114.279 4 2 Pc4̄21c 114.280 4 4
PC 4̄21c 114.281 8 4 PI 4̄21c 114.282 4 2 P 4̄m2 115.283 2 2 P 4̄m21′ 115.284 4 2
P 4̄′m′2 115.285 2 2 P 4̄′m2′ 115.286 2 2 P 4̄m′2′ 115.287 2 1 Pc4̄m2 115.288 4 4
PC 4̄m2 115.289 4 4 PI 4̄m2 115.290 4 4 P 4̄c2 116.291 4 2 P 4̄c21′ 116.292 8 4
P 4̄′c′2 116.293 4 4 P 4̄′c2′ 116.294 4 2 P 4̄c′2′ 116.295 4 2 Pc4̄c2 116.296 4 2
PC 4̄c2 116.297 4 4 PI 4̄c2 116.298 4 4 P 4̄b2 117.299 4 2 P 4̄b21′ 117.300 4 4
P 4̄′b′2 117.301 4 4 P 4̄′b2′ 117.302 4 2 P 4̄b′2′ 117.303 2 2 Pc4̄b2 117.304 4 4
PC 4̄b2 117.305 4 2 PI 4̄b2 117.306 8 4 P 4̄n2 118.307 4 2 P 4̄n21′ 118.308 4 4
P 4̄′n′2 118.309 4 4 P 4̄′n2′ 118.310 4 2 P 4̄n′2′ 118.311 2 2 Pc4̄n2 118.312 4 4
PC 4̄n2 118.313 4 4 PI 4̄n2 118.314 4 2 I 4̄m2 119.315 2 2 I 4̄m21′ 119.316 2 2
I 4̄′m′2 119.317 2 2 I 4̄′m2′ 119.318 2 2 I 4̄m′2′ 119.319 1 1 Ic4̄m2 119.320 4 4
I 4̄c2 120.321 2 2 I 4̄c21′ 120.322 4 4 I 4̄′c′2 120.323 4 4 I 4̄′c2′ 120.324 2 2
I 4̄c′2′ 120.325 2 2 Ic4̄c2 120.326 4 2 I 4̄2m 121.327 2 2 I 4̄2m1′ 121.328 4 2
I 4̄′2′m 121.329 2 2 I 4̄′2m′ 121.330 2 2 I 4̄2′m′ 121.331 2 1 Ic4̄2m 121.332 4 2
I 4̄2d 122.333 4 2 I 4̄2d1′ 122.334 8 4 I 4̄′2′d 122.335 4 4 I 4̄′2d′ 122.336 4 4
I 4̄2′d′ 122.337 4 2 Ic4̄2d 122.338 4 4 P4/mmm 123.339 4 2 P4/mmm1′ 123.340 4 2
P4/m′mm 123.341 2 2 P4′/mm′m 123.342 2 2 P4′/mmm′ 123.343 4 2 P4′/m′m′m 123.344 2 2
P4/mm′m′ 123.345 2 1 P4′/m′mm′ 123.346 2 2 P4/m′m′m′ 123.347 2 2 Pc4/mmm 123.348 8 4
PC4/mmm 123.349 4 4 PI4/mmm 123.350 8 4 P4/mcc 124.351 4 2 P4/mcc1′ 124.352 8 4
P4/m′cc 124.353 4 2 P4′/mc′c 124.354 4 4 P4′/mcc′ 124.355 4 4 P4′/m′c′c 124.356 4 4
P4/mc′c′ 124.357 4 2 P4′/m′cc′ 124.358 4 4 P4/m′c′c′ 124.359 4 4 Pc4/mcc 124.360 4 2
PC4/mcc 124.361 8 4 PI4/mcc 124.362 4 4 P4/nbm 125.363 4 4 P4/nbm1′ 125.364 8 4
P4/n′bm 125.365 4 2 P4′/nb′m 125.366 4 4 P4′/nbm′ 125.367 4 4 P4′/n′b′m 125.368 4 4
P4/nb′m′ 125.369 4 2 P4′/n′bm′ 125.370 4 2 P4/n′b′m′ 125.371 4 4 Pc4/nbm 125.372 8 4
PC4/nbm 125.373 4 4 PI4/nbm 125.374 8 8 P4/nnc 126.375 8 4 P4/nnc1′ 126.376 16 4
P4/n′nc 126.377 4 2 P4′/nn′c 126.378 8 4 P4′/nnc′ 126.379 8 4 P4′/n′n′c 126.380 4 4
P4/nn′c′ 126.381 8 2 P4′/n′nc′ 126.382 4 4 P4/n′n′c′ 126.383 4 4 Pc4/nnc 126.384 8 4
PC4/nnc 126.385 8 8 PI4/nnc 126.386 8 4 P4/mbm 127.387 4 2 P4/mbm1′ 127.388 4 4
P4/m′bm 127.389 4 4 P4′/mb′m 127.390 4 4 P4′/mbm′ 127.391 4 2 P4′/m′b′m 127.392 4 4
P4/mb′m′ 127.393 2 2 P4′/m′bm′ 127.394 4 4 P4/m′b′m′ 127.395 4 4 Pc4/mbm 127.396 8 4
PC4/mbm 127.397 4 2 PI4/mbm 127.398 8 4 P4/mnc 128.399 4 2 P4/mnc1′ 128.400 8 4
P4/m′nc 128.401 4 4 P4′/mn′c 128.402 4 4 P4′/mnc′ 128.403 4 4 P4′/m′n′c 128.404 4 4
P4/mn′c′ 128.405 4 2 P4′/m′nc′ 128.406 4 4 P4/m′n′c′ 128.407 4 4 Pc4/mnc 128.408 4 4
PC4/mnc 128.409 8 4 PI4/mnc 128.410 4 2 P4/nmm 129.411 4 4 P4/nmm1′ 129.412 8 4
P4/n′mm 129.413 4 4 P4′/nm′m 129.414 4 4 P4′/nmm′ 129.415 4 4 P4′/n′m′m 129.416 4 2
P4/nm′m′ 129.417 4 2 P4′/n′mm′ 129.418 4 4 P4/n′m′m′ 129.419 4 2 Pc4/nmm 129.420 8 8
PC4/nmm 129.421 4 4 PI4/nmm 129.422 8 4 P4/ncc 130.423 8 4 P4/ncc1′ 130.424 16 8
P4/n′cc 130.425 4 4 P4′/nc′c 130.426 8 8 P4′/ncc′ 130.427 8 4 P4′/n′c′c 130.428 8 4
P4/nc′c′ 130.429 8 4 P4′/n′cc′ 130.430 8 4 P4/n′c′c′ 130.431 8 4 Pc4/ncc 130.432 8 4
PC4/ncc 130.433 8 4 PI4/ncc 130.434 8 4 P42/mmc 131.435 4 4 P42/mmc1

′ 131.436 4 4
P42/m

′mc 131.437 4 4 P4′2/mm
′c 131.438 2 2 P4′2/mmc

′ 131.439 4 4 P4′2/m
′m′c 131.440 2 2

P42/mm
′c′ 131.441 2 2 P4′2/m

′mc′ 131.442 4 4 P42/m
′m′c′ 131.443 4 4 Pc42/mmc 131.444 8 4

PC42/mmc 131.445 8 8 PI42/mmc 131.446 8 4 P42/mcm 132.447 4 4 P42/mcm1′ 132.448 8 4
P42/m

′cm 132.449 4 4 P4′2/mc
′m 132.450 4 4 P4′2/mcm

′ 132.451 4 2 P4′2/m
′c′m 132.452 4 4

P42/mc
′m′ 132.453 4 2 P4′2/m

′cm′ 132.454 4 2 P42/m
′c′m′ 132.455 4 4 Pc42/mcm 132.456 4 4

PC42/mcm 132.457 8 4 PI42/mcm 132.458 8 8 P42/nbc 133.459 8 4 P42/nbc1
′ 133.460 16 8

P42/n
′bc 133.461 4 4 P4′2/nb

′c 133.462 8 4 P4′2/nbc
′ 133.463 8 4 P4′2/n

′b′c 133.464 4 4
P42/nb

′c′ 133.465 8 4 P4′2/n
′bc′ 133.466 4 4 P42/n

′b′c′ 133.467 8 8 Pc42/nbc 133.468 8 4
PC42/nbc 133.469 8 4 PI42/nbc 133.470 8 8 P42/nnm 134.471 4 4 P42/nnm1′ 134.472 8 4
P42/n

′nm 134.473 4 4 P4′2/nn
′m 134.474 4 4 P4′2/nnm

′ 134.475 4 4 P4′2/n
′n′m 134.476 4 4

P42/nn
′m′ 134.477 4 2 P4′2/n

′nm′ 134.478 4 2 P42/n
′n′m′ 134.479 4 4 Pc42/nnm 134.480 8 8

PC42/nnm 134.481 8 4 PI42/nnm 134.482 8 4 P42/mbc 135.483 4 4 P42/mbc1
′ 135.484 8 8

P42/m
′bc 135.485 4 4 P4′2/mb

′c 135.486 4 4 P4′2/mbc
′ 135.487 4 4 P4′2/m

′b′c 135.488 4 4
P42/mb

′c′ 135.489 4 4 P4′2/m
′bc′ 135.490 4 4 P42/m

′b′c′ 135.491 8 8 Pc42/mbc 135.492 8 4
PC42/mbc 135.493 8 4 PI42/mbc 135.494 8 4 P42/mnm 136.495 4 4 P42/mnm1′ 136.496 8 4
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P42/m
′nm 136.497 4 4 P4′2/mn

′m 136.498 4 4 P4′2/mnm
′ 136.499 4 2 P4′2/m

′n′m 136.500 4 4
P42/mn

′m′ 136.501 4 2 P4′2/m
′nm′ 136.502 4 4 P42/m

′n′m′ 136.503 4 4 Pc42/mnm 136.504 8 8
PC42/mnm 136.505 8 4 PI42/mnm 136.506 4 4 P42/nmc 137.507 8 4 P42/nmc1

′ 137.508 16 4
P42/n

′mc 137.509 4 4 P4′2/nm
′c 137.510 8 4 P4′2/nmc

′ 137.511 8 4 P4′2/n
′m′c 137.512 4 2

P42/nm
′c′ 137.513 8 2 P4′2/n

′mc′ 137.514 4 4 P42/n
′m′c′ 137.515 4 4 Pc42/nmc 137.516 8 8

PC42/nmc 137.517 8 8 PI42/nmc 137.518 8 4 P42/ncm 138.519 4 4 P42/ncm1′ 138.520 8 8
P42/n

