some (Functional) properties of topological matter

David Carpentier (CNRS and Ecole Normale Supérieure de Lyon)

Everything you always wanted to know about Topology* (*but were afraid to ask)

Functional properties

Hi buddy. Can you tell me what's a functional property of a material?

A functional property of a material refers to a specific characteristic that defines its performance in particular applications. These properties are often related to how a material responds under certain conditions or how it interacts with its environment. They are critical in determining the suitability of a material for a specific purpose.

Electrical Properties: Characteristics like conductivity, resistivity, and dielectric constant that determine how a material behaves in an electric field.

Thermal Properties: Characteristics such as thermal conductivity, thermal expansion, and heat capacity that determine how a material conducts, absorbs, and retains heat.

Optical Properties: Characteristics such as refractive index, transparency, and reflectivity that determine how a material interacts with light.

Magnetic Properties: Characteristics such as magnetic permeability and coercivity that define how a material responds to a magnetic field.

Scope and Outline

Functional properties							
٥	I asked ChatGPT						
۵	I decided to focus on						
	٩	Topological insulators and semi-metals					
	1	topological superconductors					

2D topological insulators

- Edge states versus bulk: the Quantum Hall Effect example
- Modified electrodynamics and quantized Hall response in 2D

3D topological insulators

- Surface properties
- Modified electrodynamics in 3D: magneto-electric effects
- (A choice of some) consequences

3D topological semimetals

- Recap of topological properties: anomalous Hall effect
- Modified electrodynamics
- Non-reciprocity of optical and thermal properties

Topological Boundary States

- Quantum Hall Insulator
 - Two dimensions
 - breaks Time-Reversal Symmetry
 - Chern index

Chiral edge states

- Quantum Spin Hall Insulator
 - Two dimensions
 - Time-Reversal Symmetry + spins 1/2
 - Kane-Mele Z₂ index

- Helical edge states : Kramers pair

- 3D Topological Insulators
 - Three dimensions
 - Time-Reversal Symmetry + spins 1/2
 - Kane-Mele Z₂ index
 - (odd number of) Dirac cone

Robustness of edge States

- Quantum Hall Insulator
 - Two dimensions
 - breaks Time-Reversal Symmetry
 - Chern index

Chiral edge states

Robustness of edge states :

no backscattering because chiral modes

Robustness: chirality of the modes (T-breaking)

Robustness of edge States

- Quantum Hall Insulator
 - Two dimensions
 - breaks Time-Reversal Symmetry
 - Chern index

Chiral edge states

Robustness of edge states :

no backscattering because chiral modes

- ▶ Top. Index $n \in \mathbb{Z}$
- all modes are ballistic

Robustness: chirality of the modes (T-breaking)

Topological Boundary States

- Quantum Spin Hall Insulator
 - Two dimensions
 - Time-Reversal Symmetry + spins 1/2
 - Kane-Mele Z₂ index

➡ Helical edge states : Kramers pair

«Protected Edge States» : robust properties, remain ballistic

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)

2 branches, but ≠ spins : no backscattering (protected by T reversal symmetry) ⇒ topological robustness

Topological Boundary States

- Quantum Spin Hall Insulator
 - Two dimensions
 - Time-Reversal Symmetry + spins 1/2
 - Kane-Mele Z₂ index

Helical edge states : Kramers pair

Z₂ Topological index for QSHE : yes / no

C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)

2DEG (Heterojunction GaAs/AlGaAs)

Transport and edge states
and auer-Buttiker formalism
• 2-terminal geometry in D=1
•
$$\binom{j_1^L}{j_2^R} = \binom{R}{T} \binom{j_1^R}{j_2^L}$$
 with $R + T = 1$
• Total current is $I = j_2^R - j_2^L = Tj_1^R + (R - 1)j_2^L = T(j_1^R - j_2^L)$
• Incoming
• Incoming current (from lead): $j_1^R (= (-e)n_1(\mu_1)v_1) = (-e) \left[\frac{dk}{(2\pi)} \frac{1}{h} \frac{\partial E_k}{\partial k} f_{\mu_1}(E_k) = \frac{(-e)}{h} \int dE f_{\mu_1}(E_k) - f_{\mu_2}(E) \right] = T\frac{(-e)}{h} (\mu_1 - \mu_2) = T\frac{e^2}{h} (V_1 - V_2)$
• Conductance: $G = \frac{I}{\Delta V} = T\frac{e^2}{h} = T G_0$, $G_0 = e^2/h = 3.87 \ 10^{-5} S$
• We write the current $R = h/c^2 = 25 \ 812 \ 807 \ 0$

