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Scope and Outline

2D topological insulators 

Edge states versus bulk: the Quantum Hall Effect example

Modified electrodynamics and quantized Hall response in 
2D


3D topological insulators 

Surface properties

Modified electrodynamics in 3D: magneto-electric effects

(A choice of some) consequences


3D topological semimetals 

Recap of topological properties: anomalous Hall effect

Modified electrodynamics 

Non-reciprocity of optical and thermal properties


Functional properties  
I asked ChatGPT

I decided to focus on


Topological insulators and 
semi-metals

topological superconductors



3D 
Topological 

Insulator

Topological Boundary States

 "(x)
 #(x)

Anomalous 
Quantum Hall 

Insulator

Quantum Hall Insulator

Two dimensions

breaks Time-Reversal Symmetry 

Chern index


➡ Chiral edge states 

Quantum Spin Hall Insulator

Two dimensions

Time-Reversal Symmetry + spins 1/2

Kane-Mele Z2 index


➡ Helical edge states : Kramers pair 

3D Topological Insulators

Three dimensions

Time-Reversal Symmetry + spins 1/2

Kane-Mele Z2 index


➡  (odd number of) Dirac cone 

Quantum Spin 
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Robustness of edge States

Anomalous 
Quantum Hall 

Insulator

Quantum Hall Insulator

Two dimensions

breaks Time-Reversal Symmetry 

Chern index


➡ Chiral edge states

+kF-kF

Only 1 branch  (chiral)

backscattering ↔ localization

Robustness: chirality of the modes 
(T-breaking)

E

k

Standard 1D Model : 2 branches

Robustness of edge states : 

no backscattering because chiral modes 



Robustness of edge States

Anomalous 
Quantum Hall 

Insulator

Quantum Hall Insulator

Two dimensions

breaks Time-Reversal Symmetry 

Chern index


➡ Chiral edge states

Robustness of edge states : 

no backscattering because chiral modes 


Top. Index 

all modes are ballistic

n ∈ ℤ +kF-kF

backscattering ↔ localization

E

k

n chiral modes

Robustness: chirality of the modes 
(T-breaking)



Topological Boundary States
 "(x)
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Quantum Spin Hall Insulator

Two dimensions

Time-Reversal Symmetry + spins 1/2

Kane-Mele Z2 index


➡ Helical edge states : Kramers pair

Quantum Spin 
Hall Insulator

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)

«Protected Edge States» : robust properties, remain 
ballistic


+kF-kF

↑↓ ?

2 branches, but ≠ spins : no backscattering 
(protected by T reversal symmetry) 
⇒ topological robustness



Topological Boundary States
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Quantum Spin Hall Insulator

Two dimensions

Time-Reversal Symmetry + spins 1/2

Kane-Mele Z2 index


➡ Helical edge states : Kramers pair

Quantum Spin 
Hall Insulator

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)

 Z2 Topological index for QSHE : yes / no

 with 4 modes : 

Backscattering allowed ⇒ No topological order

+kF-kF

↑↓↑ ↓



Quantum Hall Effect and Chern Topological Insulator

�xy = n
e2

h

with high 
precision 

( )10−9

�xy

�xx

n index

2DEG (Heterojunction GaAs/AlGaAs)

B



Quantum Hall Effect and Chern Topological Insulator

�xy = n
e2

h

with high 
precision 

( )10−9

�xy

�xx

n index
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Thouless et al.. PRL 49 (1982)
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Landauer-Buttiker formalism 
Multi-terminal geometry

Transport and edge states
H. Buhmann
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Landauer-Buttiker formalism 
2-terminal geometry in D=1
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Von Klitzing constant 
G0 = e2/h = 3.87 10−5 S

RK = h/e2 = 25 812.807 Ω
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Landauer-Buttiker formalism 

2 terminal: 
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Transport and edge states
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Landauer-Buttiker formalism 

Multi-contacts: Iα = −e
h ∑
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mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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Fig. 1. Two-terminal (R14,14) (top two traces) and four-terminal (R14,23) (bottom traces) resistance versus
(normalized) gate voltage for the Hall bar devices D1 and D2 with dimensions (length× width) as indicated.
The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
leads.

Fig. 3. Four- and two-terminal
resistance measured on device
D3: (A) R14,23 (red line) and R14,14
(green line) and (B) R13,54 (red
line) and R13,13 (green line). The
dotted blue lines indicate the ex-
pected resistance value from a
Landauer-Büttiker calculation.
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mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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Fig. 1. Two-terminal (R14,14) (top two traces) and four-terminal (R14,23) (bottom traces) resistance versus
(normalized) gate voltage for the Hall bar devices D1 and D2 with dimensions (length× width) as indicated.
The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
leads.

Fig. 3. Four- and two-terminal
resistance measured on device
D3: (A) R14,23 (red line) and R14,14
(green line) and (B) R13,54 (red
line) and R13,13 (green line). The
dotted blue lines indicate the ex-
pected resistance value from a
Landauer-Büttiker calculation.
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mentally in an unambiguous manner the exis-
tence of edge channels in HgTe quantum wells.

Ohm’s law versus nonlocal transport. In
conventional diffusive electronics, bulk transport
satisfies Ohm’s law. The resistance is proportional
to the length and inversely proportional to the cross-
sectional area, implying the existence of a local

resistivity or conductivity tensor. However, the exis-
tence of edge states necessarily leads to nonlocal
transport, which invalidates the concept of local
resistivity. Such nonlocal transport has been experi-
mentally observed in the quantumHall (QH) regime
in the presence of a large magnetic field (8), and the
nonlocal transport is well described by a quantum

transport theory based on the Landauer-Büttiker
formalism (9). These measurements constitute de-
finitive experimental evidence for the existence of
edge states in the QH regime.

