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Part 1.
Basics of Group Theory and Point Groups




Sets

e g (or h) is an operator that acts on states and coordinates

e Later: g will be a symmetry group element

e CMT rules: a set is a collection of operators (elements)
* Implicit (sometimes unstated): Rules (algebra or relations) between elements

* Ex: {2,5,7,9} is a set of integers

* Implicit algebra — additivity: g;g; = gi4;
* Algebra keeps some elementsinset: g =2, gop=5—->9g3=7=2+5 V
* But not every element: g, =5, g3=7->9g4, =9+ 5+7 X

* This set is open (not closed)




Groups

* A group G is a set (+ element algebra) with four constraints:

1. Closure: every product element is also in set:
*Ifg, €G, g, € G,theng,9, €EG

2. Associativity:
* Take 3 elements g, , 3 and define g;g; = g;;
* Demand g1 923 = 91293

3. Unique Identity Element in Set:
* There exists an element E € G for which Eg; = g;E = g; foralli

4. Unigue Inverse Elements in Set:

Group or Set?

e Even additive integers 2Z7?
* Yes, a group

* 0Odd additive integers?
* No, just a set
* Open, no identity

* For each g € G, there also exists one h € G for whichhg = gh = E

Note: uniqueness of identity & identical left/right inverses not strictly required,
see Bradley & Cracknell, The Mathematical Theory of Symmetry in Solids, Chap. 1




Finite Groups

* Given a set or group H, the order |H| of H is the number of elements in H

* A finite group G has a finite order |G|
e An infinite group does not

* Finer distinction of oo:
* A continuous group has infinite elements with infinitesimally spacing

* Example: SO(3) rotations

* A discrete infinite group has countably infinite discretely spaced elements
* Example: additive integers 7Z




Point Groups (finally something concrete)

* Point groups leave points in space invariant, contain symmetries of:
* Molecules

* Points (sites) in infinite crystals

* Molecular point groups can be discrete or continuous Oh

-

* g; is mirror in chemistry z |
0=C=0

Discrete point group of ethene (C,H,) <
McQuarrie and Simon, Chapter 12 KT ;;

-

Continuous point group of CO, i
Haas, Fundamentals of Inorqg. Chem., LibreTexts

 Site-symmetry groups in 2D and 3D crystals are always finite groups
* Isomorphic to the 2D and 3D crystallographic point groups

* |somorphic = same group elements and algebra under redefinition



Representations of Finite Groups

* The representations (reps) p of groups are abstract mathematical objects
* All molecular energy eigenstates “transform in” point group reps

Y(Azy) w @ V(Bag) W(Eig?) ﬁ @ E(Elg P(E2u®) @j (@ Y(Ex®)

molecular WFs and reps of benzene (C,H,), Nocera, Fundamentals of Inorg. Chem. |l, LibreTexts

e Unitarity distinctions:
* G contains only unitary elements: p is a representation

* G contains unitary & antiunitary elements: p is a corepresentation (corep)

* Nonmagnetic systems have time-reversal symmetry T, all group reps are coreps

* Note: all nonmagnetic groups with symmetries like C, and T also have product C,T

* Today, focus on groups with only unitary elements

(o . n
y Type'l magnetlc Symmetry groups: | see Bradley & Cracknell & L. Elcoro*, BJW* et al., Nat. Comm. (2021)




Characters and Irreducible Representations

2
* Matrices and characters define reps reps are s o b= =k
° i i : : “crystal field theory” U
A,(g) is the matrix representative of g in p (here octahedral group 0, N
° — : H Supp. Modules and Websites doa_ 2 d,
X,(9) Tr[Ap (g)] is the characterof g inp Tt hom) LibreTonts , Gy
* Unitary symmetry g eigenvalue sum \
* Crucial for detecting topology (later)
dxy dxz dyz

* pis an irreducible rep (irrep) of a group G if (and only if) the only matrix M for
which A,(g)MA,*(g) = M forall g € G is the identity matrix M « I

* Physical consequence: given a molecular Hamiltonian H, thereisa 1:1
correspondence between robust spectral degeneracies and irreps

 Warmup for band degeneracies (later)




Character Tables

* Character tables define group irreps through symmetry eigenvalues

* In groups with unitary and antiunitary elements, only unitary elements have characters