Von Klitzing constant $R_K = h/e^2 = 25 812.807 \Omega$

Transport and edge states

Landauer-Buttiker formalism

• 2-terminal geometry in D=1
•
$$\begin{pmatrix} j_1^L \\ j_2^R \end{pmatrix} = \begin{pmatrix} R & T \\ T & R \end{pmatrix} \begin{pmatrix} j_1^R \\ j_2^L \end{pmatrix}$$
 with $R + T = 1$
• Conductance: $G = \frac{I}{\Delta V} = T \frac{e^2}{h} = T G_0$,

Chern insulator (Quantum Hall effect)

- Effective transmission through the edges
- When $\mu \in \text{gap}$, T = n (number of edge) states)

$$G_0 = e^2/h = 3.87 \ 10^{-5} \ S$$

Von Klitzing constant $R_K = h/e^2 = 25 \ 812.807 \ \Omega$

Transport and edge states

Landauer-Buttiker formalism

• 2 terminal:
$$I = T \frac{(-e)}{h} (\mu_1 - \mu_2) = T \frac{e^2}{h} (V_1 - \mu_2)$$

• Multi-contacts: $I_{\alpha} = \frac{-e}{h} \sum_{\beta \neq \alpha} T_{\alpha\beta} \left(\mu_{\beta} - \mu_{\alpha} \right)$

Quantum Hall effect

n chiral edges modes (linear response):

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{pmatrix} = \frac{(-e)n}{h} \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\begin{array}{c|c} 0 & \mu_1 \\ 0 & \mu_2 \\ 0 & \mu_3 \\ 0 & \mu_4 \\ 1 & \mu_5 \\ -1 & \mu_6 \end{array}$

Quantum Hall effect

n chiral edges modes (linear response):

 $= \frac{(-e)n}{h} \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \\ \mu_5 \\ \mu_6 \end{pmatrix}$ I_2 I_3 • Current conservation: $\sum I_{\alpha} = 0$ and definition $\begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mu_1 & \mu_2 & \mu_2 \\ \mu_2 & \mu_2 & \mu_2 \end{pmatrix}$ $\frac{h}{h} \begin{bmatrix} 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \mu_3 - \mu_4 - \mu_5 - \mu_5 \end{bmatrix}$

n of
$$\mu = 0$$
:

$$\begin{pmatrix} \mu_6 \\ \mu_6 \\ \mu_6 \\ \mu_6 \\ \mu_6 \\ \mu_6 \\ \mu_6 \end{pmatrix} \Rightarrow \begin{pmatrix} \mu_1 - \mu_6 \\ \mu_2 - \mu_6 \\ \mu_3 - \mu_6 \\ \mu_4 - \mu_6 \\ \mu_5 - \mu_6 \end{pmatrix} = \frac{h}{n(-e)} \begin{pmatrix} -1 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Transport and edge states