We report nonlocal transport measurements
in HgTe quantum wells that demonstrate the exis-
tence of the predicted extended edge channels. We
have fabricated structures more complicated than a
standardHall bar that allow a detailed investigation
of the transport mechanism. In addition, we present
the theory of quantum transport in the QSH regime,
and uncover the effects of macroscopic time ir-
reversibility on the helical edge states.

Device structure. We present experimental
results on four different devices. The behavior
in these structures is exemplary for the ~50 de-
vices we studied. The devices were fabricated
from HgTe/(Hg,Cd)Te quantum well structures
with well thicknesses of d = 7.5 nm (samples
D1, D2, and D3) and 9.0 nm (sample D4). Note
that all wells have a thickness d > dc ≈ 6.3 nm,
and thus exhibit the topologically nontrivial in-
verted band structure. At zero gate voltage, the
samples are n-type and have a carrier density of
ns ≈ 3 × 1011 cm–2 and a mobility of 1.5 × 105

cm2 V–1 s–1, with small variations between the
different wafers. The devices are lithographi-
cally patterned using electron-beam lithography
and subsequent Ar ion-beam etching. Devices
D1 and D2 are micrometer-scale Hall bars with
exact dimensions as indicated in the insets of
Fig. 1. Devices D3 and D4 are dedicated struc-
tures for identifying nonlocal transport, with
schematic structure given in Fig. 2. All devices
are fitted with a 110-nm-thick Si3N4/SiO2 multi-
layer gate insulator and a Ti (5 nm)–Au (50 nm)
gate electrode stack.

By applying a voltage Vg to the top gate, the
electron carrier density of the quantum well can
be adjusted, going from an n-type behavior at
positive gate voltages through the bulk insulator
state into a p-type regime at negative gate volt-
ages. For reasons of comparison, the experimental
data in Figs. 1, 3, and 4 are plotted as a function
of a normalized gate voltage V* = Vg – Vthr (Vthr
is defined as the voltage for which the resistance
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Fig. 1. Two-terminal (R14,14) (top two traces) and four-terminal (R14,23) (bottom traces) resistance versus
(normalized) gate voltage for the Hall bar devices D1 and D2 with dimensions (length× width) as indicated.
The dotted blue lines indicate the resistance values expected from the Landauer-Büttiker approach.

Fig. 2. Schematic layout
of devices D3 (A) and D4
(B). The gray areas are the
mesas, the yellow areas
the gates, with dimensions
as indicated. The numbers
indicate the coding of the
leads.

Fig. 3. Four- and two-terminal
resistance measured on device
D3: (A) R14,23 (red line) and R14,14
(green line) and (B) R13,54 (red
line) and R13,13 (green line). The
dotted blue lines indicate the ex-
pected resistance value from a
Landauer-Büttiker calculation.
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Quantum Hall Effect and Chern Topological Insulator

�xy = n
e2

h

with high 
precision 

( )10−9

�xy

�xx

n index

Thouless et al.. PRL 49 (1982)

2DEG (Heterojunction GaAs/AlGaAs)

B

Topology of Vector Bundle 

over the Brillouin/Boundary conditions Torus

Chern number   

with  the Berry curvature

C1 = 1
2π ∫ dS F

F

number of (robust) edge modes
M. Büttiker, PRB 38 (1988)

~�c

Ek,n = ~�c(n + 1/2)
y0

Ek,n = E(n, �c, y0(k))

y0

vk,n = 1
~

dEk,n

dk =
1
~

dEk,n

dy0

dy0
dk y1

y2

~�c � B

Fermi 
Level

edge states

Filled Landau Levels

Filled Landau level

 n is a topological invariant 



Quantum Hall Effect and Chern Topological Insulator

Kubo formula (T=0) 




Current 

σxy = iℏ
LxLy ∑

m≠0

1
(Em − E0)2 [⟨Ψ0 | ̂Jx |Ψm⟩⟨Ψm | ̂Jy |Ψ0⟩ − ⟨Ψ0 | ̂Jy |Ψm⟩⟨Ψm | ̂Jx |Ψ0⟩]

̂Jα(r) = δH
δAα(r)

Many body state

Φ1

Aharonov-Bohm flux


➡ Dephasing by   around flux


➡ Vector potential 

2π
Φ1
ϕ0

Ar = Φ1/L



Quantum Hall Effect and Chern Topological Insulator

Kubo formula (T=0) 




Current 

σxy = iℏ
LxLy ∑

m≠0

1
(Em − E0)2 [⟨Ψ0 | ̂Jx |Ψm⟩⟨Ψm | ̂Jy |Ψ0⟩ − ⟨Ψ0 | ̂Jy |Ψm⟩⟨Ψm | ̂Jx |Ψ0⟩]

̂Jα(r) = δH
δAα(r) = Lα

∂H
∂Φα

Q. Niu, D. J. Thouless, Y.-S. Wu (1985) 
J. E. Avron, R. Seiler, and L. G. Yaffe  (1987)

Hall conductance as a topological object


Φ1

Φ2

j2

j2

J. Luneau, C. Dutreix, Q. Ficheux, P. 
Delplace, B. Douçot, B. Huard, D. Carpentier,  
Phys. Rev. Research 4, 013169 (2022)