* Because antiunitary elements g, have A,(g4) = UK, and Tr[K] is not defined

e Rows and columns are orthogonal

— Symmetry element g

Irrep p label

(1) 2) (3) Cy Cr ™ C3 | Gy
GM; | A | GM;y 1 1 1 1
C1Z 1
GM; | By | GMy | 1 1 -1 -1 Co 2
S 2- <001
GMy | Bs | GM3 | 1 1 1 1 Ca: 2010
GMZ BQ GM4 1 -1 1 -1 C,q_i 2100

Example unitary group from Bilbao Crystallographic Server

— Character x,(g)

https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations point.pl?tipogrupo=spg

https://www.cryst.ehu.es/html/cryst/mpointrepres.html

All magnetic and nonmagnetic point group tables now available:

L. Elcoro*, BJW* et al., Nat. Comm. (2021)



https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=spg
https://www.cryst.ehu.es/html/cryst/mpointrepres.html

e Same point group has two forms: single and double

Single and Double Groups

* Single group: twofold rotations C; x,, commute, x, (C%i) = X,(E)
* For phonons, magnons, electrons with no spin-orbit coupling (per spin), “spinless fermions”
* Double group: new element E, C,Cyy, = ECy,Coy, x5(C5:) = x5(E)

* Double-valued reps of double group: )(5(17?) = —x5(E), implies anticommutation

* For electrons, “spinful fermions”

Irreducible representations of the Double Point Group 222 (No. 6)

Single-valued irreps p

Table of characters

J—

—

Identity element E

j mmetry operatio

Double-valued irrep p

M | @ | @ | CgLrTT5 | Cs | Cs
GMy | A (GMy 1 1 | 1 1 | 1
— GMs | By (GMy 1 | 1 | 4 | -1 | 1
GMy | By [ GMy | 1 | -1 | 1 | 1 | 1
GMy | By (GMy 1 | -1 | 1 | -1 | 1
E | GMs | 2 0 0 0 -2

Example double group from Bilbao Crystallographic Server

ns in the conj classes
C-|Z 1

. d

C2: 2001, 2001
. d

C3: 2010, 2010

. d
Ca: 2100, 2100

Cs: 91 \

E element

https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations point.pl?tipogrupo=dbg



https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=dbg

Part 2:
Crystals and Space Groups in
Real and Momentum Space




Crystals and Translation Symmetry

* Crystals are objects with discrete translation symmetry
* Lattice vectors a; — shortest linearly independent translations

This pattern is a crystal
von Gagern, https.//en.wikipedia.org/wiki/Wallpaper group

* Crystals have repeated periodic motifs termed unit cells

* Crystals are infinite and pristine — free of defects and boundaries

* Results derived from crystal models say nothing about boundaries and defects response
without using other methods

* e.g. topology, continuum field theory, long-wavelength semiconductor physics, chemistry, etc.



https://en.wikipedia.org/wiki/Wallpaper_group

Crystal Symmetry Groups

Mirror-symmetric twisted trilayer graphene

* Crystals have infinite symmetry groups (SGs) model has layer group symmetry
Khalaf et al., PRB (2019)

* Crystal symmetries have the form g = {R|v}
* R is point group element, v is a translation
* Primitive (generating) lattice translations are t,, = {E|a;}

* SG defined by dimensionality of R, number of independent a;

* If dim R > number of a;, group is subperiodic See further reading in:

Conway et al., The Symmetries of Things

___dimR___| __numa,__ | GroupName | _Subperiodic? Physical System

1 1 Line Toy model?

2 1 Frieze v Flat polymer on substrate

2 2 Wallpaper Few-layer on substrate, Tl surface
3 2 Layer v Floating few-layer (e.g. Moiré model)
3 3 Space Bulk crystalline solid



Wyckoff Positions

* Site-symmetry groups G, define finer unit cell structure of crystal w/ SG G
* For a site with coordinates q4, gq4 = q4 (in same unit cell) for each g € G4

. an C G, but an isomorphic to point group, has same irreps

* Wyckoff orbit: set {q,} in same unit cell permuted by g €aqG, g (7E Gq,,

* Multiplicity of orbit defined by size of set {q,}

Unit Cell of Wallpaper group p4m

Some Wyckoff positions

BJW et al., Nat. Comm. (2020)