Qua

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} n \text{ chiral edges modes:} \\ \begin{pmatrix} \mu_{1} - \mu_{6} \\ \mu_{2} - \mu_{6} \\ \mu_{3} - \mu_{6} \\ \mu_{4} - \mu_{6} \\ \mu_{5} - \mu_{6} \\ \end{pmatrix} = \frac{h}{n(-e)} \begin{pmatrix} -1 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5} \\ \end{pmatrix} \\ \begin{array}{l} \end{array}$$
Currents: $I_{2} = I_{3} = I_{5} = I_{6} = 0 \text{ and } I_{4} = -I_{1} = I$
Currents: $I_{2} = I_{3} = I_{5} = I_{6} = 0 \text{ and } I_{4} = -I_{1} = I$
 $I_{1} - \mu_{6} \\ I_{2} - \mu_{6} \\ I_{3} - \mu_{6} \\ I_{4} - \mu_{6} \\ I_{5} - \mu_{6} \\ \end{array}$
 $= \frac{h}{n(-e)} \begin{pmatrix} -1 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ \end{pmatrix} = -\frac{hI}{ne} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ \end{pmatrix}$
Only 2 possible conductances, $G_{\text{Hall}} = \frac{I}{V_{6} - V_{2}} = G_{14,26} = G_{14,25} = n\frac{e^{2}}{h}$ and $G_{14,23} = G_{14,56}$

μ μ μ μ μ

 \Rightarrow

Transport and edge states

Quantum Hall effect

* *n* chiral edges modes: \Rightarrow Only 2 possible conductances, $G_{\text{Hall}} = \frac{I}{V_6 - V_2} = G_{14,26} = G_{14,25} = n \frac{e^2}{h}$ and $G_{14,23} = G_{14,56} = 0$

• Currents: $I_2 = I_4 = I_5 = I_6 = 0$ and $I_3 = -I_1 = I_2$ $\begin{pmatrix} \mu_1 - \mu_6 \\ \mu_2 - \mu_6 \\ \mu_3 - \mu_6 \\ \mu_4 - \mu_6 \\ \mu_5 - \mu_6 \end{pmatrix} = \frac{h}{n(-e)} \begin{pmatrix} -1 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$

Landauer-Buttiker formalism

• Multi-contacts:
$$I_{\alpha} = \frac{-e}{h} \sum_{\beta \neq \alpha} T_{\alpha\beta} \left(\mu_{\beta} - \mu_{\alpha} \right)$$

Quantum Spin Hall effect

2 counter propagating chiral edges modes:

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{pmatrix} = \frac{(-e)}{h} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{pmatrix}$$

Quantum Spin Hall effect

2 counter propagating chiral edges modes:

	$ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} = - (-1)^{-1}$	-e) h	2 -1 0 0 -1	-1 2 -1 0 0 0	$ \begin{array}{c} 0 \\ -1 \\ 2 \\ -1 \\ 0 \\ 0 \end{array} $	0 0 1 2 -1 0	$ \begin{array}{c} 0 \\ 0 \\ -1 \\ 2 \\ -1 \end{array} $	
\bullet Cu I_1 I_2 I_3 = I_4 I_5	$= \frac{(-e)}{h}$	onserv $\begin{pmatrix} 2\\ -1\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}$	vation -1 2 -1 0 0	$\sum_{\alpha\\ 0\\ -1\\ 2\\ -1\\ 0$	$I_{\alpha} = 0$ 0 1 2 -1	0 and 0 0 0 -1 2	$ \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \\ \mu_5 \end{pmatrix} $	<pre>> itic 2</pre>

$$\begin{array}{c}
1 \\
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4} \\
\mu_{4} \\
\mu_{5} \\
\mu_{6}
\end{array}$$

on of $\mu = 0$:

$$\begin{array}{c} \mu_{6} \\ \mu_{6} \end{array} \right) \Rightarrow \begin{pmatrix} \mu_{1} - \mu_{6} \\ \mu_{2} - \mu_{6} \\ \mu_{3} - \mu_{6} \\ \mu_{4} - \mu_{6} \\ \mu_{5} - \mu_{6} \end{pmatrix} = \frac{-h}{6e} \begin{pmatrix} 5 & 4 & 3 & 2 & 1 \\ 4 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5} \end{pmatrix}$$

$$\begin{pmatrix} \mu_{1} - \mu_{6} \\ \mu_{2} - \mu_{6} \\ \mu_{3} - \mu_{6} \\ \mu_{5} - \mu_{6} \end{pmatrix} = \frac{-h}{6e} \begin{pmatrix} 5 & 4 & 3 & 2 & 1 \\ 4 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5} \end{pmatrix}$$