Φ2, Q2

Φ1, Q1

B
Φ2

Φ1

Aharonov-Bohm flux:  (homogeneous)
Aα = Φα /Lα
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Kubo formula (T=0) 




Current 

σxy = iℏ
LxLy ∑

m≠0

1
(Em − E0)2 [⟨Ψ0 | ̂Jx |Ψm⟩⟨Ψm | ̂Jy |Ψ0⟩ − ⟨Ψ0 | ̂Jy |Ψm⟩⟨Ψm | ̂Jx |Ψ0⟩]

̂Jα(r) = δH
δAα(r) = Lα

∂H
∂Φα

Q. Niu, D. J. Thouless, Y.-S. Wu (1985) 
J. E. Avron, R. Seiler, and L. G. Yaffe  (1987)

Many-body state  (generalized boundary condition)





  periodicity of 

Ψ
Ψ(xi + Lx, yi) = e i2π Φ1

ϕ0 Ψ(xi, yi) ; Ψ(xi, yi + Ly) = e i2π Φ2
ϕ0 Ψ(xi, yi)

⇒ 2π Ψ

Φ1

Φ2

j2

j2

Aharonov-Bohm flux:  (homogeneous)
Aα = Φα /Lα



Quantum Hall Effect and Chern Topological Insulator

Kubo formula (T=0) 




Current 

σxy = iℏ
LxLy ∑

m≠0

1
(Em − E0)2 [⟨Ψ0 | ̂Jx |Ψm⟩⟨Ψm | ̂Jy |Ψ0⟩ − ⟨Ψ0 | ̂Jy |Ψm⟩⟨Ψm | ̂Jx |Ψ0⟩]

̂Jα(r) = δH
δAα(r) = Lα

∂H
∂Φα

Q. Niu, D. J. Thouless, Y.-S. Wu (1985) 
J. E. Avron, R. Seiler, and L. G. Yaffe  (1987)

Φ1

Φ2

j2

j2

Aharonov-Bohm flux:  (homogeneous)
Aα = Φα /Lα




Should be independent on boundary condition:


   with : Chern number of 


σxy = iℏ ∑
m≠0

1
(Em − E0)2 [⟨Ψ0 |

∂H
∂Φx

|Ψm⟩⟨Ψm |
∂H
∂Φy

|Ψ0⟩ − ⟨Ψ0 |
∂H
∂Φy

|Ψm⟩⟨Ψm |
∂H
∂Φx

|Ψ0⟩]
= ℏℬ(Φ1, Φ2)

σxy = 1
ϕ2

0 ∫ d2Φ σxy(Φ) = e2

h2
h

2π ∫ d2Φ ℬ(Φ) = e2

h
𝒞 𝒞

Berry curvature of Ψ(Φ1, Φ2)

Ψ(Φ1, Φ2)



Quantum Hall Effect and Chern Topological Insulator

Topological electrodynamics in d=2: 
In d=2, extra term (Chern-Simons) invariant 

under gauge transformations: 
κ

4π
ϵμνλAμ∂νAλ

Boundary term ! 

Electrodynamics of an insulator 
Terms invariant under gauge transformations 

:  ,  

Standard Maxwell Lagrangian (isotropic):  




Action 








Aμ → Aμ + ∂μχ(r) Bj χijBj EipijEj

ℒ0 = ϵ0
2 E2 − 1

2μ0
B2 − ρϕ + j . A

𝒮 = ∫ d2rdt ℒ
δ𝒮
δϕ

= 0 = − ρ + ϵ0 ∇ . E
δ𝒮
δA = 0 = j + ϵ0

·E − 1
μ0

∇ × B

Under a gauge transformation 
( ) : 

 

with a modified action 




Aμ → Aμ + ∂μχ(r)
ϵμνλAμ∂νAλ → ϵμνλAμ∂νAλ + ϵμνλ∂μχ∂νAλ

δ𝒮 = κ
4π ∫ d2rdt ϵμνλ∂μ (χ∂νAλ)

Topological electrodynamics in d=2: 
In d=2, extra term (Chern-Simons) invariant 

under gauge transformations: 


With 


κ
4π

ϵμνλAμ∂νAλ

Aμ = (A0, − A)



Quantum Hall Effect and Chern Topological Insulator

Topological electrodynamics in d=2: 
In d=2, extra term (Chern-Simons) invariant 

under gauge transformations: 


With 

Associated current: 




Quantized Hall conductivity 

κ
4π

ϵμνλAμ∂νAλ

Aμ = (A0, − A)

ji = − δ𝒮
δAi

= κ
2π

ϵij∂0Aj = κ
2π

ϵijEj

σxy = κ
2π

e2

ℏ = κ
e2

h

Electrodynamics of an insulator 
Terms invariant under gauge transformations 

:  ,  

Standard Maxwell Lagrangian (isotropic):  




Action 








Aμ → Aμ + ∂μχ(r) Bj χijBj EipijEj

ℒ0 = ϵ0
2 E2 − 1

2μ0
B2 − ρϕ + j . A

𝒮 = ∫ d2rdt ℒ
δ𝒮
δϕ

= 0 = − ρ + ϵ0 ∇ . E
δ𝒮
δA = 0 = j + ϵ0

·E − 1
μ0

∇ × B
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2D topological insulators 