′cm 138.521 8 4 P4′2/nc
′m 138.522 8 4 P4′2/ncm

′ 138.523 4 4 P4′2/n
′c′m 138.524 8 4

P42/nc
′m′ 138.525 4 4 P4′2/n

′cm′ 138.526 4 4 P42/n
′c′m′ 138.527 8 4 Pc42/ncm 138.528 8 4

PC42/ncm 138.529 8 4 PI42/ncm 138.530 8 8 I4/mmm 139.531 4 2 I4/mmm1′ 139.532 8 2
I4/m′mm 139.533 4 2 I4′/mm′m 139.534 4 2 I4′/mmm′ 139.535 4 2 I4′/m′m′m 139.536 2 2
I4/mm′m′ 139.537 4 1 I4′/m′mm′ 139.538 4 2 I4/m′m′m′ 139.539 2 2 Ic4/mmm 139.540 4 4
I4/mcm 140.541 4 2 I4/mcm1′ 140.542 8 4 I4/m′cm 140.543 4 2 I4′/mc′m 140.544 4 4
I4′/mcm′ 140.545 4 2 I4′/m′c′m 140.546 4 4 I4/mc′m′ 140.547 4 2 I4′/m′cm′ 140.548 4 2
I4/m′c′m′ 140.549 4 4 Ic4/mcm 140.550 4 2 I41/amd 141.551 4 4 I41/amd1′ 141.552 8 4
I41/a

′md 141.553 4 4 I4′1/am
′d 141.554 4 4 I4′1/amd

′ 141.555 4 4 I4′1/a
′m′d 141.556 2 2

I41/am
′d′ 141.557 4 2 I4′1/a

′md′ 141.558 4 4 I41/a
′m′d′ 141.559 4 4 Ic41/amd 141.560 8 8

I41/acd 142.561 8 4 I41/acd1′ 142.562 16 8 I41/a
′cd 142.563 8 4 I4′1/ac

′d 142.564 8 8
I4′1/acd

′ 142.565 8 4 I4′1/a
′c′d 142.566 8 4 I41/ac

′d′ 142.567 8 4 I4′1/a
′cd′ 142.568 8 4

I41/a
′c′d′ 142.569 8 8 Ic41/acd 142.570 8 4 P3 143.1 1 1 P31′ 143.2 2 2

Pc3 143.3 2 2 P31 144.4 3 3 P311′ 144.5 6 6 Pc31 144.6 6 6
P32 145.7 3 3 P321′ 145.8 6 6 Pc32 145.9 6 6 R3 146.10 1 1
R31′ 146.11 2 2 RI3 146.12 2 2 P 3̄ 147.13 3 1 P 3̄1′ 147.14 6 2
P 3̄′ 147.15 2 2 Pc3̄ 147.16 6 2 R3̄ 148.17 3 1 R3̄1′ 148.18 6 2
R3̄′ 148.19 2 2 RI 3̄ 148.20 6 2 P312 149.21 2 1 P3121′ 149.22 2 2
P312′ 149.23 1 1 Pc312 149.24 2 2 P321 150.25 2 1 P3211′ 150.26 4 2
P32′1 150.27 2 1 Pc321 150.28 4 2 P3112 151.29 3 3 P31121′ 151.30 6 6
P3112′ 151.31 3 3 Pc3112 151.32 6 6 P3121 152.33 3 3 P31211′ 152.34 6 6
P312′1 152.35 3 3 Pc3121 152.36 6 6 P3212 153.37 3 3 P32121′ 153.38 6 6
P3212′ 153.39 3 3 Pc3212 153.40 6 6 P3221 154.41 3 3 P32211′ 154.42 6 6
P322′1 154.43 3 3 Pc3221 154.44 6 6 R32 155.45 2 1 R321′ 155.46 2 2
R32′ 155.47 1 1 RI32 155.48 2 2 P3m1 156.49 2 1 P3m11′ 156.50 2 2
P3m′1 156.51 1 1 Pc3m1 156.52 4 2 P31m 157.53 2 1 P31m1′ 157.54 4 2
P31m′ 157.55 2 1 Pc31m 157.56 4 2 P3c1 158.57 2 2 P3c11′ 158.58 4 4
P3c′1 158.59 2 2 Pc3c1 158.60 2 2 P31c 159.61 2 2 P31c1′ 159.62 4 4
P31c′ 159.63 2 2 Pc31c 159.64 4 2 R3m 160.65 2 1 R3m1′ 160.66 2 2
R3m′ 160.67 1 1 RI3m 160.68 4 2 R3c 161.69 2 2 R3c1′ 161.70 4 4
R3c′ 161.71 2 2 RI3c 161.72 2 2 P 3̄1m 162.73 4 1 P 3̄1m1′ 162.74 6 2
P 3̄′1m 162.75 2 2 P 3̄′1m′ 162.76 4 2 P 3̄1m′ 162.77 3 1 Pc3̄1m 162.78 6 2
P 3̄1c 163.79 6 2 P 3̄1c1′ 163.80 12 4 P 3̄′1c 163.81 2 2 P 3̄′1c′ 163.82 4 2
P 3̄1c′ 163.83 6 2 Pc3̄1c 163.84 6 2 P 3̄m1 164.85 4 1 P 3̄m11′ 164.86 6 2
P 3̄′m1 164.87 4 2 P 3̄′m′1 164.88 2 2 P 3̄m′1 164.89 3 1 Pc3̄m1 164.90 8 2
P 3̄c1 165.91 6 2 P 3̄c11′ 165.92 12 4 P 3̄′c1 165.93 4 2 P 3̄′c′1 165.94 4 2
P 3̄c′1 165.95 6 2 Pc3̄c1 165.96 6 2 R3̄m 166.97 3 1 R3̄m1′ 166.98 6 2
R3̄′m 166.99 2 2 R3̄′m′ 166.100 2 2 R3̄m′ 166.101 3 1 RI 3̄m 166.102 6 2
R3̄c 167.103 6 2 R3̄c1′ 167.104 12 4 R3̄′c 167.105 2 2 R3̄′c′ 167.106 4 2
R3̄c′ 167.107 6 2 RI 3̄c 167.108 6 2 P6 168.109 3 1 P61′ 168.110 6 2
P6′ 168.111 3 1 Pc6 168.112 6 2 P61 169.113 6 6 P611′ 169.114 12 12
P6′1 169.115 6 6 Pc61 169.116 6 6 P65 170.117 6 6 P651′ 170.118 12 12
P6′5 170.119 6 6 Pc65 170.120 6 6 P62 171.121 3 3 P621′ 171.122 6 6
P6′2 171.123 3 3 Pc62 171.124 6 6 P64 172.125 3 3 P641′ 172.126 6 6
P6′4 172.127 3 3 Pc64 172.128 6 6 P63 173.129 2 2 P631′ 173.130 4 4
P6′3 173.131 2 2 Pc63 173.132 6 2 P 6̄ 174.133 1 1 P 6̄1′ 174.134 2 2
P 6̄′ 174.135 2 1 Pc6̄ 174.136 2 2 P6/m 175.137 3 1 P6/m1′ 175.138 6 2
P6′/m 175.139 2 2 P6/m′ 175.140 4 2 P6′/m′ 175.141 4 1 Pc6/m 175.142 6 2
P63/m 176.143 6 2 P63/m1′ 176.144 12 4 P6′3/m 176.145 2 2 P63/m

′ 176.146 4 2
P6′3/m

′ 176.147 6 2 Pc63/m 176.148 6 2 P622 177.149 4 2 P6221′ 177.150 6 2
P6′2′2 177.151 4 1 P6′22′ 177.152 3 1 P62′2′ 177.153 3 1 Pc622 177.154 6 2
P6122 178.155 6 6 P61221′ 178.156 12 12 P6′12′2 178.157 6 6 P6′122′ 178.158 6 6
P612′2′ 178.159 6 6 Pc6122 178.160 6 6 P6522 179.161 6 6 P65221′ 179.162 12 12
P6′52′2 179.163 6 6 P6′522′ 179.164 6 6 P652′2′ 179.165 6 6 Pc6522 179.166 6 6
P6222 180.167 6 6 P62221′ 180.168 6 6 P6′22′2 180.169 3 3 P6′222′ 180.170 3 3
P622′2′ 180.171 3 3 Pc6222 180.172 6 6 P6422 181.173 6 6 P64221′ 181.174 6 6
P6′42′2 181.175 3 3 P6′422′ 181.176 3 3 P642′2′ 181.177 3 3 Pc6422 181.178 6 6
P6322 182.179 4 2 P63221′ 182.180 4 4 P6′32′2 182.181 4 2 P6′322′ 182.182 2 2
P632′2′ 182.183 2 2 Pc6322 182.184 6 2 P6mm 183.185 4 2 P6mm1′ 183.186 6 2
P6′m′m 183.187 3 1 P6′mm′ 183.188 4 1 P6m′m′ 183.189 3 1 Pc6mm 183.190 8 4
P6cc 184.191 6 2 P6cc1′ 184.192 12 4 P6′c′c 184.193 6 2 P6′cc′ 184.194 6 2
P6c′c′ 184.195 6 2 Pc6cc 184.196 6 2 P63cm 185.197 4 2 P63cm1′ 185.198 8 4
P6′3c

′m 185.199 4 2 P6′3cm
′ 185.200 4 2 P63c

′m′ 185.201 4 2 Pc63cm 185.202 6 2
P63mc 186.203 4 2 P63mc1

′ 186.204 4 4 P6′3m
′c 186.205 2 2 P6′3mc

′ 186.206 4 2
P63m

′c′ 186.207 2 2 Pc63mc 186.208 8 2 P 6̄m2 187.209 2 2 P 6̄m21′ 187.210 2 2
P 6̄′m′2 187.211 2 1 P 6̄′m2′ 187.212 2 1 P 6̄m′2′ 187.213 1 1 Pc6̄m2 187.214 4 2
P 6̄c2 188.215 2 2 P 6̄c21′ 188.216 4 4 P 6̄′c′2 188.217 4 2 P 6̄′c2′ 188.218 2 2
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P 6̄c′2′ 188.219 2 2 Pc6̄c2 188.220 2 2 P 6̄2m 189.221 2 2 P 6̄2m1′ 189.222 4 2
P 6̄′2′m 189.223 4 1 P 6̄′2m′ 189.224 4 1 P 6̄2′m′ 189.225 2 1 Pc6̄2m 189.226 4 2
P 6̄2c 190.227 2 2 P 6̄2c1′ 190.228 4 4 P 6̄′2′c 190.229 4 2 P 6̄′2c′ 190.230 4 2
P 6̄2′c′ 190.231 2 2 Pc6̄2c 190.232 4 2 P6/mmm 191.233 6 2 P6/mmm1′ 191.234 6 2
P6/m′mm 191.235 4 2 P6′/mm′m 191.236 2 2 P6′/mmm′ 191.237 4 2 P6′/m′m′m 191.238 4 1
P6′/m′mm′ 191.239 4 1 P6/mm′m′ 191.240 3 1 P6/m′m′m′ 191.241 4 2 Pc6/mmm 191.242 12 4
P6/mcc 192.243 6 2 P6/mcc1′ 192.244 12 4 P6/m′cc 192.245 6 2 P6′/mc′c 192.246 6 2
P6′/mcc′ 192.247 6 2 P6′/m′c′c 192.248 8 2 P6′/m′cc′ 192.249 6 2 P6/mc′c′ 192.250 6 2
P6/m′c′c′ 192.251 8 4 Pc6/mcc 192.252 6 2 P63/mcm 193.253 6 2 P63/mcm1′ 193.254 12 4
P63/m