$$\begin{pmatrix} \mu_{1} - \mu_{6} \\ \mu_{2} - \mu_{6} \\ \mu_{3} - \mu_{6} \\ \mu_{4} - \mu_{6} \\ \mu_{5} - \mu_{6} \end{pmatrix} = \frac{-h}{6e} \begin{pmatrix} 5 & 4 & 3 & 2 & 1 \\ 4 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} -I \\ 0 \\ 0 \\ I \\ 0 \end{pmatrix} = \begin{pmatrix} -I \\ 0 \\ 0 \\ I \\ 0 \end{pmatrix}$$

$$\mu_{4} - \mu_{1} = \mu_{4} - \mu_{6} + \mu_{6} - \mu_{1} = \begin{pmatrix} 1 - (-\frac{1}{2}) \end{pmatrix}$$

$$\Rightarrow R_{14,14} = \frac{V_{4} - V_{1}}{I} = \frac{3}{2} \frac{h}{e^{2}}$$

$$\begin{pmatrix} \mu_{1} - \mu_{6} \\ \mu_{2} - \mu_{6} \\ \mu_{3} - \mu_{6} \\ \mu_{5} - \mu_{6} \end{pmatrix} = \frac{-h}{6e} \begin{pmatrix} 5 & 4 & 3 & 2 & 1 \\ 4 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5} \end{pmatrix}$$

$$\begin{pmatrix} \mu_{1} - \mu_{6} \\ \mu_{2} - \mu_{6} \\ \mu_{3} - \mu_{6} \\ \mu_{4} - \mu_{6} \\ \mu_{5} - \mu_{6} \end{pmatrix} = \frac{-h}{6e} \begin{pmatrix} 5 & 4 & 3 & 2 & 1 \\ 4 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} -I \\ 0 \\ 0 \\ I \\ 0 \end{pmatrix} = \begin{pmatrix} -I \\ 0 \\ 0 \\ I \\ 0 \end{pmatrix}$$

$$\mu_{3} - \mu_{2} = \mu_{3} - \mu_{6} + \mu_{6} - \mu_{2} = \left(\frac{1}{2} - 0\right) \frac{-h}{e}$$

$$\Rightarrow R_{14,23} = \frac{I}{V_{4} - V_{1}} = \frac{1}{2} \frac{h}{e^{2}}$$

Kubo formula (T=0)

$$\sigma_{xy} = \frac{i\hbar}{L_x L_y} \sum_{m \neq 0} \frac{1}{(E_m - E_0)^2} \left[\langle \Psi_0 | \hat{J}_x | \Psi_m \rangle \langle \Psi_m | \hat{J}_y \rangle \right]$$

Current
$$\hat{J}_{\alpha}(\mathbf{r}) = \frac{\delta H}{\delta A_{\alpha}(\mathbf{r})}$$

Aharonov-Bohm flux

→ Dephasing by $2\pi \frac{\Phi_1}{\Delta_1}$ around flux φ_0 • Vector potential $A_r = \Phi_1/L$

Kubo formula (T=0)

$$\sigma_{xy} = \frac{i\hbar}{L_x L_y} \sum_{m \neq 0} \frac{1}{(E_m - E_0)^2} \left[\langle \Psi_0 | \hat{J}_x | \Psi_m \rangle \langle \Psi_m | \hat{J}_y | \Psi_0 \rangle - \langle \Psi_0 | \hat{J}_y | \Psi_m \rangle \langle \Psi_m | \hat{J}_x | \Psi_0 \rangle \right]$$

Q. Niu, D. J. Thouless, Y.-S. Wu (1985) J. E. Avron, R. Seiler, and L. G. Yaffe (1987)

J. Luneau, C. Dutreix, Q. Ficheux, P. Delplace, B. Douçot, B. Huard, D. Carpentier, Phys. Rev. Research 4, 013169 (2022)

Aharonov-Bohm flux: $A_{\alpha} = \Phi_{\alpha}/L_{\alpha}$ (homogeneous)