9Qia = (010)
q:p = (1/2,1/2)
Qsa = {(ix, iX)}

* Wyckoff position: set of Wyckoff orbits with same multiplicity related by smooth

coordinate deformation (e.g. 4d and 4e above for all x)




Crystal Momentum Space

e Typical Hamiltonians for crystals (e.g. real-material electrons) are off-diagonal in
unit-cell indices
* Note: unit cell origin and shape are choices

Ay By A; By
0O t 0 0 -4
0= t 0 @ 0 -|B1
x 0 ()0 t |4,
0O 0t 0 -|B,
S Nearest-neighbor hopping model of trans polyacetylene

https://en.wikipedia.org/wiki/Polyacetylene

* Block-diagonalize by Fourier transforming E(K)

|A/B, > = Z eXaa/B|A/B, > /
k Energy levels

Ak B form bands <
H = T 0 te—lka/Z_l_velka/Z Ak /
x k — tetka/2 4 eo—ika/2 0 B, —m/a m/a
k k

N


https://en.wikipedia.org/wiki/Polyacetylene

Symmetry in k Space

e Unit cells in x are physically distinct, but only “15t unit cell in k” (BZ) is physical
* kis just a Fourier parameter
* k unit cells are Brillouin zones (BZs)

* Reciprocal lattice vectors K; relate BZs
* Orthogonality a; - K; = 2m6;;

e k points can be related by symmetry e
* Termed “momentum stars” (k-space analog of Wyckoff orbit) BZs in graphene

BJW et al., Nat. Comm. (2020)
* Stars & multiplicities in graphene: 1: T, 2: K & K, 3: M, ; 5

e Like sites in crystals, k points have symmetry

* Given crystal SG G, little group G;, © G contains all symmetries g including translations
that return k to itself up to a BZ: gk mod K, ,3 = k

* G} is isomorphic to an SG, not a point group (unlike site-symmetry group G

Qa)



Irreducible Small Representations

* (4 is an infinite group (contains translation group Gr), implies infinite irreps
* Could try constructing abstract “projective” point group from Gy, | see Bradiey & cracknell, chapter 5

* For us: define finite number of small irreps o, of G, by coset decomposition:

* Gy, =Gr VU g,Gr U g,Gr U -+, where each g; is unique & g; # Gr
—ik-t
I

* For pure translation t = {E|t} € G, choose A, (t) = e
* Finite {0y} from unigue matrix reps of coset symmetries using A,, (tg;) = e_ik'tAak (g9;)

RhSi structure
and bands

* Most band degeneracies enumerable from o,
* Led to discovery of many topological semimetals

Mafies, PRB (2012)
BIW et al., PRL (2016)

Xu, Elcoro, Song, BJW, Vergniory et al., Nature (2020) Brad| Vi ; tal.. Sci (2016)
) radlyn, ..., Vergniory, et al., Science
TOOI for a " SG Sma " (co) re ps Elcoro*, BJW* et al., Nat. Comm. (2021) Y il

Chang*, Xu*, BIW*, et al., PRL (2017)
* https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations.pl



https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations.pl

Compatibility Relations

* Given k, & k; in connected momentum stars, Gy,

* Small irreps are dependent by subduction: o; . | Gy, =

k4,
*n;

i ] %2 define the small i irrep compatibility relations

CGk

k1;k2
69] j O-] k>

1

)

* Compatibility relations can diagnose enforced semimetal (ES) states

* “Occupied” high-symmetry-point small irreps termed symmetry data vector

a (b) Symmetry data vector (not)
satisfying the compatibility relations
Elcoro*, BIW* et al., Nat. Comm. (2021)

5 LD,
I 7 5
LDy .- 6 LD5
LD, o - LD,
ES ---LDS Zﬁ LD-S"“ LDS B
D, LD, | ID, LD,
r LD y/ LD r
k;

LDy 5 LD

— y4 6 _

LDs :;ii: LDs

o "X T2 (X g
— LDg LDg >
LD, LD,
ES -LDS 26 LD_S__H ES

------ e S

D, 1D, | ID, LD,

[ LD Z LD I



Bilbao Tools for Real and Momentum Space

* The bilbao crystallographic server (BCS) is the leading open-access tool for
symmetry group properties

* (Relatively) unified notation with I U Cr

International Union

of Crystallography

* Partial lists of Bilbao tools for point groups and 3D SGs

 Symmetries and irreducible coreps of all 32 nonmagnetic and 90 magnetic point groups:
https://www.cryst.ehu.es/html/cryst/mpointrepres.html