′cm 193.255 4 2 P6′3/mc
′m 193.256 4 4 P6′3/mcm

′ 193.257 4 2 P6′3/m
′c′m 193.258 8 2

P6′3/m
′cm′ 193.259 6 2 P63/mc

′m′ 193.260 6 2 P63/m
′c′m′ 193.261 8 2 Pc63/mcm 193.262 6 2

P63/mmc 194.263 6 2 P63/mmc1
′ 194.264 12 4 P63/m

′mc 194.265 4 2 P6′3/mm
′c 194.266 2 2

P6′3/mmc
′ 194.267 4 4 P6′3/m

′m′c 194.268 6 2 P6′3/m
′mc′ 194.269 6 2 P63/mm

′c′ 194.270 6 2
P63/m

′m′c′ 194.271 4 2 Pc63/mmc 194.272 8 2 P23 195.1 2 2 P231′ 195.2 6 2
PI23 195.3 4 4 F23 196.4 2 2 F231′ 196.5 4 2 FS23 196.6 6 4
I23 197.7 2 2 I231′ 197.8 6 2 P213 198.9 4 4 P2131′ 198.10 8 8
PI213 198.11 12 8 I213 199.12 6 4 I2131′ 199.13 12 8 Pm3̄ 200.14 6 2
Pm3̄1′ 200.15 6 2 Pm′3̄′ 200.16 4 2 PIm3̄ 200.17 12 4 Pn3̄ 201.18 4 4
Pn3̄1′ 201.19 12 4 Pn′3̄′ 201.20 4 4 PIn3̄ 201.21 8 4 Fm3̄ 202.22 6 2
Fm3̄1′ 202.23 12 2 Fm′3̄′ 202.24 4 2 FSm3̄ 202.25 8 4 Fd3̄ 203.26 4 4
Fd3̄1′ 203.27 8 4 Fd′3̄′ 203.28 4 4 FSd3̄ 203.29 12 8 Im3̄ 204.30 6 2
Im3̄1′ 204.31 8 2 Im′3̄′ 204.32 4 2 Pa3̄ 205.33 4 4 Pa3̄1′ 205.34 8 8
Pa′3̄′ 205.35 8 8 PIa3̄ 205.36 24 8 Ia3̄ 206.37 12 4 Ia3̄1′ 206.38 24 8
Ia′3̄′ 206.39 12 8 P432 207.40 4 2 P4321′ 207.41 6 2 P4′32′ 207.42 6 2
PI432 207.43 12 4 P4232 208.44 4 4 P42321′ 208.45 12 4 P4′232′ 208.46 6 4
PI4232 208.47 12 4 F432 209.48 4 2 F4321′ 209.49 12 2 F4′32′ 209.50 6 2
FS432 209.51 12 4 F4132 210.52 4 4 F41321′ 210.53 8 4 F4′132′ 210.54 4 4
FS4132 210.55 12 8 I432 211.56 4 2 I4321′ 211.57 12 2 I4′32′ 211.58 6 2
P4332 212.59 8 4 P43321′ 212.60 8 8 P4′332′ 212.61 4 4 PI4332 212.62 12 8
P4132 213.63 8 4 P41321′ 213.64 8 8 P4′132′ 213.65 4 4 PI4132 213.66 12 8
I4132 214.67 8 4 I41321′ 214.68 12 8 I4′132′ 214.69 6 4 P 4̄3m 215.70 6 2
P 4̄3m1′ 215.71 6 2 P 4̄′3m′ 215.72 2 2 PI 4̄3m 215.73 12 4 F 4̄3m 216.74 4 2
F 4̄3m1′ 216.75 4 2 F 4̄′3m′ 216.76 2 2 FS 4̄3m 216.77 12 4 I 4̄3m 217.78 6 2
I 4̄3m1′ 217.79 12 2 I 4̄′3m′ 217.80 2 2 P 4̄3n 218.81 6 4 P 4̄3n1′ 218.82 12 4
P 4̄′3n′ 218.83 4 4 PI 4̄3n 218.84 12 4 F 4̄3c 219.85 6 4 F 4̄3c1′ 219.86 12 4
F 4̄′3c′ 219.87 4 4 FS 4̄3c 219.88 6 4 I 4̄3d 220.89 8 6 I 4̄3d1′ 220.90 16 12
I 4̄′3d′ 220.91 12 8 Pm3̄m 221.92 6 2 Pm3̄m1′ 221.93 6 2 Pm′3̄′m 221.94 6 2
Pm3̄m′ 221.95 6 2 Pm′3̄′m′ 221.96 4 2 PIm3̄m 221.97 24 4 Pn3̄n 222.98 12 4
Pn3̄n1′ 222.99 24 4 Pn′3̄′n 222.100 12 4 Pn3̄n′ 222.101 12 4 Pn′3̄′n′ 222.102 8 4
PIn3̄n 222.103 12 4 Pm3̄n 223.104 12 4 Pm3̄n1′ 223.105 16 4 Pm′3̄′n 223.106 8 4
Pm3̄n′ 223.107 12 4 Pm′3̄′n′ 223.108 8 4 PIm3̄n 223.109 24 4 Pn3̄m 224.110 12 4
Pn3̄m1′ 224.111 24 4 Pn′3̄′m 224.112 12 4 Pn3̄m′ 224.113 12 4 Pn′3̄′m′ 224.114 4 4
PIn3̄m 224.115 16 4 Fm3̄m 225.116 12 2 Fm3̄m1′ 225.117 12 2 Fm′3̄′m 225.118 4 2
Fm3̄m′ 225.119 6 2 Fm′3̄′m′ 225.120 4 2 FSm3̄m 225.121 12 4 Fm3̄c 226.122 12 4
Fm3̄c1′ 226.123 12 4 Fm′3̄′c 226.124 12 4 Fm3̄c′ 226.125 12 4 Fm′3̄′c′ 226.126 8 4
FSm3̄c 226.127 12 4 Fd3̄m 227.128 8 4 Fd3̄m1′ 227.129 8 4 Fd′3̄′m 227.130 8 4
Fd3̄m′ 227.131 4 4 Fd′3̄′m′ 227.132 4 4 FSd3̄m 227.133 24 8 Fd3̄c 228.134 12 8
Fd3̄c1′ 228.135 24 8 Fd′3̄′c 228.136 12 8 Fd3̄c′ 228.137 8 8 Fd′3̄′c′ 228.138 8 8
FSd3̄c 228.139 24 8 Im3̄m 229.140 12 2 Im3̄m1′ 229.141 12 2 Im′3̄′m 229.142 8 2
Im3̄m′ 229.143 12 2 Im′3̄′m′ 229.144 4 2 Ia3̄d 230.145 12 8 Ia3̄d1′ 230.146 24 16
Ia′3̄′d 230.147 12 8 Ia3̄d′ 230.148 12 8 Ia′3̄′d′ 230.149 16 8
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3. Minimal SSG Dependencies for the Double SIs in the 1,651 Double SSGs

In this section, we list the minimal double SSG M with the minimal double SIs on which the double SIs in each
double SSG G are dependent (see Appendix F 3 for calculation details).

TABLE XXVI: Minimal SSG dependencies for the double SIs in the
1,651 double SSGs. In order, the columns in this table list the symbol
of the SSG G, the number of G in the BNS setting126, the type of G
(see Appendix B), the number of the minimal double SSG M with the
minimal double SIs on which the double SIs in G are dependent (see
Appendix F 3), the symbol of M , and the type of M . Entries for which
G = M are highlighted in bold text. We have omitted double SSGs G
for which |ZG| = 1 [see Eq. (F17) and the surrounding text].

Double SSG Type Minimal SSG Type Double SSG Type Minimal SSG Type

2.4 P1̄ I 2.4 P1̄ I 2.5 P1̄1′ II 2.5 P1̄1′ II
2.7 PS 1̄ IV 2.4 P 1̄ I 3.1 P2 I 3.1 P2 I
3.4 Pa2 IV 3.1 P2 I 10.42 P2/m I 10.42 P2/m I

10.43 P2/m1′ II 2.5 P 1̄1′ II 10.46 P2′/m′ III 2.4 P 1̄ I
10.47 Pa2/m IV 10.42 P2/m I 10.48 Pb2/m IV 2.4 P 1̄ I
10.49 PC2/m IV 2.4 P 1̄ I 11.50 P21/m I 2.4 P 1̄ I
11.51 P21/m1′ II 2.5 P 1̄1′ II 11.54 P2′1/m

′ III 2.4 P 1̄ I
11.55 Pa21/m IV 2.4 P 1̄ I 11.56 Pb21/m IV 2.4 P 1̄ I
11.57 PC21/m IV 2.4 P 1̄ I 12.58 C2/m I 2.4 P 1̄ I
12.59 C2/m1′ II 2.5 P 1̄1′ II 12.62 C2′/m′ III 2.4 P 1̄ I
12.63 Cc2/m IV 2.4 P 1̄ I 12.64 Ca2/m IV 2.4 P 1̄ I
13.65 P2/c I 2.4 P 1̄ I 13.66 P2/c1′ II 2.5 P 1̄1′ II
13.69 P2′/c′ III 2.4 P 1̄ I 13.70 Pa2/c IV 2.4 P 1̄ I
13.71 Pb2/c IV 2.4 P 1̄ I 13.72 Pc2/c IV 2.4 P 1̄ I
13.73 PA2/c IV 2.4 P 1̄ I 13.74 PC2/c IV 2.4 P 1̄ I
14.75 P21/c I 2.4 P 1̄ I 14.76 P21/c1