Kubo formula (T=0)

$$\sigma_{xy} = \frac{i\hbar}{L_x L_y} \sum_{m \neq 0} \frac{1}{(E_m - E_0)^2} \left[\langle \Psi_0 | \hat{J}_x | \Psi_m \rangle \langle \Psi_m | \hat{J}_y | \Psi_0 \rangle - \langle \Psi_0 | \hat{J}_y | \Psi_m \rangle \langle \Psi_m | \hat{J}_x | \Psi_0 \rangle \right]$$

Current
$$\hat{J}_{\alpha}(\mathbf{r}) = \frac{\delta H}{\delta A_{\alpha}(\mathbf{r})} = L_{\alpha} \frac{\partial H}{\partial \Phi_{\alpha}}$$
 Aharon

 $\Psi(x_i + L_x, y_i) = e^{i2\pi - \frac{1}{2}}$

 $\Rightarrow 2\pi$ periodicity of Ψ

nov-Bohm flux: $A_{\alpha} = \Phi_{\alpha}/L_{\alpha}$ (homogeneous)

Many-body state Ψ (generalized boundary condition)

$$\frac{\Phi_1}{\phi_0}\Psi(x_i, y_i)$$
; $\Psi(x_i, y_i + L_y) = e^{i2\pi \frac{\Phi_2}{\phi_0}}\Psi(x_i, y_i)$

Kubo formula (T=0)

$$\sigma_{xy} = \frac{i\hbar}{L_x L_y} \sum_{m \neq 0} \frac{1}{(E_m - E_0)^2} \left[\langle \Psi_0 | \hat{J}_x | \Psi_m \rangle \langle \Psi_m | \hat{J}_y | \Psi_0 \rangle - \langle \Psi_0 | \hat{J}_y | \Psi_m \rangle \langle \Psi_m | \hat{J}_x | \Psi_0 \rangle \right]$$

Current
$$\hat{J}_{\alpha}(\mathbf{r}) = \frac{\delta H}{\delta A_{\alpha}(\mathbf{r})} = L_{\alpha} \frac{\partial H}{\partial \Phi_{\alpha}}$$
 Aharono

Should be independent on boundary condition:

$$\sigma_{xy} = \frac{1}{\phi_0^2} \int d^2 \Phi \ \sigma_{xy}(\Phi) = \frac{e^2}{h^2} \frac{h}{2\pi} \int d^2 \Phi \ \mathscr{B}(\Phi) = \frac{e^2}{h} \mathscr{C} \text{ with } \mathscr{C}: \text{ Chern number}$$
$$\Psi(\Phi_1, \Phi_2)$$

ov-Bohm flux: $A_{\alpha} = \Phi_{\alpha}/L_{\alpha}$ (homogeneous)

Electrodynamics of an insulator

Terms invariant under gauge transformations $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \chi(\mathbf{r}): B_{i} \chi_{ii} B_{i}, E_{i} p_{ii} E_{i}$ Standard Maxwell Lagrangian (isotropic): $\mathscr{L}_0 = \frac{\epsilon_0}{2} \mathbf{E}^2 - \frac{1}{2\mu_0} \mathbf{B}^2 - \rho \phi + \mathbf{j} \cdot \mathbf{A}$ • Action $\mathcal{S} = \int d^2 \mathbf{r} dt \, \mathscr{L}$ • $\frac{\delta S}{\delta \phi} = 0 = -\rho + \epsilon_0 \nabla \cdot \mathbf{E}$ • $\frac{\delta S}{\delta A} = 0 = \mathbf{j} + \epsilon_0 \dot{\mathbf{E}} - \frac{1}{\mu_0} \nabla \times \mathbf{B}$

- Topological electrodynamics in d=2:
 - In d=2, extra term (Chern-Simons) invariant under gauge transformations: $\frac{\kappa}{4\pi} \epsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda}$