Edge states versus bulk: the Quantum Hall Effect example

Modified electrodynamics and quantized Hall response in 
2D

3D topological semimetals 

Recap of topological properties: anomalous Hall effect

Modified electrodynamics 

Non-reciprocity of electrodynamics: consequences on 
optical and thermal properties


3D topological insulators 

Surface properties

Modified electrodynamics in 3D: magneto-electric effects

(A choice of some) consequences
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Half quantized Hall effect at the surface of a topological insulator

Dirac electron at the surface: 

Bloch Hamiltonian (  m/s): 




Energies: 


vF ≃ 5 105

Hsurface = ℏvF (kyσx − kxσy) = ℏvF(k × ez) . σ

Esurface = ± (ℏvFkx)2 + (ℏvFky)2 = ℏvF |k |

E

ky

kx

mz

Magnetic impurities (e.g.  Cr in (Bi,Sb)2Te3): 

 


Opens a gap: 


At low E,  with 


Himp = J∑
imp

Si . σ = m . σ

Esurface = ± (ℏvFkx + my)2 + (ℏvFky − mx)2 + m2
z

Heff = hxσx + hyσy + hzσz h(kx, ky) = (ℏvFky, − ℏvFkx, mz)



Half quantized Hall effect at the surface of a topological insulator
E

ky

kx

Magnetic impurities (e.g.  Cr in (Bi,Sb)2Te3): 

 


Opens a gap: 


At low E,  with 


Himp = J∑
imp

Si . σ = m . σ

Esurface = ± (ℏvFkx + my)2 + (ℏvFky − mx)2 + m2
z

Heff = hxσx + hyσy + hzσz h(kx, ky) = (ℏvFky, − ℏvFkx, mz)

mz

Hall conductivity: 

σxy = − e2

h
1

4π ∫ dkxdky h . (∂kx
h × ∂ky

h)
Adolfo’s lectures


= −
sgn(mz)

2
e2

h

mz > 0

h(0,0)

h(0,ky ≫ mz) h(0, − ky ≪ − mz)

h(−kx ≪ − mz,0)

h(kx ≫ mz,0)



Half quantized Hall effect at the surface of a topological insulator

Observed in Cr-doped (Bi,Sb)2Te3

Chang et al., Science (2013) 
A. Sekine, K. Nomura, J. Appl. Phys. (2021)

Hall conductivity: 

σxy = − e2

h
1

4π ∫ dkxdky h . (∂kx
h × ∂ky

h) 
= −
sgn(mz)

2
e2

h



Phenomenological Magneto-electric effects in topological insulators

̂n
Ampère’s law: |M | = c−1 | jH | ⇒ M = sgn(m) e2

2hc
E

An electric field creates a magnetization

Magnetically doped TI:  at the surface, massive Dirac 
fermions


Apply :  E jH = − 1
2 sgn(m) e2

h
̂n × E



Phenomenological Magneto-electric effects in topological insulators

̂n
Ampère’s law: |M | = c−1 | jH | ⇒ M = sgn(m) e2

2hc
E

An electric field creates a magnetization

Apply , induce  with  B Eind ∇ × Eind = − ∂tB

 generates a surface anomalous Hall effect: 




Using  we get 

Eind

jH = 1
2 sgn(m) e2

h
∂tB

jH = ∂tP P = sgn(m) e2

2hc
B

A magnetic field creates a polarization

Magnetically doped TI:  at the surface, massive Dirac 
fermions


Apply :  E jH = − 1
2 sgn(m) e2

h
̂n × E



Phenomenological

Axion electrodynamics 

Modified electrodynamics ( )  




Magnetization:  




Electric polarization: , 

,

θ = π

F = − e2

4π2ℏc ∫ d3r θ E . B

M = − ∂F/∂B

M = e2

4π2ℏc
θ E

P = − ∂F/∂E

P = e2

4π2ℏc
θ B

Magneto-electric effects in topological insulators

Ampère’s law: |M | = c−1 | jH | ⇒ M = sgn(m) e2

2hc
E

An electric field creates a magnetization

Apply , induce  with  B Eind ∇ × Eind = − ∂tB

 generates a surface anomalous Hall effect: 




Using  we get 

Eind

jH = 1
2 sgn(m) e2

h
∂tB

jH = ∂tP P = sgn(m) e2

2hc
B

A magnetic field creates a polarization

Magnetically doped TI:  at the surface, massive Dirac 
fermions


Apply :  E jH = − 1
2 sgn(m) e2

h
̂n × E



Field theory action: 





With  and 


,   

Topological term: pure surface term (  constant)




Magneto-electric effect in the bulk  surface 
anomalous response


𝒮θ = + e2

4π2ℏc ∫r,t
θ E . B

= e2

32π2ℏc
θ ϵμνρλFμνFρλ

Fμν = ∂μAν − ∂νAμ Aμ = (A0, − A)
E = − ∇A0 − ∂tA B = ∇ × A

θ

𝒮 = e2

8π2ℏc
θ ∫r,t

ϵμνρλ∂μ(Aν∂ρAλ)

↔

Magneto-electric effects in topological insulators

Axion electrodynamics 

Modified electrodynamics ( )  




Magnetization:  




Electric polarization: , 

,

θ = π

F = − e2

4π2ℏc ∫ d3r θ E . B

M = − ∂F/∂B

M = e2

4π2ℏc
θ E

P = − ∂F/∂E

P = e2

4π2ℏc
θ B



Time Reversal Symmetry 

Time Reversal: , 

Time Reversal symmetry: 