′ II 2.5 P 1̄1′ II
14.79 P2′1/c

′ III 2.4 P 1̄ I 14.80 Pa21/c IV 2.4 P 1̄ I
14.81 Pb21/c IV 2.4 P 1̄ I 14.82 Pc21/c IV 2.4 P 1̄ I
14.83 PA21/c IV 2.4 P 1̄ I 14.84 PC21/c IV 2.4 P 1̄ I
15.85 C2/c I 2.4 P 1̄ I 15.86 C2/c1′ II 2.5 P 1̄1′ II
15.89 C2′/c′ III 2.4 P 1̄ I 15.90 Cc2/c IV 2.4 P 1̄ I
15.91 Ca2/c IV 2.4 P 1̄ I 16.3 P2′2′2 III 3.1 P2 I
17.10 P22′2′1 III 3.1 P2 I 18.18 P2′12′12 III 3.1 P2 I
21.40 C2′2′2 III 3.1 P2 I 25.60 Pm′m′2 III 3.1 P2 I
27.81 Pc′c′2 III 27.81 Pc′c′2 III 28.91 Pm′a′2 III 3.1 P2 I
30.117 Pbnc2 IV 27.81 Pc′c′2 III 32.138 Pb′a′2 III 3.1 P2 I
34.163 PCnn2 IV 27.81 Pc′c′2 III 35.168 Cm′m′2 III 3.1 P2 I
37.183 Cc′c′2 III 27.81 Pc′c′2 III 37.185 Cacc2 IV 27.81 Pc′c′2 III
39.199 Ab′m′2 III 27.81 Pc′c′2 III 41.215 Ab′a′2 III 41.215 Ab′a′2 III
42.222 Fm′m′2 III 27.81 Pc′c′2 III 45.238 Ib′a′2 III 27.81 Pc′c′2 III
47.249 Pmmm I 47.249 Pmmm I 47.250 Pmmm1′ II 2.5 P 1̄1′ II
47.252 Pm′m′m III 10.42 P2/m I 47.254 Pammm IV 47.249 Pmmm I
47.255 PCmmm IV 47.249 Pmmm I 47.256 PImmm IV 47.249 Pmmm I
48.257 Pnnn I 2.4 P 1̄ I 48.258 Pnnn1′ II 2.5 P 1̄1′ II
48.260 Pn′n′n III 2.4 P 1̄ I 48.262 Pcnnn IV 2.4 P 1̄ I
48.263 PCnnn IV 2.4 P 1̄ I 48.264 PInnn IV 2.4 P 1̄ I
49.265 Pccm I 2.4 P 1̄ I 49.266 Pccm1′ II 2.5 P 1̄1′ II
49.269 Pc′c′m III 10.42 P2/m I 49.270 Pc′cm′ III 2.4 P 1̄ I
49.272 Paccm IV 2.4 P 1̄ I 49.273 Pcccm IV 2.4 P 1̄ I
49.274 PBccm IV 2.4 P 1̄ I 49.275 PCccm IV 2.4 P 1̄ I
49.276 PIccm IV 2.4 P 1̄ I 50.277 Pban I 2.4 P 1̄ I
50.278 Pban1′ II 2.5 P 1̄1′ II 50.281 Pb′a′n III 2.4 P 1̄ I
50.282 Pb′an′ III 2.4 P 1̄ I 50.284 Paban IV 2.4 P 1̄ I
50.285 Pcban IV 2.4 P 1̄ I 50.286 PAban IV 2.4 P 1̄ I
50.287 PCban IV 2.4 P 1̄ I 50.288 PIban IV 2.4 P 1̄ I
51.289 Pmma I 10.42 P2/m I 51.290 Pmma1′ II 2.5 P 1̄1′ II
51.294 Pm′m′a III 2.4 P 1̄ I 51.295 Pmm′a′ III 2.4 P 1̄ I
51.296 Pm′ma′ III 10.42 P2/m I 51.298 Pamma IV 10.42 P2/m I
51.299 Pbmma IV 2.4 P 1̄ I 51.300 Pcmma IV 10.42 P2/m I
51.301 PAmma IV 2.4 P 1̄ I 51.302 PBmma IV 10.42 P2/m I
51.303 PCmma IV 2.4 P 1̄ I 51.304 PImma IV 2.4 P 1̄ I
52.305 Pnna I 2.4 P 1̄ I 52.306 Pnna1′ II 2.5 P 1̄1′ II
52.310 Pn′n′a III 2.4 P 1̄ I 52.311 Pnn′a′ III 2.4 P 1̄ I
52.312 Pn′na′ III 2.4 P 1̄ I 52.314 Panna IV 2.4 P 1̄ I
52.315 Pbnna IV 2.4 P 1̄ I 52.316 Pcnna IV 2.4 P 1̄ I
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52.317 PAnna IV 2.4 P 1̄ I 52.318 PBnna IV 2.4 P 1̄ I
52.319 PCnna IV 2.4 P 1̄ I 52.320 PInna IV 2.4 P 1̄ I
53.321 Pmna I 2.4 P 1̄ I 53.322 Pmna1′ II 2.5 P 1̄1′ II
53.326 Pm′n′a III 2.4 P 1̄ I 53.327 Pmn′a′ III 10.42 P2/m I
53.328 Pm′na′ III 2.4 P 1̄ I 53.330 Pamna IV 2.4 P 1̄ I
53.331 Pbmna IV 2.4 P 1̄ I 53.332 Pcmna IV 2.4 P 1̄ I
53.333 PAmna IV 2.4 P 1̄ I 53.334 PBmna IV 2.4 P 1̄ I
53.335 PCmna IV 2.4 P 1̄ I 53.336 PImna IV 2.4 P 1̄ I
54.337 Pcca I 2.4 P 1̄ I 54.338 Pcca1′ II 2.5 P 1̄1′ II
54.342 Pc′c′a III 54.342 Pc′c′a III 54.343 Pcc′a′ III 2.4 P 1̄ I
54.344 Pc′ca′ III 2.4 P 1̄ I 54.346 Pacca IV 2.4 P 1̄ I
54.347 Pbcca IV 2.4 P 1̄ I 54.348 Pccca IV 2.4 P 1̄ I
54.349 PAcca IV 2.4 P 1̄ I 54.350 PBcca IV 2.4 P 1̄ I
54.351 PCcca IV 2.4 P 1̄ I 54.352 PIcca IV 2.4 P 1̄ I
55.353 Pbam I 10.42 P2/m I 55.354 Pbam1′ II 2.5 P 1̄1′ II
55.357 Pb′a′m III 10.42 P2/m I 55.358 Pb′am′ III 2.4 P 1̄ I
55.360 Pabam IV 10.42 P2/m I 55.361 Pcbam IV 2.4 P 1̄ I
55.362 PAbam IV 2.4 P 1̄ I 55.363 PCbam IV 10.42 P2/m I
55.364 PIbam IV 2.4 P 1̄ I 56.365 Pccn I 2.4 P 1̄ I
56.366 Pccn1′ II 2.5 P 1̄1′ II 56.369 Pc′c′n III 56.369 Pc′c′n III
56.370 Pc′cn′ III 2.4 P 1̄ I 56.372 Pbccn IV 2.4 P 1̄ I
56.373 Pcccn IV 2.4 P 1̄ I 56.374 PAccn IV 2.4 P 1̄ I
56.375 PCccn IV 2.4 P 1̄ I 56.376 PIccn IV 2.4 P 1̄ I
57.377 Pbcm I 2.4 P 1̄ I 57.378 Pbcm1′ II 2.5 P 1̄1′ II
57.382 Pb′c′m III 2.4 P 1̄ I 57.383 Pbc′m′ III 2.4 P 1̄ I
57.384 Pb′cm′ III 2.4 P 1̄ I 57.386 Pabcm IV 2.4 P 1̄ I
57.387 Pbbcm IV 2.4 P 1̄ I 57.388 Pcbcm IV 2.4 P 1̄ I
57.389 PAbcm IV 2.4 P 1̄ I 57.390 PBbcm IV 2.4 P 1̄ I
57.391 PCbcm IV 2.4 P 1̄ I 57.392 PIbcm IV 2.4 P 1̄ I
58.393 Pnnm I 2.4 P 1̄ I 58.394 Pnnm1′ II 2.5 P 1̄1′ II
58.397 Pn′n′m III 10.42 P2/m I 58.398 Pnn′m′ III 2.4 P 1̄ I
58.400 Pannm IV 2.4 P 1̄ I 58.401 Pcnnm IV 2.4 P 1̄ I
58.402 PBnnm IV 2.4 P 1̄ I 58.403 PCnnm IV 2.4 P 1̄ I
58.404 PInnm IV 2.4 P 1̄ I 59.405 Pmmn I 2.4 P 1̄ I
59.406 Pmmn1′ II 2.5 P 1̄1′ II 59.409 Pm′m′n III 2.4 P 1̄ I
59.410 Pmm′n′ III 2.4 P 1̄ I 59.412 Pbmmn IV 2.4 P 1̄ I
59.413 Pcmmn IV 2.4 P 1̄ I 59.414 PBmmn IV 2.4 P 1̄ I
59.415 PCmmn IV 2.4 P 1̄ I 59.416 PImmn IV 2.4 P 1̄ I
60.417 Pbcn I 2.4 P 1̄ I 60.418 Pbcn1′ II 2.5 P 1̄1′ II
60.422 Pb′c′n III 2.4 P 1̄ I 60.423 Pbc′n′ III 2.4 P 1̄ I
60.424 Pb′cn′ III 60.424 Pb′cn′ III 60.426 Pabcn IV 2.4 P 1̄ I
60.427 Pbbcn IV 2.4 P 1̄ I 60.428 Pcbcn IV 2.4 P 1̄ I
60.429 PAbcn IV 2.4 P 1̄ I 60.430 PBbcn IV 2.4 P 1̄ I
60.431 PCbcn IV 2.4 P 1̄ I 60.432 PIbcn IV 2.4 P 1̄ I
61.433 Pbca I 2.4 P 1̄ I 61.434 Pbca1′ II 2.5 P 1̄1′ II
61.436 Pb′c′a III 2.4 P 1̄ I 61.438 Pabca IV 2.4 P 1̄ I
61.439 PCbca IV 2.4 P 1̄ I 61.440 PIbca IV 2.4 P 1̄ I
62.441 Pnma I 2.4 P 1̄ I 62.442 Pnma1′ II 2.5 P 1̄1′ II
62.446 Pn′m′a III 2.4 P 1̄ I 62.447 Pnm′a′ III 2.4 P 1̄ I
62.448 Pn′ma′ III 2.4 P 1̄ I 62.450 Panma IV 2.4 P 1̄ I
62.451 Pbnma IV 2.4 P 1̄ I 62.452 Pcnma IV 2.4 P 1̄ I
62.453 PAnma IV 2.4 P 1̄ I 62.454 PBnma IV 2.4 P 1̄ I
62.455 PCnma IV 2.4 P 1̄ I 62.456 PInma IV 2.4 P 1̄ I
63.457 Cmcm I 2.4 P 1̄ I 63.458 Cmcm1′ II 2.5 P 1̄1′ II
63.462 Cm′c′m III 2.4 P 1̄ I 63.463 Cmc′m′ III 2.4 P 1̄ I
63.464 Cm′cm′ III 2.4 P 1̄ I 63.466 Ccmcm IV 2.4 P 1̄ I
63.467 Camcm IV 2.4 P 1̄ I 63.468 CAmcm IV 2.4 P 1̄ I
64.469 Cmca I 2.4 P 1̄ I 64.470 Cmca1′ II 2.5 P 1̄1′ II
64.474 Cm′c′a III 2.4 P 1̄ I 64.475 Cmc′a′ III 2.4 P 1̄ I
64.476 Cm′ca′ III 2.4 P 1̄ I 64.478 Ccmca IV 2.4 P 1̄ I
64.479 Camca IV 2.4 P 1̄ I 64.480 CAmca IV 2.4 P 1̄ I
65.481 Cmmm I 47.249 Pmmm I 65.482 Cmmm1′ II 2.5 P 1̄1′ II
65.485 Cm′m′m III 10.42 P2/m I 65.486 Cmm′m′ III 2.4 P 1̄ I
65.488 Ccmmm IV 47.249 Pmmm I 65.489 Cammm IV 47.249 Pmmm I
65.490 CAmmm IV 47.249 Pmmm I 66.491 Cccm I 2.4 P 1̄ I
66.492 Cccm1′ II 2.5 P 1̄1′ II 66.495 Cc′c′m III 10.42 P2/m I
66.496 Ccc′m′ III 2.4 P 1̄ I 66.498 Ccccm IV 2.4 P 1̄ I
66.499 Caccm IV 2.4 P 1̄ I 66.500 CAccm IV 2.4 P 1̄ I
67.501 Cmma I 2.4 P 1̄ I 67.502 Cmma1′ II 2.5 P 1̄1′ II
67.505 Cm′m′a III 2.4 P 1̄ I 67.506 Cmm′a′ III 2.4 P 1̄ I
67.508 Ccmma IV 2.4 P 1̄ I 67.509 Camma IV 2.4 P 1̄ I
67.510 CAmma IV 2.4 P 1̄ I 68.511 Ccca I 2.4 P 1̄ I
68.512 Ccca1′ II 2.5 P 1̄1′ II 68.515 Cc′c′a III 54.342 Pc′c′a III
68.516 Ccc′a′ III 2.4 P 1̄ I 68.518 Cccca IV 2.4 P 1̄ I
68.519 Cacca IV 2.4 P 1̄ I 68.520 CAcca IV 2.4 P 1̄ I
69.521 Fmmm I 47.249 Pmmm I 69.522 Fmmm1′ II 2.5 P 1̄1′ II
69.524 Fm′m′m III 2.4 P 1̄ I 69.526 FSmmm IV 47.249 Pmmm I
70.527 Fddd I 2.4 P 1̄ I 70.528 Fddd1′ II 2.5 P 1̄1′ II
70.530 Fd′d′d III 2.4 P 1̄ I 70.532 FSddd IV 2.4 P 1̄ I
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71.533 Immm I 47.249 Pmmm I 71.534 Immm1′ II 2.5 P 1̄1′ II
71.536 Im′m′m III 2.4 P 1̄ I 71.538 Icmmm IV 47.249 Pmmm I
72.539 Ibam I 2.4 P 1̄ I 72.540 Ibam1′ II 2.5 P 1̄1′ II
72.543 Ib′a′m III 2.4 P 1̄ I 72.544 Iba′m′ III 2.4 P 1̄ I
72.546 Icbam IV 2.4 P 1̄ I 72.547 Ibbam IV 2.4 P 1̄ I
73.548 Ibca I 2.4 P 1̄ I 73.549 Ibca1′ II 2.5 P 1̄1′ II
73.551 Ib′c′a III 2.4 P 1̄ I 73.553 Icbca IV 2.4 P 1̄ I
74.554 Imma I 2.4 P 1̄ I 74.555 Imma1′ II 2.5 P 1̄1′ II
74.558 Im′m′a III 2.4 P 1̄ I 74.559 Imm′a′ III 2.4 P 1̄ I
74.561 Icmma IV 2.4 P 1̄ I 74.562 Ibmma IV 2.4 P 1̄ I
75.1 P4 I 75.1 P4 I 75.5 PC4 IV 75.1 P4 I
77.13 P42 I 77.13 P42 I 77.17 PC42 IV 77.13 P42 I
79.25 I4 I 75.1 P4 I 81.33 P4̄ I 81.33 P4̄ I
81.34 P 4̄1′ II 81.33 P 4̄ I 81.36 Pc4̄ IV 81.33 P 4̄ I
81.37 PC 4̄ IV 81.33 P 4̄ I 81.38 PI 4̄ IV 81.33 P 4̄ I
82.39 I 4̄ I 81.33 P 4̄ I 82.40 I 4̄1′ II 81.33 P 4̄ I
82.42 Ic4̄ IV 81.33 P 4̄ I 83.43 P4/m I 83.43 P4/m I
83.44 P4/m1′ II 83.44 P4/m1′ II 83.45 P4′/m III 83.45 P4′/m III
83.47 P4′/m′ III 81.33 P 4̄ I 83.48 Pc4/m IV 83.43 P4/m I
83.49 PC4/m IV 83.43 P4/m I 83.50 PI4/m IV 83.43 P4/m I
84.51 P42/m I 84.51 P42/m I 84.52 P42/m1′ II 2.5 P 1̄1′ II
84.53 P4′2/m III 10.42 P2/m I 84.55 P4′2/m