With
$$A_{\mu} = (A_0, -\mathbf{A})$$

Under a gauge transformation

 $(A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \chi(\mathbf{r}))$: $\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}A_{\lambda} \to \epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}A_{\lambda} + \epsilon^{\mu\nu\lambda}\partial_{\mu}\chi\partial_{\nu}A_{\lambda}$ with a modified action $\delta S = \frac{\kappa}{d^2 \mathbf{r} dt} e^{\mu \nu \lambda} \partial (\nu \partial A_{\lambda})$

$$4\pi \int^{\alpha} Boundary term !$$

Electrodynamics of an insulator

Terms invariant under gauge transformations $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \chi(\mathbf{r}): B_{i} \chi_{ii} B_{i}, E_{i} p_{ii} E_{i}$ Standard Maxwell Lagrangian (isotropic): $\mathscr{L}_{0} = \frac{\epsilon_{0}}{2} \mathbf{E}^{2} - \frac{1}{2\mu_{0}} \mathbf{B}^{2} - \rho \phi + \mathbf{j} \cdot \mathbf{A}$ • Action $\mathscr{S} = \int d^{2} \mathbf{r} dt \,\mathscr{L}$ • $\frac{\delta S}{\delta \phi} = 0 = -\rho + \epsilon_0 \nabla \cdot \mathbf{E}$ • $\frac{\delta S}{\delta A} = 0 = \mathbf{j} + \epsilon_0 \dot{\mathbf{E}} - \frac{1}{\mu_0} \nabla \times \mathbf{B}$

- Topological electrodynamics in d=2:
 - In d=2, extra term (Chern-Simons) invariant under gauge transformations: $\frac{\kappa}{4\pi} e^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda}$

With
$$A_{\mu} = (A_0, -\mathbf{A})$$

Associated current:

$$j_{i} = -\frac{\delta S}{\delta A_{i}} = \frac{\kappa}{2\pi} \epsilon_{ij} \partial_{0} A_{j} = \frac{\kappa}{2\pi} \epsilon_{ij} E_{j}$$

Quantized Hall conductivity

$$\sigma_{xy} = \frac{\kappa}{2\pi} \frac{e^2}{\hbar} = \kappa \frac{e^2}{h}$$

Outline

2D topological insulators

- Edge states versus bulk: the Quantum Hall Effect example
- Modified electrodynamics and quantized Hall response in 2D

3D topological insulators

- Surface properties
- Modified electrodynamics in 3D: magneto-electric effects
- (A choice of some) consequences

3D topological semimetals

- Recap of topological properties: anomalous Hall effect
- Modified electrodynamics
- Non-reciprocity of electrodynamics: consequences on optical and thermal properties

Half quantized Hall effect at the surface of a topological insulator E• Bloch Hamiltonian ($v_F \simeq 5 \ 10^5$ m/s): m_{z} $H_{\text{surface}} = \hbar v_F \left(k_y \sigma_x - k_x \sigma_y \right) = \hbar v_F (\mathbf{k} \times \mathbf{e}_z) \cdot \sigma$ • Energies: $E_{\text{surface}} = \pm \sqrt{(\hbar v_F k_x)^2 + (\hbar v_F k_y)^2} = \hbar v_F |\mathbf{k}|$

Dirac electron at the surface:

Magnetic impurities (e.g. Cr in (Bi,Sb)2Te3):

•
$$H_{imp} = J \sum_{imp} \mathbf{S}_i \cdot \boldsymbol{\sigma} = \mathbf{m} \cdot \boldsymbol{\sigma}$$

• Opens a gap: $E_{\text{surface}} = \pm \sqrt{(\hbar v_F k_x + m_y)}$

• At low E, $H_{\text{eff}} = h_x \sigma_x + h_v \sigma_v + h_z \sigma_z$ with $\mathbf{h}(A_y)$

$$(h_{y})^{2} + (h_{v}k_{y} - m_{x})^{2} + m_{z}^{2}$$

$$(k_x, k_y) = (\hbar v_F k_y, - \hbar v_F k_x, m_z)$$

Half quantized Hall effect at the surface of a topological insulator

Magnetic impurities (e.g. Cr in (Bi,Sb)2Te3):

•
$$H_{imp} = J \sum_{imp} \mathbf{S}_{i} \cdot \boldsymbol{\sigma} = \mathbf{m} \cdot \boldsymbol{\sigma}$$