Topological Insulator: 

Standard Insulator: 


In magnetic insulators (no Time Reversal 
symmetry):  arbitrary, and depend on 


E → E B → − B
θ = − θ (mod 2π)
θ = π

θ = 0

θ r, t

Inversion Symmetry 

Inversion: , 

Inversion symmetry: 


Topological Insulator: 

Standard Insulator: 


E → − E B → + B
θ = − θ (mod 2π)

θ = π
θ = 0

Magneto-electric effects in topological insulators

Modified (Axion) electrodynamics:  𝒮θ = e2

4π2ℏc ∫t,r
θ E . B



Axion electrodynamics 
Modified electrodynamics:  




Electric polarization: , 

,


Magnetization:  

𝒮θ = e2

4π2ℏc ∫t,r
θ E . B

P = − ∂F/∂E

P = e2

4π2ℏc
θ B

M = − ∂F/∂B

M = e2

4π2ℏc
θ E

Linear magneto electric coupling 




Magneto-electric (antiferromagnetic) materials 
(Cr2O3): x


α = ∂Mi

∂Ei
= ∂Pi

∂Bi

= e2

4π2ℏc
(θ = π) 1

μ2
0c

≃ 24.3 ps/m

α ≃ 0.7 ps/m

Magneto-electric effects in topological insulators



Topological field-effect transistors 
Surface states + bulk states -> reduce 
the thickness

3.5-nm-thick Bi2Se3 FET

Low energy consumption but slow

Topological electronics ? M. Gilbert, Comm. Phys. (2021)
Zhu, H. et al.  Sci. Rep.(2013)



Topological magneto-electric effect inductors 
high-performance, small-footprint, on-chip inductors

Hall effects current around the ferromagnetic islands:  
concentrate magnetic flux,  high inductance

Topological electronics ? M. Gilbert, Comm. Phys. (2021)

Philip, T. M. & Gilbert, M. Sci. Rep. (2017) 
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Modified electrodynamics 

Non-reciprocity of electrodynamics: consequences on 
optical and thermal properties


3D topological insulators 

Surface properties

Modified electrodynamics in 3D: magneto-electric effects

(A choice of some) consequences



Weyl, Dirac, and band crossings

Dirac point: Linear Crossing between Four Bands in D=3

locally Bloch Hamiltonian = massless Dirac Hamiltonian

H(k = K+ q) =

✓
HWeyl(� = +1,q) 0

0 HWeyl(� = �1,q)

◆

… Old subject revisited recently
W. C. Herring, Accidental Degeneracy in the Energy Bands of Crystals (1937)

Weyl point: Linear Crossing between Two Bands in D=3

locally Bloch Hamiltonian = Weyl Hamiltonian 

 with a chirality 


come by pair of opposite chirality 

H(K + q) = χℏvF (qxσx + qyσy + qzσz) χ = ± 1



Topological Properties of a Weyl point

Berry Curvature on 
Focus on states  below the crossing


Chern number around the Weyl point:  


Weyl point = Berry monopole

ψ−(k)

n−(K) = 1
2π ∮𝒮

F−(k) = χ

ψ−(k)

kx

ky

kz

𝒮

Weyl point: Linear Crossing between Two Bands in D=3

locally Bloch Hamiltonian = Weyl Hamiltonian 

 with a chirality 


come by pair of opposite chirality 

H(K + q) = χℏvF (qxσx + qyσy + qzσz) χ = ± 1



Topological Properties of a Weyl point

Berry Curvature on 
Focus on states  below the crossing


Chern number around the Weyl point:  


Weyl point = Berry monopole (analog of Dirac monopole)





Weyl points come by pair of opposite chirality 

ψ−(k)

n−(K) = 1
2π ∮𝒮

F−(k) = χ

∮∂BZ
F−(k) = 0

n− = ± 1

ψ−(k)

kx

ky

kz

𝒮

∂BZ

+1-1

Weyl point: Linear Crossing between Two Bands in D=3

locally Bloch Hamiltonian = Weyl Hamiltonian 

 with a chirality 


come by pair of opposite chirality 

H(K + q) = χℏvF (qxσx + qyσy + qzσz) χ = ± 1



Topological Properties of a Weyl point

Chern number around the Weyl point:  n−(K) = 1
2π ∮𝒮

F−(k) = χ

ψ−(k)

kx

ky

kz
+1Time Reversal Symmetry : 


Parity: 

Weyl point: break either P or T

P breaking Weyl semimetal: at least 4 Weyl points

T breaking Weyl semimetal: at least 2 Weyl points

n−(K) = + n−(−K)
n−(K) = − n−(−K) +K

Weyl point: Linear Crossing between Two Bands in D=3

locally Bloch Hamiltonian = Weyl Hamiltonian 

 with a chirality 


come by pair of opposite chirality 

H(K + q) = χℏvF (qxσx + qyσy + qzσz) χ = ± 1

−K
T Dirac point

-1P



Fermi Arcs and Hall effect of Weyl Semi-Metals 
[Wan et al, (2011), Hosur et al, 2013] 

Brillouin Zone (Bulk)

kx
kz

ky
+1-1

2b

2 Weyl points: Linear Crossing between 
Two Bands in D=3


locally Bloch Hamiltonian = Weyl 
Hamiltonian 

 

with a chirality 


come by pair of opposite chirality 

H(K + q) = χℏvF (qxσx + qyσy + qzσz)
χ = ± 1



Fermi Arcs and Hall effect of Weyl Semi-Metals 
[Wan et al, (2011), Hosur et al, 2013] 