′ III 81.33 P 4̄ I
84.56 Pc42/m IV 83.45 P4′/m III 84.57 PC42/m IV 84.51 P42/m I
84.58 PI42/m IV 83.45 P4′/m III 85.59 P4/n I 81.33 P 4̄ I
85.60 P4/n1′ II 2.5 P 1̄1′ II 85.61 P4′/n III 2.4 P 1̄ I
85.63 P4′/n′ III 81.33 P 4̄ I 85.64 Pc4/n IV 2.4 P 1̄ I
85.65 PC4/n IV 2.4 P 1̄ I 85.66 PI4/n IV 2.4 P 1̄ I
86.67 P42/n I 81.33 P 4̄ I 86.68 P42/n1′ II 2.5 P 1̄1′ II
86.69 P4′2/n III 2.4 P 1̄ I 86.71 P4′2/n

′ III 81.33 P 4̄ I
86.72 Pc42/n IV 2.4 P 1̄ I 86.73 PC42/n IV 2.4 P 1̄ I
86.74 PI42/n IV 2.4 P 1̄ I 87.75 I4/m I 83.43 P4/m I
87.76 I4/m1′ II 87.76 I4/m1′ II 87.77 I4′/m III 83.45 P4′/m III
87.79 I4′/m′ III 81.33 P 4̄ I 87.80 Ic4/m IV 83.43 P4/m I
88.81 I41/a I 88.81 I41/a I 88.82 I41/a1′ II 2.5 P 1̄1′ II
88.83 I4′1/a III 2.4 P 1̄ I 88.85 I4′1/a

′ III 81.33 P 4̄ I
88.86 Ic41/a IV 2.4 P 1̄ I 89.90 P42′2′ III 75.1 P4 I
90.98 P42′12′ III 75.1 P4 I 93.122 P422′2′ III 77.13 P42 I
94.130 P422′12′ III 77.13 P42 I 97.154 I42′2′ III 75.1 P4 I
99.167 P4m′m′ III 75.1 P4 I 100.175 P4b′m′ III 75.1 P4 I
101.183 P42c

′m′ III 27.81 Pc′c′2 III 102.191 P42n
′m′ III 77.13 P42 I

103.199 P4c′c′ III 103.199 P4c′c′ III 104.207 P4n′c′ III 27.81 Pc′c′2 III
104.209 PC4nc IV 103.199 P4c′c′ III 105.215 P42m

′c′ III 27.81 Pc′c′2 III
106.223 P42b

′c′ III 27.81 Pc′c′2 III 107.231 I4m′m′ III 27.81 Pc′c′2 III
108.237 I4c′m′ III 103.199 P4c′c′ III 110.249 I41c′d′ III 110.249 I41c′d′ III
111.251 P 4̄2m I 81.33 P 4̄ I 111.252 P 4̄2m1′ II 81.33 P 4̄ I
111.255 P 4̄2′m′ III 81.33 P 4̄ I 111.256 Pc4̄2m IV 81.33 P 4̄ I
111.257 PC 4̄2m IV 81.33 P 4̄ I 111.258 PI 4̄2m IV 81.33 P 4̄ I
112.259 P 4̄2c I 81.33 P 4̄ I 112.260 P 4̄2c1′ II 81.33 P 4̄ I
112.263 P 4̄2′c′ III 81.33 P 4̄ I 112.264 Pc4̄2c IV 81.33 P 4̄ I
112.265 PC 4̄2c IV 81.33 P 4̄ I 112.266 PI 4̄2c IV 81.33 P 4̄ I
113.267 P 4̄21m I 81.33 P 4̄ I 113.268 P 4̄21m1′ II 81.33 P 4̄ I
113.271 P 4̄2′1m

′ III 81.33 P 4̄ I 113.272 Pc4̄21m IV 81.33 P 4̄ I
113.273 PC 4̄21m IV 81.33 P 4̄ I 113.274 PI 4̄21m IV 81.33 P 4̄ I
114.275 P 4̄21c I 81.33 P 4̄ I 114.276 P 4̄21c1