• Opens a gap: $E_{\text{surface}} = \pm \sqrt{(\hbar v_F k_x + m_y)^2 + (\hbar v_F k_y - m_x)^2 + m_z^2}$

• At low E, $H_{\text{eff}} = h_x \sigma_x + h_y \sigma_y + h_z \sigma_z$ with $\mathbf{h}(k_x, k_y) = (\hbar v_F k_y, - \hbar v_F k_x, m_z)$

Hall conductivity:
Adolf
• $\sigma_{xy} = -\frac{e^2}{h} \frac{1}{4\pi} \int dk_x dk_y \, \mathbf{h} \cdot \left(\partial_{k_x} \mathbf{h} \times \partial_{k_y} \mathbf{h}\right)$ = $-\frac{\text{sgn}(m_z)}{2} \frac{e^2}{h}$

Half quantized Hall effect at the surface of a topological insulator

Hall conductivity:

•
$$\sigma_{xy} = -\frac{e^2}{h} \frac{1}{4\pi} \int dk_x dk_y \mathbf{h} \cdot \left(\partial_{k_x} \mathbf{h} \times \partial_{k_y} \mathbf{h}\right)$$

Observed in Cr-doped (Bi,Sb)₂Te₃

Chang et al., Science (2013) A. Sekine, K. Nomura, J. Appl. Phys. (2021)

$$= -\frac{\operatorname{sgn}(m_z)}{2} \frac{e^2}{h}$$

Phenomenological Magneto-electric effects in topological insulators

- Magnetically doped TI: at the surface, massive Dirac fermions
- Apply E: $\mathbf{j}_H = -\frac{1}{2} \operatorname{sgn}(m) \frac{e^2}{h} \hat{n} \times \mathbf{E}$ Ampère's law: $|\mathbf{M}| = c^{-1} |\mathbf{j}_H| \Rightarrow \mathbf{M} = \operatorname{sgn}(m) \frac{e^2}{2hc} \mathbf{E}$

An electric field creates a magnetization

Phenomenological Magneto-electric effects in topological insulators

- Magnetically doped TI: at the surface, massive Dirac fermions
- Apply **E**: $\mathbf{j}_H = -\frac{1}{2}\operatorname{sgn}(m)\frac{e^2}{h}\hat{n} \times \mathbf{E}$
- Ampère's law: $|\mathbf{M}| = c^{-1} |\mathbf{j}_H| \Rightarrow \mathbf{M} = \operatorname{sgn}(m) \frac{e^2}{2h_0} \mathbf{E}$

An electric field creates a magnetization

- Apply **B**, induce \mathbf{E}^{ind} with $\nabla \times \mathbf{E}^{ind} = -\partial_t \mathbf{B}$
- \bullet \mathbf{E}^{ind} generates a surface anomalous Hall effect: $\mathbf{j}_H = \frac{1}{2} \operatorname{sgn}(m) \frac{e^2}{\hbar} \partial_t \mathbf{B}$ • Using $\mathbf{j}_H = \partial_t \mathbf{P}$ we get $\mathbf{P} = \operatorname{sgn}(m) \frac{e^2}{2hc} \mathbf{B}$ A magnetic field creates a polarization

Phenomenological Magneto-electric effects in topological insulators

- Magnetically doped TI: at the surface, massive Dirac fermions
- Apply **E**: $\mathbf{j}_H = -\frac{1}{2}\operatorname{sgn}(m)\frac{e^2}{h}\hat{n} \times \mathbf{E}$
- Ampère's law: $|\mathbf{M}| = c^{-1} |\mathbf{j}_H| \Rightarrow \mathbf{M} = \operatorname{sgn}(m)$

An electric field creates a magnetization

- Apply **B**, induce \mathbf{E}^{ind} with $\nabla \times \mathbf{E}^{ind} = -\partial_t \mathbf{B}$
- \bullet \mathbf{E}^{ind} generates a surface anomalous Hall effect: $\mathbf{j}_H = \frac{1}{2} \operatorname{sgn}(m) \frac{e^2}{h} \partial_t \mathbf{B}$ • Using $\mathbf{j}_H = \partial_t \mathbf{P}$ we get $\mathbf{P} = \operatorname{sgn}(m) \frac{e^2}{2hc} \mathbf{B}$ A magnetic field creates a polarization