Brillouin Zone (Bulk)

+1-1

𝒮1𝒮2

2 Weyl points: Linear Crossing between 
Two Bands in D=3


locally Bloch Hamiltonian = Weyl 
Hamiltonian 

 

with a chirality 


come by pair of opposite chirality 

H(K + q) = χℏvF (qxσx + qyσy + qzσz)
χ = ± 1

Chern number around the Weyl 
points: 

 n−(1/2) = 1
2π ∮𝒮

F−(k) = ± 1

kx
kz

ky



Fermi Arcs and Hall effect of Weyl Semi-Metals 
[Wan et al, (2011), Hosur et al, 2013] 

Brillouin Zone (Bulk)

+1-1

𝒮1𝒮2

Chern number around the Weyl 
points: 

 n−(1/2) = 1
2π ∮𝒮

F−(k) = ± 1

kx
kz

ky

Consider 2D Bloch Hamiltonian 
  at fixed  : 2 bands 

with a gap

H2D(kx, ky, kz ) kz

𝒞−( ) = 1
2π ∮kx,ky

F−(k) ∈ ℤkz

 H2D(kx, ky, kz )
gapped ⇒ Chern number 𝒞−(kz)



Fermi Arcs and Hall effect of Weyl Semi-Metals 
[Wan et al, (2011), Hosur et al, 2013] 

Brillouin Zone (Bulk)

+1-1

𝒮1𝒮2

Chern number around the Weyl 
points: 

 n−(1/2) = 1
2π ∮𝒮

F−(k) = ± 1

kx
kz

ky

Consider 2D Bloch Hamiltonian 
  at fixed  : 2 bands 

with a gap

H2D(kx, ky, kz ) kz

𝒞−( ) = 1
2π ∮kx,ky

F−(k) ∈ ℤkz

𝒞−(kz) 𝒞−(k′ z)

Difference 𝒞−(k′ z) − 𝒞−(k′ z) = n−(2)



Fermi Arcs and Hall effect of Weyl Semi-Metals 
[Wan et al, (2011), Hosur et al, 2013] 

Brillouin Zone (Bulk)

-1

𝒮2

Chern number around the Weyl 
points: 

 n−(1/2) = 1
2π ∮𝒮

F−(k) = ± 1

kx
kz

ky

Consider 2D Bloch Hamiltonian 
  at fixed  : 2 bands 

with a gap

H2D(kx, ky, kz ) kz

𝒞−( ) = 1
2π ∮kx,ky

F−(k) ∈ ℤkz

𝒞− = 0 𝒞′ − = − 1

Difference 





𝒞−(k′ z) − 𝒞−(k′ z) = n−(2)
𝒞′ − − 𝒞− = − 1
𝒞− − 𝒞′ − = 1

+1

𝒮1

𝒞− = 0



Fermi Arcs and Hall effect of Weyl Semi-Metals 
[Wan et al, (2011), Hosur et al, 2013] 

Brillouin Zone (Bulk)

-1

𝒮2

kx
kz

ky

𝒞− = 0 𝒞′ − = − 1

+1

𝒮1

𝒞− = 0 Hall effect ⊥ b

σxy = − (#kz ∈ [K, K′ ]) e2

h

= − 2b
2π/L

e2

h



Fermi Arcs and Hall effect of Weyl Semi-Metals 
[Wan et al, (2011), Hosur et al, 2013] 

Brillouin Zone (Bulk)

-1

𝒮2

kx
kz

ky
+1

𝒮1

Hall effect 




Fermi arcs of surface states

⊥ b

σxy = − (#kz ∈ [K, K′ ]) e2

h

= − 2b
2π/L

e2

h



Magneto-electric effects in Weyl semi-metals 

Axion electrodynamics 

Modified Lagrangian:  

with  the fine structure constant

ℒθ = 2α
ϵ0
μ0

θ
2π

E . B

α = e2

4πϵ0ℏc

Electrodynamics of an insulator 
Standard Maxwell Lagrangian (isotropic):  




Action 





ℒ0 = ϵ0
2 E2 − 1

2μ0
B2 − ρϕ + j . A

𝒮 = ∫ d2rdt ℒ
δ𝒮
δϕ

= 0 = − ρ + ϵ0 ∇ . E
δ𝒮
δA = 0 = j + ϵ0

·E − 1
μ0

∇ × B

Time Reversal Symmetry 

Time Reversal symmetry: 

Topological Insulator: 

Standard Insulator: 


In magnetic materials (no Time Reversal 
symmetry):  arbitrary, and depends on 


θ = − θ (mod 2π)
θ = π

θ = 0

θ r, t

kx
ky

kz

+1-1

2b

Magnetic Weyl semimetal: 

For a single Weyl pair: 
θ(r) = 2b . r



Magneto-electric effects in Weyl semi-metals 

Axion electrodynamics 

Modified Lagrangian:  

with  the fine structure constant


  


  


If  is inhomogeneous: Maxwell eq. Modified !