′ II 81.33 P 4̄ I
114.279 P 4̄2′1c

′ III 81.33 P 4̄ I 114.280 Pc4̄21c IV 81.33 P 4̄ I
114.281 PC 4̄21c IV 81.33 P 4̄ I 114.282 PI 4̄21c IV 81.33 P 4̄ I
115.283 P 4̄m2 I 81.33 P 4̄ I 115.284 P 4̄m21′ II 81.33 P 4̄ I
115.287 P 4̄m′2′ III 81.33 P 4̄ I 115.288 Pc4̄m2 IV 81.33 P 4̄ I
115.289 PC 4̄m2 IV 81.33 P 4̄ I 115.290 PI 4̄m2 IV 81.33 P 4̄ I
116.291 P 4̄c2 I 81.33 P 4̄ I 116.292 P 4̄c21′ II 81.33 P 4̄ I
116.295 P 4̄c′2′ III 81.33 P 4̄ I 116.296 Pc4̄c2 IV 81.33 P 4̄ I
116.297 PC 4̄c2 IV 81.33 P 4̄ I 116.298 PI 4̄c2 IV 81.33 P 4̄ I
117.299 P 4̄b2 I 81.33 P 4̄ I 117.300 P 4̄b21′ II 81.33 P 4̄ I
117.303 P 4̄b′2′ III 81.33 P 4̄ I 117.304 Pc4̄b2 IV 81.33 P 4̄ I
117.305 PC 4̄b2 IV 81.33 P 4̄ I 117.306 PI 4̄b2 IV 81.33 P 4̄ I
118.307 P 4̄n2 I 81.33 P 4̄ I 118.308 P 4̄n21′ II 81.33 P 4̄ I
118.311 P 4̄n′2′ III 81.33 P 4̄ I 118.312 Pc4̄n2 IV 81.33 P 4̄ I
118.313 PC 4̄n2 IV 81.33 P 4̄ I 118.314 PI 4̄n2 IV 81.33 P 4̄ I
119.315 I 4̄m2 I 81.33 P 4̄ I 119.316 I 4̄m21′ II 81.33 P 4̄ I
119.319 I 4̄m′2′ III 81.33 P 4̄ I 119.320 Ic4̄m2 IV 81.33 P 4̄ I
120.321 I 4̄c2 I 81.33 P 4̄ I 120.322 I 4̄c21′ II 81.33 P 4̄ I
120.325 I 4̄c′2′ III 81.33 P 4̄ I 120.326 Ic4̄c2 IV 81.33 P 4̄ I
121.327 I 4̄2m I 81.33 P 4̄ I 121.328 I 4̄2m1′ II 81.33 P 4̄ I
121.331 I 4̄2′m′ III 81.33 P 4̄ I 121.332 Ic4̄2m IV 81.33 P 4̄ I
122.333 I 4̄2d I 81.33 P 4̄ I 122.334 I 4̄2d1′ II 81.33 P 4̄ I
122.337 I 4̄2′d′ III 81.33 P 4̄ I 122.338 Ic4̄2d IV 81.33 P 4̄ I
123.339 P4/mmm I 123.339 P4/mmm I 123.340 P4/mmm1′ II 83.44 P4/m1′ II
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123.342 P4′/mm′m III 47.249 Pmmm I 123.343 P4′/mmm′ III 47.249 Pmmm I
123.344 P4′/m′m′m III 81.33 P 4̄ I 123.345 P4/mm′m′ III 83.43 P4/m I
123.346 P4′/m′mm′ III 81.33 P 4̄ I 123.348 Pc4/mmm IV 123.339 P4/mmm I
123.349 PC4/mmm IV 123.339 P4/mmm I 123.350 PI4/mmm IV 123.339 P4/mmm I
124.351 P4/mcc I 83.43 P4/m I 124.352 P4/mcc1′ II 83.44 P4/m1′ II
124.354 P4′/mc′c III 83.45 P4′/m III 124.355 P4′/mcc′ III 83.45 P4′/m III
124.356 P4′/m′c′c III 81.33 P 4̄ I 124.357 P4/mc′c′ III 83.43 P4/m I
124.358 P4′/m′cc′ III 81.33 P 4̄ I 124.360 Pc4/mcc IV 83.43 P4/m I
124.361 PC4/mcc IV 83.43 P4/m I 124.362 PI4/mcc IV 83.43 P4/m I
125.363 P4/nbm I 2.4 P 1̄ I 125.364 P4/nbm1′ II 2.5 P 1̄1′ II
125.366 P4′/nb′m III 2.4 P 1̄ I 125.367 P4′/nbm′ III 2.4 P 1̄ I
125.368 P4′/n′b′m III 81.33 P 4̄ I 125.369 P4/nb′m′ III 81.33 P 4̄ I
125.370 P4′/n′bm′ III 81.33 P 4̄ I 125.372 Pc4/nbm IV 2.4 P 1̄ I
125.373 PC4/nbm IV 2.4 P 1̄ I 125.374 PI4/nbm IV 2.4 P 1̄ I
126.375 P4/nnc I 2.4 P 1̄ I 126.376 P4/nnc1′ II 2.5 P 1̄1′ II
126.378 P4′/nn′c III 2.4 P 1̄ I 126.379 P4′/nnc′ III 2.4 P 1̄ I
126.380 P4′/n′n′c III 81.33 P 4̄ I 126.381 P4/nn′c′ III 54.342 Pc′c′a III
126.382 P4′/n′nc′ III 81.33 P 4̄ I 126.384 Pc4/nnc IV 2.4 P 1̄ I
126.385 PC4/nnc IV 2.4 P 1̄ I 126.386 PI4/nnc IV 2.4 P 1̄ I
127.387 P4/mbm I 83.43 P4/m I 127.388 P4/mbm1′ II 83.44 P4/m1′ II
127.390 P4′/mb′m III 47.249 Pmmm I 127.391 P4′/mbm′ III 83.45 P4′/m III
127.392 P4′/m′b′m III 81.33 P 4̄ I 127.393 P4/mb′m′ III 83.43 P4/m I
127.394 P4′/m′bm′ III 81.33 P 4̄ I 127.396 Pc4/mbm IV 47.249 Pmmm I
127.397 PC4/mbm IV 83.43 P4/m I 127.398 PI4/mbm IV 47.249 Pmmm I
128.399 P4/mnc I 83.43 P4/m I 128.400 P4/mnc1′ II 83.44 P4/m1′ II
128.402 P4′/mn′c III 83.45 P4′/m III 128.403 P4′/mnc′ III 83.45 P4′/m III
128.404 P4′/m′n′c III 81.33 P 4̄ I 128.405 P4/mn′c′ III 83.43 P4/m I
128.406 P4′/m′nc′ III 81.33 P 4̄ I 128.408 Pc4/mnc IV 83.43 P4/m I
128.409 PC4/mnc IV 83.43 P4/m I 128.410 PI4/mnc IV 83.43 P4/m I
129.411 P4/nmm I 2.4 P 1̄ I 129.412 P4/nmm1′ II 2.5 P 1̄1′ II
129.414 P4′/nm′m III 2.4 P 1̄ I 129.415 P4′/nmm′ III 2.4 P 1̄ I
129.416 P4′/n′m′m III 81.33 P 4̄ I 129.417 P4/nm′m′ III 81.33 P 4̄ I
129.418 P4′/n′mm′ III 81.33 P 4̄ I 129.420 Pc4/nmm IV 2.4 P 1̄ I
129.421 PC4/nmm IV 2.4 P 1̄ I 129.422 PI4/nmm IV 2.4 P 1̄ I
130.423 P4/ncc I 2.4 P 1̄ I 130.424 P4/ncc1′ II 2.5 P 1̄1′ II
130.426 P4′/nc′c III 2.4 P 1̄ I 130.427 P4′/ncc′ III 2.4 P 1̄ I
130.428 P4′/n′c′c III 81.33 P 4̄ I 130.429 P4/nc′c′ III 130.429 P4/nc′c′ III
130.430 P4′/n′cc′ III 81.33 P 4̄ I 130.432 Pc4/ncc IV 2.4 P 1̄ I
130.433 PC4/ncc IV 2.4 P 1̄ I 130.434 PI4/ncc IV 2.4 P 1̄ I
131.435 P42/mmc I 47.249 Pmmm I 131.436 P42/mmc1

′ II 2.5 P 1̄1′ II
131.438 P4′2/mm

′c III 2.4 P 1̄ I 131.439 P4′2/mmc
′ III 47.249 Pmmm I

131.440 P4′2/m
′m′c III 81.33 P 4̄ I 131.441 P42/mm

′c′ III 84.51 P42/m I
131.442 P4′2/m

′mc′ III 81.33 P 4̄ I 131.444 Pc42/mmc IV 47.249 Pmmm I
131.445 PC42/mmc IV 47.249 Pmmm I 131.446 PI42/mmc IV 47.249 Pmmm I
132.447 P42/mcm I 47.249 Pmmm I 132.448 P42/mcm1′ II 2.5 P 1̄1′ II
132.450 P4′2/mc

′m III 47.249 Pmmm I 132.451 P4′2/mcm
′ III 2.4 P 1̄ I

132.452 P4′2/m
′c′m III 81.33 P 4̄ I 132.453 P42/mc

′m′ III 84.51 P42/m I
132.454 P4′2/m

′cm′ III 81.33 P 4̄ I 132.456 Pc42/mcm IV 47.249 Pmmm I
132.457 PC42/mcm IV 47.249 Pmmm I 132.458 PI42/mcm IV 47.249 Pmmm I
133.459 P42/nbc I 2.4 P 1̄ I 133.460 P42/nbc1

′ II 2.5 P 1̄1′ II
133.462 P4′2/nb

′c III 2.4 P 1̄ I 133.463 P4′2/nbc
′ III 2.4 P 1̄ I

133.464 P4′2/n
′b′c III 81.33 P 4̄ I 133.465 P42/nb

′c′ III 54.342 Pc′c′a III
133.466 P4′2/n

′bc′ III 81.33 P 4̄ I 133.468 Pc42/nbc IV 2.4 P 1̄ I
133.469 PC42/nbc IV 2.4 P 1̄ I 133.470 PI42/nbc IV 2.4 P 1̄ I
134.471 P42/nnm I 2.4 P 1̄ I 134.472 P42/nnm1′ II 2.5 P 1̄1′ II
134.474 P4′2/nn

′m III 2.4 P 1̄ I 134.475 P4′2/nnm
′ III 2.4 P 1̄ I

134.476 P4′2/n
′n′m III 81.33 P 4̄ I 134.477 P42/nn

′m′ III 81.33 P 4̄ I
134.478 P4′2/n

′nm′ III 81.33 P 4̄ I 134.480 Pc42/nnm IV 2.4 P 1̄ I
134.481 PC42/nnm IV 2.4 P 1̄ I 134.482 PI42/nnm IV 2.4 P 1̄ I
135.483 P42/mbc I 84.51 P42/m I 135.484 P42/mbc1

′ II 2.5 P 1̄1′ II
135.486 P4′2/mb

′c III 2.4 P 1̄ I 135.487 P4′2/mbc′ III 135.487 P4′2/mbc′ III
135.488 P4′2/m

′b′c III 81.33 P 4̄ I 135.489 P42/mb
′c′ III 84.51 P42/m I

135.490 P4′2/m
′bc′ III 81.33 P 4̄ I 135.492 Pc42/mbc IV 83.45 P4′/m III

135.493 PC42/mbc IV 84.51 P42/m I 135.494 PI42/mbc IV 83.45 P4′/m III
136.495 P42/mnm I 47.249 Pmmm I 136.496 P42/mnm1′ II 2.5 P 1̄1′ II
136.498 P4′2/mn

′m III 47.249 Pmmm I 136.499 P4′2/mnm
′ III 2.4 P 1̄ I

136.500 P4′2/m
′n′m III 81.33 P 4̄ I 136.501 P42/mn

′m′ III 84.51 P42/m I
136.502 P4′2/m

′nm′ III 81.33 P 4̄ I 136.504 Pc42/mnm IV 47.249 Pmmm I
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136.505 PC42/mnm IV 47.249 Pmmm I 136.506 PI42/mnm IV 47.249 Pmmm I
137.507 P42/nmc I 2.4 P 1̄ I 137.508 P42/nmc1

′ II 2.5 P 1̄1′ II
137.510 P4′2/nm

′c III 2.4 P 1̄ I 137.511 P4′2/nmc
′ III 2.4 P 1̄ I

137.512 P4′2/n
′m′c III 81.33 P 4̄ I 137.513 P42/nm

′c′ III 54.342 Pc′c′a III
137.514 P4′2/n

′mc′ III 81.33 P 4̄ I 137.516 Pc42/nmc IV 2.4 P 1̄ I
137.517 PC42/nmc IV 2.4 P 1̄ I 137.518 PI42/nmc IV 2.4 P 1̄ I
138.519 P42/ncm I 2.4 P 1̄ I 138.520 P42/ncm1′ II 2.5 P 1̄1′ II
138.522 P4′2/nc