* Generating symmetries of all 230 nonmagnetic and 1,421 magnetic space groups (SGs):
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget gen.pl

» Wyckoff positions and site-symmetry groups of all SGs: https://www.cryst.ehu.es/cgi-
bin/cryst/programs/magget wp.pl

* Momentum stars of all SGs: https://www.cryst.ehu.es/cgi-

bin/cryst/programs/magget wp.pl Xu, Elcoro, Song, BJW, Vergniory et al., Nature (2020)
Elcoro*, BIW* et al., Nat. Comm. (2021)



https://www.cryst.ehu.es/html/cryst/mpointrepres.html
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_gen.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl

Part 3:
Elementary Band Representations
and Topological Quantum Chemistry




Atomic Limits and Wannier Orbitals

* An atomic limit is an insulator with (nearly) decoupled, exponentially localized orbitals
in X-space in each unit cell

 Define atomic limit to have trivial stable topology

1a 1b I ! 1b !
Atomic limitsin IDand 2D, ) Q (1) Q © e | .9, | ©
BJW et al., Nat. Comm. (2020)  b—u—-» | ,;:"'\ji,,,,,,,{"'

e Separate question: given band(s) in k-space, can | inverse-Fourier-transform bands into
an atomic limit of Wannier functions that: -

* Have exponential (and not power-law) tails? . ' Wannierization can be attempted

w 1

* Respect the system SG? P{}P for any isolated bands

FrXSYFTZURTZ YT UXSR T

* If no, band(s) carry nontrivial stable topology (in a complicated, SG-dependent way)
e Stable — remains topological if atomic limit bands added to projector

e Caution: many properties of Wannier functions are gauge-dependent!

e Stable tOpO'Ogy IS gd uge-inva riant see Marzari et al., RMP (2012), Soluyanov and Vanderbilt, PRB (2012)




Elementary Band Representations from Atomic Limits

* Consider an atomic limit w/ orbitals at high-symmetry maximal Wyckoff positions
* Not connected to a higher-symmetry Wyckoff position

* Corresponds to a sum of small irreps g; j in k space

 Symmetry eigenvalues, but also more Berry phases | 8w et al, nat. comm. (2020)

Cano et al., PRB (20202

* Formally, given SG G and site-symmetry group G, orbitals generate a k-space

band representation pg via induction:

k,
pg TG =pg =@y 0ig =BrD; a; oy

* Distinct maximal Wyckoff positions sometimes produce equivalent band reps,
termed exceptional cases
e Deducible through “sliding” procedure termed Wannier center homotopy

* The inequivalent band reps are termed elementary (EBRs) | /- Zak, PRB (1981)




OAL Example 1: Rod Group p1

* Consider a 1D chain with inversion symmetry & spinless s and p orbitals at 1a

* Characters are inversion eigenvalues
Ol[OL[O].JOl.
Atomic Limit COl IO O
S =
(P)1a Tj X3
Site- Wyckoff Induced Induced
Symmetry Position Small Small
Irrep IrrepatI’ | Irrepat X
(S)1q o X; s Ay la o X
I k X p Aly 1a by X7
s Ay 1b r X7
* Invert bands at k = 0 to slide Wannier orbitals p A, 1b Iy X3

* Important: single degeneracy at intermediate 2c position +x

* Important: OALs are not stable topological, dangerous to predict in real materials due to Wannier
gauge issues

Obstructed Atomic Limit (OAL) ($)1p T L X7

(T 1b [— | 1a |[—| 1b

L)@ O @ O e

I k X Bradlyn, ..., Vergniory, et al., Nature (2017)




OAL Example 2: Double Wallpaper Group p4m

* Consider a 2D square lattice with mirror & C,, & spinful pairs of s and d orbitals at 1a
e Characters are (sums of) spinful C,, eigenvalues

I
O O
ng ng ng = i Site- Wyckoff Induced Induced
e ] e ] =1 I'g 6 Symmetry Position Small Small
ol Tol Tol = : Irrep IrrepatT | Irrepat M
C83 C8> C8> 25 S El 1a I M
AN, ¢ F S T
Atomic Limit el | . | E, 1b I, Mg
d E, 1b I, M,