ℒθ = 2α
ϵ0
μ0

θ
2π

E . B

α = e2

4πϵ0ℏc

∇ . E = ρ
ϵ0

−2cα∇( θ
2π ) . B

∇ × B = μ0J + 1
c2 ∂tE + 2α

c
∇( θ

2π ) × E

θ

Electrodynamics of an insulator 
Standard Maxwell Lagrangian (isotropic):  




Action 








ℒ0 = ϵ0
2 E2 − 1

2μ0
B2 − ρϕ + j . A

𝒮 = ∫ d2rdt ℒ
δ𝒮
δϕ

= 0 = − ρ + ϵ0 ∇ . E
δ𝒮
δA = 0 = j + ϵ0

·E − 1
μ0

∇ × B



Magneto-electric effects in Weyl semi-metals 

Axion electrodynamics 

Modified Lagrangian:  

with  the fine structure constant


  


  

ℒθ = 2α
ϵ0
μ0

θ
2π

E . B

α = e2

4πϵ0ℏc

∇ . E = ρ
ϵ0

−2cα ( b
π ) . B

∇ × B = μ0J + 1
c2 ∂tE + 2α

c ( b
π ) × E

Electrodynamics of an insulator 
Standard Maxwell Lagrangian (isotropic):  




Action 








ℒ0 = ϵ0
2 E2 − 1

2μ0
B2 − ρϕ + j . A

𝒮 = ∫ d2rdt ℒ
δ𝒮
δϕ

= 0 = − ρ + ϵ0 ∇ . E
δ𝒮
δA = 0 = j + ϵ0

·E − 1
μ0

∇ × B

kx
ky

kz

+1-1

2b Magnetic Weyl semimetal: 

For a single Weyl pair: 
θ(r) = 2b . r



Nonreciprocity C. Caloz et al, Phys. Rev. Applied (2018)

A nonreciprocal system is defined as a system 
that exhibits different transmitted fields when 
its source and detector are exchanged 



Sound nonreciprocity [R. Fleury et al, Science (2014)

Standard Zeeman effect Acoustic Zeeman effect

Acoustic circulator: 3-port 
implementation of acoustic 
Zeeman device



Mechanical nonreciprocity [C. Coulais et al, Nature (2017)

2D topological mechanical metamaterial. 

For clarity, the image difference between the 
deformed and initial geometries have been 
overlaid on the bottom half of the pictures


Non-reciprocity



Electromagnetic nonreciprocity Tianji Liu et al, 
eLight (2022)

Equilibrium 
Vanishing net exchange of energy with 
environment

Black body radiation set by T

Absorption

Emission

Material at 
temperature T



Electromagnetic nonreciprocity Tianji Liu et al, 
eLight (2022)

Equilibrium 
Vanishing net exchange of energy with 
environment

Black body radiation set by T

Kirchoff law (1860): absorptivity  and 
emissivity  are equal, 

~ valid away from equilibrium 

α(ω, k)
ϵ(ω, k) α(ω, k) = ϵ(ω, k)

Absorption

Emission

Material at 
temperature T

α(ω, k)

ϵ(ω, k)



Electromagnetic nonreciprocity Tianji Liu et al, 
eLight (2022)

Equilibrium 
Vanishing net exchange of energy with 
environment

Black body radiation set by T

Kirchoff law (1860): absorptivity  and 
emissivity  are equal, 

~ valid away from equilibrium 

α(ω, k)
ϵ(ω, k) α(ω, k) = ϵ(ω, k)

Absorption

Emission

Material at 
temperature T

α(ω, k)

ϵ(ω, k)

Optical non-reciprocal materials 

Assymetry in 

Increase of solar cell’s efficiency 

Passive radiative cooling under direct sunlight

α(ω, k) ≠ ϵ(ω, k)

Absorption

Emission

Material at 
temperature T

α(ω, k)

ϵ(ω, k)



Electromagnetic nonreciprocity Aaswath P. Raman 
et al, Nature (2014)

Optical non-reciprocal materials 

Assymetry in 

Increase of solar cell’s efficiency 

Passive radiative cooling under direct sunlight

α(ω, k) ≠ ϵ(ω, k)

Absorption

Emission

Material at 
temperature T

α(ω, k)

ϵ(ω, k)



Giant optical non-reciprocity in Weyl materials

Optical non-reciprocal materials are rare 
Typically magneto-optical materials

Manifests itself as a asymmetric dielectric tensor:   


Measure non-reciprocity through 


For magneto-optical materials,  with the cyclotron frequency 


For , , we get  at optical frequencies (weak non-reciprocity)


Magnetic Weyl semimetals 

Potential for  at optical frequencies (giant non-reciprocity)

ϵT ≠ ϵ

γ = |ϵ − ϵT |
|ϵ + ϵT |

γ ≃ ωc

ω
ωc = eB

m*
B ∼ 1 T ωc ∼ 1 THz γ ∼ 10−3 − 10−2

γ ∼ 1

Cheng Guo 
 et al, eLight (2023)



Giant optical non-reciprocity

Dielectric tensor for a magnetic Weyl semimetal with  

From  


b ∥ z

ϵD(ω) = ϵb(ω) + i
ω

σ(ω)

Background permittivity conductivity tensor of Weyl electrons

We get  , typical form of a gyrotropic medium 


   (anomalous quantum Hall effect)

ϵ =
ϵD iϵa 0

−iϵa ϵD 0
0 0 ϵD

ϵa(ω) = 2b
2π

1
ω

e2

h



Giant optical non-reciprocity

Dielectric tensor for a magnetic Weyl semimetal with  

From  


b ∥ z

ϵD(ω) = ϵb(ω) + i
ω

σ(ω)

We get  , typical form of a gyrotropic medium 


   (anomalous quantum Hall effect)