′m III 2.4 P 1̄ I 138.523 P4′2/ncm
′ III 2.4 P 1̄ I

138.524 P4′2/n
′c′m III 81.33 P 4̄ I 138.525 P42/nc

′m′ III 56.369 Pc′c′n III
138.526 P4′2/n

′cm′ III 81.33 P 4̄ I 138.528 Pc42/ncm IV 2.4 P 1̄ I
138.529 PC42/ncm IV 2.4 P 1̄ I 138.530 PI42/ncm IV 2.4 P 1̄ I
139.531 I4/mmm I 123.339 P4/mmm I 139.532 I4/mmm1′ II 87.76 I4/m1′ II
139.534 I4′/mm′m III 47.249 Pmmm I 139.535 I4′/mmm′ III 47.249 Pmmm I
139.536 I4′/m′m′m III 81.33 P 4̄ I 139.537 I4/mm′m′ III 83.43 P4/m I
139.538 I4′/m′mm′ III 81.33 P 4̄ I 139.540 Ic4/mmm IV 123.339 P4/mmm I
140.541 I4/mcm I 47.249 Pmmm I 140.542 I4/mcm1′ II 87.76 I4/m1′ II
140.544 I4′/mc′m III 47.249 Pmmm I 140.545 I4′/mcm′ III 83.45 P4′/m III
140.546 I4′/m′c′m III 81.33 P 4̄ I 140.547 I4/mc′m′ III 83.43 P4/m I
140.548 I4′/m′cm′ III 81.33 P 4̄ I 140.550 Ic4/mcm IV 47.249 Pmmm I
141.551 I41/amd I 2.4 P 1̄ I 141.552 I41/amd1′ II 2.5 P 1̄1′ II
141.554 I4′1/am

′d III 2.4 P 1̄ I 141.555 I4′1/amd
′ III 2.4 P 1̄ I

141.556 I4′1/a
′m′d III 81.33 P 4̄ I 141.557 I41/am

′d′ III 88.81 I41/a I
141.558 I4′1/a

′md′ III 81.33 P 4̄ I 141.560 Ic41/amd IV 2.4 P 1̄ I
142.561 I41/acd I 2.4 P 1̄ I 142.562 I41/acd1′ II 2.5 P 1̄1′ II
142.564 I4′1/ac

′d III 2.4 P 1̄ I 142.565 I4′1/acd
′ III 2.4 P 1̄ I

142.566 I4′1/a
′c′d III 81.33 P 4̄ I 142.567 I41/ac

′d′ III 88.81 I41/a I
142.568 I4′1/a

′cd′ III 81.33 P 4̄ I 142.570 Ic41/acd IV 2.4 P 1̄ I
143.1 P3 I 143.1 P3 I 147.13 P3̄ I 147.13 P3̄ I
147.14 P 3̄1′ II 2.5 P 1̄1′ II 147.16 Pc3̄ IV 2.4 P 1̄ I
148.17 R3̄ I 2.4 P 1̄ I 148.18 R3̄1′ II 2.5 P 1̄1′ II
148.20 RI 3̄ IV 2.4 P 1̄ I 149.23 P312′ III 143.1 P3 I
150.27 P32′1 III 143.1 P3 I 156.51 P3m′1 III 143.1 P3 I
157.55 P31m′ III 143.1 P3 I 158.59 P3c′1 III 143.1 P3 I
159.63 P31c′ III 143.1 P3 I 162.73 P 3̄1m I 2.4 P 1̄ I
162.74 P 3̄1m1′ II 2.5 P 1̄1′ II 162.77 P 3̄1m′ III 147.13 P 3̄ I
162.78 Pc3̄1m IV 2.4 P 1̄ I 163.79 P 3̄1c I 2.4 P 1̄ I
163.80 P 3̄1c1′ II 2.5 P 1̄1′ II 163.83 P 3̄1c′ III 147.13 P 3̄ I
163.84 Pc3̄1c IV 2.4 P 1̄ I 164.85 P 3̄m1 I 2.4 P 1̄ I
164.86 P 3̄m11′ II 2.5 P 1̄1′ II 164.89 P 3̄m′1 III 147.13 P 3̄ I
164.90 Pc3̄m1 IV 2.4 P 1̄ I 165.91 P 3̄c1 I 2.4 P 1̄ I
165.92 P 3̄c11′ II 2.5 P 1̄1′ II 165.95 P 3̄c′1 III 147.13 P 3̄ I
165.96 Pc3̄c1 IV 2.4 P 1̄ I 166.97 R3̄m I 2.4 P 1̄ I
166.98 R3̄m1′ II 2.5 P 1̄1′ II 166.101 R3̄m′ III 2.4 P 1̄ I
166.102 RI 3̄m IV 2.4 P 1̄ I 167.103 R3̄c I 2.4 P 1̄ I
167.104 R3̄c1′ II 2.5 P 1̄1′ II 167.107 R3̄c′ III 2.4 P 1̄ I
167.108 RI 3̄c IV 2.4 P 1̄ I 168.109 P6 I 168.109 P6 I
171.121 P62 I 3.1 P2 I 172.125 P64 I 3.1 P2 I
173.129 P63 I 143.1 P3 I 174.133 P6̄ I 174.133 P6̄ I
174.134 P 6̄1′ II 174.133 P 6̄ I 174.136 Pc6̄ IV 174.133 P 6̄ I
175.137 P6/m I 175.137 P6/m I 175.138 P6/m1′ II 175.138 P6/m1′ II
175.139 P6′/m III 174.133 P 6̄ I 175.141 P6′/m′ III 2.4 P 1̄ I
175.142 Pc6/m IV 175.137 P6/m I 176.143 P63/m I 176.143 P63/m I
176.144 P63/m1′ II 176.144 P63/m1′ II 176.145 P6′3/m III 174.133 P 6̄ I
176.147 P6′3/m

′ III 2.4 P 1̄ I 176.148 Pc63/m IV 176.143 P63/m I
177.153 P62′2′ III 168.109 P6 I 180.171 P622′2′ III 3.1 P2 I
181.177 P642′2′ III 3.1 P2 I 182.183 P632′2′ III 143.1 P3 I
183.189 P6m′m′ III 168.109 P6 I 184.195 P6c′c′ III 184.195 P6c′c′ III
185.201 P63c

′m′ III 143.1 P3 I 186.207 P63m
′c′ III 143.1 P3 I

187.209 P 6̄m2 I 174.133 P 6̄ I 187.210 P 6̄m21′ II 174.133 P 6̄ I
187.213 P 6̄m′2′ III 174.133 P 6̄ I 187.214 Pc6̄m2 IV 174.133 P 6̄ I
188.215 P 6̄c2 I 174.133 P 6̄ I 188.216 P 6̄c21′ II 174.133 P 6̄ I
188.219 P 6̄c′2′ III 174.133 P 6̄ I 188.220 Pc6̄c2 IV 174.133 P 6̄ I
189.221 P 6̄2m I 174.133 P 6̄ I 189.222 P 6̄2m1′ II 174.133 P 6̄ I
189.225 P 6̄2′m′ III 174.133 P 6̄ I 189.226 Pc6̄2m IV 174.133 P 6̄ I
190.227 P 6̄2c I 174.133 P 6̄ I 190.228 P 6̄2c1′ II 174.133 P 6̄ I
190.231 P 6̄2′c′ III 174.133 P 6̄ I 190.232 Pc6̄2c IV 174.133 P 6̄ I
191.233 P6/mmm I 191.233 P6/mmm I 191.234 P6/mmm1′ II 175.138 P6/m1′ II
191.236 P6′/mm′m III 174.133 P 6̄ I 191.237 P6′/mmm′ III 174.133 P 6̄ I
191.238 P6′/m′m′m III 2.4 P 1̄ I 191.239 P6′/m′mm′ III 2.4 P 1̄ I
191.240 P6/mm′m′ III 175.137 P6/m I 191.242 Pc6/mmm IV 191.233 P6/mmm I
192.243 P6/mcc I 175.137 P6/m I 192.244 P6/mcc1′ II 175.138 P6/m1′ II
192.246 P6′/mc′c III 174.133 P 6̄ I 192.247 P6′/mcc′ III 174.133 P 6̄ I
192.248 P6′/m′c′c III 2.4 P 1̄ I 192.249 P6′/m′cc′ III 2.4 P 1̄ I
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192.250 P6/mc′c′ III 175.137 P6/m I 192.252 Pc6/mcc IV 175.137 P6/m I
193.253 P63/mcm I 176.143 P63/m I 193.254 P63/mcm1′ II 176.144 P63/m1′ II
193.256 P6′3/mc

′m III 174.133 P 6̄ I 193.257 P6′3/mcm
′ III 174.133 P 6̄ I

193.258 P6′3/m
′c′m III 2.4 P 1̄ I 193.259 P6′3/m

′cm′ III 2.4 P 1̄ I
193.260 P63/mc

′m′ III 176.143 P63/m I 193.262 Pc63/mcm IV 176.143 P63/m I
194.263 P63/mmc I 176.143 P63/m I 194.264 P63/mmc1