* Invert bands at k = 0 to slide Wannier orbitals

* Important: single degeneracy at intermediate 4d position (£x, +x)
Checkboard Charge Order

Obstructed Atomic Limit ¥ — T B " o 3 ©
117 M | | e
N \/_/N (S)lb : \ / : ;/ b \i,,
x'|03) el 1 | | 1a i © ©o. o
" I | RPN
oL B — (d)1p RN O
T 1“6 M7 b f———————- 1b 1. o Q
r|eo Go) x ol . . ‘

BJW et al., Nat. Comm. (2020)




Topological Quantum Chemistry (TQC)

 Complete theory of band topology in Classes A, Al, All with crystal symmetries
* Both magnetic and nonmagnetic SGs

Bradlyn, ..., Vergniory, et al., Nature (2017)
Elcoro*, BJW*, et al., Nat. Comm. (2021)

* Basic idea of TQC — topology by brute force
* Enumerate all possible EBRs for every SG

FRESH TWIST ON

Ll el

* Pick out a band in a model or material
* If band is not equivalent to integer linear combo of EBRs, it is stable topological

T;
* Clarifies two routes towards stable topology in real materials =
* Band inversion N g

r K M
k

* Fractionally fill a split EBR (not all EBRs are connected)

A disconnected (split) EBR
Frequently (but not always) stable topological
For “fragile” case, see H. C. Po, et al., PRL (2018)




Symmetry-Based Indicators

If a set of bands P do not “transform” (eigenvalues and Berry phases) in an integer linear combination of
EBRs, P is stable topological

For just eigenvalues, some SGs support generalized Fu-Kane Z, formulas for topology termed
Symmetry-Based Indicators (Sls)

e Obtainable algorithmically via EBRs (Smith normal decomposition) Typical S| Computer Output

* NontrIVIal SI Indlcates elther: k point Irreducible representations
Fu and Kane, PRB (2007)

* Pisstable topological 1. +EL +F3
) - D g i o ) Fang, Gilbert, Bernevig, PRB (2012) L 230 +ELu+F 3,
* Pis semimetal satisfying compatibility relations Kruthoff et al., PRX (2017) L Egq+2E15+2E1,
Po et al., Nat. Comm. (2017) w 23 +3E}
X 2E%g +2E%u +E;3u

Song et al., Nat. Comm. (2018)

Cons: v
—_— Zg=4
* Have to figure out the right linear combo of computer output for physical basis of SI formula

* Only a partial classification — some invariants like Chern number are Z-valued
* Complete P diagnosis requires other tools like Wilson loops and layer constructions )

3 W\ ]
Zow1=0,2Zow2=0,Z943=0,24=2 P{ °
Pros: | > | S
* Reveal new topological states (e.g. bismuth) Z, = 2 “higher-order TI” in bismuth, still mysterious...
e N . ” ff . b . el see Schindler et al., Nat. Phys. (2018),
umerically € Icient ab Initio Schindler, ..., BIW, Nat. Comm. (2022), Lin, ..., BIW, Nat. Comm. (2024)




High-Throughput Topological Materials Discovery

e Sls applied to high-throughput first principles (DFT) calculations reveal
0(10,000) topological insulators, semimetals, flat bands, magnons, and phonons
* Leading teams: Bernevig (Princeton), Vishwanath (Harvard), Fang (IOP China)

* Confirm known examples and recontextualize others

Bi,Se, | SnTe Rhombohedral Bismuth

Zow1=0,Z9w2=0,Zp43=0,Z4=3 Zow1=0,Zpw2=0,Z943=0,24=0,22=0,Zg=4| |Zow1=0,20w2=0,Z343=0,24=2

Vergniory, ..., Regnault, Nature (2019)
Tang, et al., Nature (2019)
Our results are freely available here: Zhang et al., Nature (2019)

. " Partial list of Xu, ..., BJW, Vergniory, ..., Nature (2020)
_'.____ Tﬂpﬂlﬂglﬂﬂl Materials Vergniory,* BJW¥, ...., Regnault, Science (2022)
o Database DFT papers BJW, ..., Vergniory, Regnault, ..., Nat. Rev. Mater. (2022)
Regnault et al., Nature (2022)

www.topologicalguantumchemistry.com Karaki et al., Sci. Adv. (2023)
Xu, Vergniory, et al., Science (2024)



http://www.topologicalquantumchemistry.com/
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