ϵ =
ϵD iϵa 0

−iϵa ϵD 0
0 0 ϵD

ϵa(ω) = 2b
2π

1
ω

e2

h
From Kubo formula:  


  with 

 ,  (cut-off)


Non-reciprocity   over wide frequency range

σD(ω) = e2

h
kF

6 ΩΘ(Ω − 2) + i
π ( 4

Ω − Ω ln 4ϵ2
C

|Ω2 − 4 | )
Ω = ℏ(ω + iτ−1)/EF ϵc = EC /EF

γ ≃ |ϵa/ϵD | ∼ 1

O. V. Kotov and Y. E. Lozovik, PRB (2018)



Non-reciprocal Waves at the surface
r

Plasmon 

Displacement  creates polarization r P = nqr

Electron
Ions

Induces electric field 

Restoring force:  (harmonic oscillator)


Plasma frequency: 


Quantum: plasmon

E = − 4πP
m∂2

t r = qE = − 4πne2r

Ω2
p = 4πne2

m

Surface Plasmon polariton 
Collective electromagnetic and electron-charge 
excitations confined to the surface of a metal or 
semiconductor

Fields of the form E = E0eiqxx+qyye−iωte−κ|z|



Non-reciprocal Waves at the surface J. Hofmann and S. Das Sarma  PRB (2016)

K

Surface Plasmon polariton in semi-metals 
Dirac semimetal (2 overlapping Weyl cones)

E

Brillouin Zone

Plasmon frequency: 

with 

Ω2
p = 4α

3π ( μ
ℏ )

2

α = e2

ℏvFϵ∞

Surface Plasmon polariton 
Collective electromagnetic and electron-charge 
excitations confined to the surface of a metal or 
semiconductor

Fields of the form E = E0eiqxx+qyye−iωte−κ|z|

Ph
ot

on Plasmon

Plasmon-polariton



Non-reciprocal Waves at the surface

Surface Plasmon polariton in semi-metals 
Dirac semimetal (2 overlapping Weyl cones)

K K0

E

Brillouin Zone

2b

Weyl semimetal (distance  between cones): 
non-reciprocal

2b

Eu2Ir2O7 , ϵ∞ = 13

q < 0

q > 0 Dirac ( )b = 0

2b
q

Vacuum

Weyl

Plasmon frequency: 

with 

Ω2
p = 4α

3π ( μ
ℏ )

2

α = e2

ℏvFϵ∞

Surface Plasmon polariton 
Collective electromagnetic and electron-charge 
excitations confined to the surface of a metal or 
semiconductor

Fields of the form E = E0eiqxx+qyye−iωte−κ|z|

J. Hofmann and S. Das Sarma  PRB (2016)



Non-reciprocal Waves at the surface J. Hofmann and S. Das Sarma  
PRB (2016)

Surface Plasmon polariton in semi-metals 
Dirac semimetal (2 overlapping Weyl cones)

K0

Weyl semimetal (distance  between cones): 
non-reciprocal / reciprocal

2b

Eu2Ir2O7 , ϵ∞ = 13

q < 0

q > 0 Dirac ( )b = 0

2b
q

Vacuum

Weyl

2b
q

Vacuum

Weyl

Bulk plasmon

Bulk plasmon



Recap

2D topological insulators 

Edge states versus bulk: the Quantum Hall Effect example

Modified electrodynamics and quantized Hall response in 
2D


3D topological insulators 

Surface properties

Modified electrodynamics in 3D: magneto-electric effects

(A choice of some) consequences


3D topological semimetals 

Recap of topological properties: anomalous Hall effect

Modified electrodynamics 

Non-reciprocity of optical and thermal properties


K K0

2b



Topological Insulators ↔ Thermoelectricity ?

Topological Insulators : band 
inversion by spin-orbit


1. large spin-orbit : materials with 
heavy atoms


2. gap comparable with spin-orbit 
: small gap semiconductors

Thermoelectric materials : 


1. low phonon thermal conductivity : materials 
with heavy atoms


2. large electronic power factor σS2 : small gap 
semiconductors

same materials, 
different reasons ? …

Chemical potential in the gap

Heavily doped

band 2

band 1

standard insulator

E

Surface States

topological insulator

k

μ

E

μ

band 2

band 1

different range of 
parameters

k



Spin-Orbit Coupling
 «relativistic correction»


favored by  heavy atoms (high Z) :


lifts  spin degeneracy of bands 
preserves time reversal symmetry 

�i~ �µ(@µ + ieAµ) = 0

✓
p2

2m
+ eV

�
+

e~
4m2c2

�.(rV ⇥ p)

◆
 = E 

V (r) =
Ze

4⇡✏r
rB ⇠ 1/Z3 rV ⇠ Z

�SO ⇠ Z4

Spin-Orbit

first relativistic correction to Schrödinger



Topological Insulators 
and Thermoelectricity



Xu et al. PRL, 112 (2014)

‣ 2D topological insulator (for simplicity) 

‣ bulk / edge states contribution to transport 

‣ two scattering times for edges states τ1 and τ2



Xu et al. PRL, 112 (2014)

size dependance of figure of merit 
(bulk / edge contribution) 

enhancement of Seebeck coefficient 

usually increased by variations of density 
(nb of modes), 
here : variation of scattering time / mean 
free path λ(E)



Xu et al. PRL, 112 (2014)

size dependance of figure of merit (bulk 
/ edge contribution) 
enhancement of Seebeck coefficient