′ II 176.144 P63/m1′ II
194.266 P6′3/mm

′c III 174.133 P 6̄ I 194.267 P6′3/mmc
′ III 174.133 P 6̄ I

194.268 P6′3/m
′m′c III 2.4 P 1̄ I 194.269 P6′3/m

′mc′ III 2.4 P 1̄ I
194.270 P63/mm

′c′ III 176.143 P63/m I 194.272 Pc63/mmc IV 176.143 P63/m I
200.14 Pm3̄ I 47.249 Pmmm I 200.15 Pm3̄1′ II 2.5 P 1̄1′ II
200.17 PIm3̄ IV 47.249 Pmmm I 201.18 Pn3̄ I 2.4 P 1̄ I
201.19 Pn3̄1′ II 2.5 P 1̄1′ II 201.21 PIn3̄ IV 2.4 P 1̄ I
202.22 Fm3̄ I 47.249 Pmmm I 202.23 Fm3̄1′ II 2.5 P 1̄1′ II
202.25 FSm3̄ IV 47.249 Pmmm I 203.26 Fd3̄ I 2.4 P 1̄ I
203.27 Fd3̄1′ II 2.5 P 1̄1′ II 203.29 FSd3̄ IV 2.4 P 1̄ I
204.30 Im3̄ I 47.249 Pmmm I 204.31 Im3̄1′ II 2.5 P 1̄1′ II
205.33 Pa3̄ I 2.4 P 1̄ I 205.34 Pa3̄1′ II 2.5 P 1̄1′ II
205.36 PIa3̄ IV 2.4 P 1̄ I 206.37 Ia3̄ I 2.4 P 1̄ I
206.38 Ia3̄1′ II 2.5 P 1̄1′ II 215.70 P 4̄3m I 81.33 P 4̄ I
215.71 P 4̄3m1′ II 81.33 P 4̄ I 215.73 PI 4̄3m IV 81.33 P 4̄ I
216.74 F 4̄3m I 81.33 P 4̄ I 216.75 F 4̄3m1′ II 81.33 P 4̄ I
216.77 FS 4̄3m IV 81.33 P 4̄ I 217.78 I 4̄3m I 81.33 P 4̄ I
217.79 I 4̄3m1′ II 81.33 P 4̄ I 218.81 P 4̄3n I 81.33 P 4̄ I
218.82 P 4̄3n1′ II 81.33 P 4̄ I 218.84 PI 4̄3n IV 81.33 P 4̄ I
219.85 F 4̄3c I 81.33 P 4̄ I 219.86 F 4̄3c1′ II 81.33 P 4̄ I
219.88 FS 4̄3c IV 81.33 P 4̄ I 220.89 I 4̄3d I 81.33 P 4̄ I
220.90 I 4̄3d1′ II 81.33 P 4̄ I 221.92 Pm3̄m I 123.339 P4/mmm I
221.93 Pm3̄m1′ II 83.44 P4/m1′ II 221.94 Pm′3̄′m III 81.33 P 4̄ I
221.95 Pm3̄m′ III 47.249 Pmmm I 221.97 PIm3̄m IV 123.339 P4/mmm I
222.98 Pn3̄n I 2.4 P 1̄ I 222.99 Pn3̄n1′ II 2.5 P 1̄1′ II
222.100 Pn′3̄′n III 81.33 P 4̄ I 222.101 Pn3̄n′ III 2.4 P 1̄ I
222.103 PIn3̄n IV 2.4 P 1̄ I 223.104 Pm3̄n I 47.249 Pmmm I
223.105 Pm3̄n1′ II 2.5 P 1̄1′ II 223.106 Pm′3̄′n III 81.33 P 4̄ I
223.107 Pm3̄n′ III 47.249 Pmmm I 223.109 PIm3̄n IV 47.249 Pmmm I
224.110 Pn3̄m I 2.4 P 1̄ I 224.111 Pn3̄m1′ II 2.5 P 1̄1′ II
224.112 Pn′3̄′m III 81.33 P 4̄ I 224.113 Pn3̄m′ III 2.4 P 1̄ I
224.115 PIn3̄m IV 2.4 P 1̄ I 225.116 Fm3̄m I 123.339 P4/mmm I
225.117 Fm3̄m1′ II 83.44 P4/m1′ II 225.118 Fm′3̄′m III 81.33 P 4̄ I
225.119 Fm3̄m′ III 47.249 Pmmm I 225.121 FSm3̄m IV 123.339 P4/mmm I
226.122 Fm3̄c I 47.249 Pmmm I 226.123 Fm3̄c1′ II 87.76 I4/m1′ II
226.124 Fm′3̄′c III 81.33 P 4̄ I 226.125 Fm3̄c′ III 47.249 Pmmm I
226.127 FSm3̄c IV 47.249 Pmmm I 227.128 Fd3̄m I 2.4 P 1̄ I
227.129 Fd3̄m1′ II 2.5 P 1̄1′ II 227.130 Fd′3̄′m III 81.33 P 4̄ I
227.131 Fd3̄m′ III 2.4 P 1̄ I 227.133 FSd3̄m IV 2.4 P 1̄ I
228.134 Fd3̄c I 2.4 P 1̄ I 228.135 Fd3̄c1′ II 2.5 P 1̄1′ II
228.136 Fd′3̄′c III 81.33 P 4̄ I 228.137 Fd3̄c′ III 2.4 P 1̄ I
228.139 FSd3̄c IV 2.4 P 1̄ I 229.140 Im3̄m I 123.339 P4/mmm I
229.141 Im3̄m1′ II 87.76 I4/m1′ II 229.142 Im′3̄′m III 81.33 P 4̄ I
229.143 Im3̄m′ III 47.249 Pmmm I 230.145 Ia3̄d I 2.4 P 1̄ I
230.146 Ia3̄d1′ II 2.5 P 1̄1′ II 230.147 Ia′3̄′d III 81.33 P 4̄ I
230.148 Ia3̄d′ III 2.4 P 1̄ I

∗ These authors contributed equally to this work.
1 Sohncke, L. Entwickelung einer Theorie der Krystallstruktur. Entwickelung einer Theorie der Krystallstruktur (B.G.

Teubner, 1879). URL https://books.google.com/books?id=1OcsAQAAMAAJ.
2 Fedorov, E. S. The symmetry of regular systems of figures. Zap. Mineralog. Obsc.(2) 28, 28 (1891).
3 Landau, L. On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937).
4 Watson, J. D. & Crick, F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature

171, 737–738 (1953). URL https://doi.org/10.1038/171737a0.
5 Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017). URL https://doi.org/10.1038/

nature23268.
6 Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019). URL
https://doi.org/10.1038/s41586-019-0954-4.

7 Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nature
Communications 8, 50 (2017). URL https://doi.org/10.1038/s41467-017-00133-2.

https://books.google.com/books?id=1OcsAQAAMAAJ
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41467-017-00133-2


186

8 Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators.
Nature 566, 486–489 (2019). URL https://doi.org/10.1038/s41586-019-0937-5.

9 Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019). URL https://doi.org/10.

1038/s41586-019-0944-6.
10 Shubnikov, A. & Belov, N. Colored Symmetry (Macmillan, 1964). URL https://books.google.ca/books?id=

QKk9AAAAIAAJ.
11 Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups

and Space Groups (Clarendon Press, 1972). URL https://books.google.com/books?id=OKXvAAAAMAAJ.
12 Litvin, D. B. Magnetic Group Tables (International Union of Crystallography, 2013).
13 Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through

band structure combinatorics. Phys. Rev. X 7, 041069 (2017). URL https://link.aps.org/doi/10.1103/PhysRevX.7.

041069.
14 Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nature

Communications 9, 3530 (2018). URL https://doi.org/10.1038/s41467-018-06010-w.
15 Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological

crystalline insulators. Phys. Rev. X 8, 031070 (2018). URL https://link.aps.org/doi/10.1103/PhysRevX.8.031070.
16 Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups.

Science Advances 4 (2018). URL https://advances.sciencemag.org/content/4/8/eaat8685.
17 Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016). URL

https://doi.org/10.1038/nature17410.
18 Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361, 246–251 (2018). URL

http://science.sciencemag.org/content/361/6399/246.
19 Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-Order Topology, Monopole Nodal Lines, and the Origin

of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X = Mo,W). Phys. Rev. Lett. 123, 186401 (2019). URL
https://link.aps.org/doi/10.1103/PhysRevLett.123.186401.

20 Wieder, B. J. & Bernevig, B. A. The Axion Insulator as a Pump of Fragile Topology. arXiv e-prints arXiv:1810.02373
(2018). 1810.02373.
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188 Nelson, A., Neupert, T., Bzdušek, T. c. v. & Alexandradinata, A. Multicellularity of delicate topological insulators. Phys.

Rev. Lett. 126, 216404 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.126.216404.

https://link.aps.org/doi/10.1103/PhysRevB.47.1651
https://link.aps.org/doi/10.1103/PhysRevB.85.115415
https://link.aps.org/doi/10.1103/PhysRevB.84.075119
https://link.aps.org/doi/10.1103/PhysRevB.84.075119
https://link.aps.org/doi/10.1103/PhysRevLett.107.036601
https://link.aps.org/doi/10.1103/PhysRevLett.107.036601
https://link.aps.org/doi/10.1103/PhysRevB.89.155114
https://link.aps.org/doi/10.1103/PhysRevB.100.115160
https://link.aps.org/doi/10.1103/PhysRevB.100.115160
https://link.aps.org/doi/10.1103/PhysRevB.102.115117
https://link.aps.org/doi/10.1103/PhysRevB.102.115117
https://doi.org/10.1142/S0129055X01000922
https://books.google.com/books?id=f-bje0-DEYUC
http://www.sciencedirect.com/science/article/pii/S0166128097001851
http://www.sciencedirect.com/science/article/pii/S0166128097001851
https://doi.org/10.1007/BF01593094
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19293950202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19293950202
https://link.aps.org/doi/10.1103/PhysRev.41.208
https://link.aps.org/doi/10.1103/PhysRev.43.279
http://www.sciencedirect.com/science/article/pii/S0927025610002697
https://books.google.com/books?id=W9pdJZoAeyEC
https://link.aps.org/doi/10.1103/PhysRevX.9.031003
https://link.aps.org/doi/10.1103/PhysRevB.100.195135
https://link.aps.org/doi/10.1103/PhysRevX.9.021013
https://science.sciencemag.org/content/367/6479/797
https://link.aps.org/doi/10.1103/PhysRevLett.123.036401
https://link.aps.org/doi/10.1103/PhysRevB.100.205126
https://link.aps.org/doi/10.1103/PhysRevB.100.205126
https://link.aps.org/doi/10.1103/PhysRevB.98.184305
https://link.aps.org/doi/10.1103/PhysRevLett.126.216404


193

189 Bouhon, A., Lange, G. F. & Slager, R.-J. Topological correspondence between magnetic space group representations and
subdimensions. Phys. Rev. B 103, 245127 (2021). URL https://link.aps.org/doi/10.1103/PhysRevB.103.245127.

190 Lange, G. F., Bouhon, A. & Slager, R.-J. Subdimensional topologies, indicators, and higher order boundary effects. Phys.
Rev. B 103, 195145 (2021). URL https://link.aps.org/doi/10.1103/PhysRevB.103.195145.

191 Cano, J., Elcoro, L., Aroyo, M. I., Bernevig, B. A. & Bradlyn, B. Topology invisible to eigenvalues in obstructed atomic
insulators. arXiv e-prints arXiv:2107.00647 (2021). 2107.00647.

192 Watanabe, H., Po, H. C., Zaletel, M. P. & Vishwanath, A. Filling-enforced gaplessness in band structures of the 230 space
groups. Phys. Rev. Lett. 117, 096404 (2016). URL https://link.aps.org/doi/10.1103/PhysRevLett.117.096404.

193 Po, H. C., Watanabe, H., Zaletel, M. P. & Vishwanath, A. Filling-enforced quantum band insulators in spin-orbit coupled
crystals. Science Advances 2 (2016). URL https://advances.sciencemag.org/content/2/4/e1501782.

194 Lieb, E., Schultz, T. & Mattis, D. Two soluble models of an antiferromagnetic chain. Annals of Physics 16, 407 – 466
(1961). URL http://www.sciencedirect.com/science/article/pii/0003491661901154.

195 Else, D. V. & Thorngren, R. Topological theory of Lieb-Schultz-Mattis theorems in quantum spin systems. Phys. Rev. B
101, 224437 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.224437.

196 Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac Line Nodes in Inversion-Symmetric Crystals. Phys. Rev. Lett.
115, 036806 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.036806.

197 Thouless, D. J. Wannier functions for magnetic sub-bands. Journal of Physics C: Solid State Physics 17, L325 (1984).
URL http://stacks.iop.org/0022-3719/17/i=12/a=003.

198 Qi, X.-L., Wu, Y.-S. & Zhang, S.-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic
semiconductors. Phys. Rev. B 74, 085308 (2006). URL https://link.aps.org/doi/10.1103/PhysRevB.74.085308.

199 Soluyanov, A. A. & Vanderbilt, D. Wannier representation of Z2 topological insulators. Phys. Rev. B 83, 035108 (2011).
URL https://link.aps.org/doi/10.1103/PhysRevB.83.035108.

200 Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006). URL
https://link.aps.org/doi/10.1103/PhysRevB.74.195312.

201 Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306
(2007). URL http://link.aps.org/doi/10.1103/PhysRevB.75.121306.

202 Teo, J. C. Y., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators:
Application to Bi1−xSbx. Phys. Rev. B 78, 045426 (2008). URL https://link.aps.org/doi/10.1103/PhysRevB.78.

045426.
203 Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators.

Phys. Rev. B 86, 115112 (2012). URL https://link.aps.org/doi/10.1103/PhysRevB.86.115112.
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