• Modified electrodynamics ($\theta = \pi$)

Axion electrodynamics

$$F = -\frac{e^2}{4\pi^2 \hbar c} \int d^3 \mathbf{r} \ \theta \ \mathbf{E} \ \mathbf{B}$$

$$(h) - \frac{e^2}{2hc} \mathbf{E}$$

 Magnetization: $\mathbf{M} =$

Magnetization:
$$\mathbf{M} = -\frac{\partial F}{\partial \mathbf{B}}$$

 $\mathbf{M} = \frac{e^2}{4\pi^2 \hbar c} \theta \mathbf{E}$

• Electric polarization: $\mathbf{P} = - \partial F / \partial \mathbf{E}$, $\mathbf{P} = \frac{e^2}{4\pi^2\hbar c} \ \theta \ \mathbf{B},$

Magneto-electric effects in topological insulators

Axion electrodynamics

• Modified electrodynamics ($\theta = \pi$) 2

$$F = -\frac{e^2}{4\pi^2 \hbar c} \int d^3 \mathbf{r} \ \theta \ \mathbf{E} \ \mathbf{B}$$

• Magnetization: $\mathbf{M} = -\partial F / \partial \mathbf{B}$ $-\frac{e^2}{\theta}$

$$\mathbf{M} = \frac{1}{4\pi^2 \hbar c} \theta \mathbf{I}$$

[•] Electric polarization: $\mathbf{P} = - \partial F / \partial \mathbf{E}$, $\mathbf{P} = \frac{e^2}{4\pi^2\hbar c} \ \theta \ \mathbf{B},$

Field theory action: $\mathcal{S}_{\theta} = + \frac{e^2}{4\pi^2 \hbar c} \int_{\mathbf{r}} \theta \mathbf{E} \cdot \mathbf{B}$ $= \frac{e^2}{32\pi^2 \hbar c} \ \theta \ \epsilon^{\mu\nu\rho\lambda} F_{\mu\nu} F_{\rho\lambda}$

With
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 and $A_{\mu} = (A_0, -\mathbf{A})$
 $\mathbf{E} = -\nabla A_0 - \partial_t \mathbf{A}, \quad \mathbf{B} = \nabla \times \mathbf{A}$

Topological term: pure surface term (θ constant)

$$S = \frac{e^2}{8\pi^2 \hbar c} \ \theta \ \int_{\mathbf{r},t} \epsilon^{\mu\nu\rho\lambda} \partial_{\mu} (A_{\nu}\partial_{\rho}A_{\lambda})$$

 \bullet Magneto-electric effect in the bulk \leftrightarrow surface anomalous response

Magneto-electric effects in topological insulators

Modified (Axion) electrodynamics:

Time Reversal Symmetry

- Time Reversal: $\mathbf{E} \rightarrow \mathbf{E}, \mathbf{B} \rightarrow -\mathbf{B}$
- Time Reversal symmetry: $\theta = -\theta \pmod{2\pi}$
 - Topological Insulator: $\theta = \pi$
 - * Standard Insulator: $\theta = 0$
- In magnetic insulators (no Time Reversal) symmetry): θ arbitrary, and depend on \mathbf{r}, t

:
$$\mathcal{S}_{\theta} = \frac{e^2}{4\pi^2 \hbar c} \int_{t,\mathbf{r}} \theta \mathbf{E} \cdot \mathbf{B}$$

Inversion Symmetry

- Inversion: $\mathbf{E} \rightarrow -\mathbf{E}, \mathbf{B} \rightarrow +\mathbf{B}$
- Inversion symmetry: $\theta = -\theta \pmod{2\pi}$
 - Topological Insulator: $\theta = \pi$
 - * Standard Insulator: $\theta = 0$

Magneto-electric effects in topological insulators

Axion electrodynamics

Modified electrodynamics:

$$\mathcal{S}_{\theta} = \frac{e^2}{4\pi^2 \hbar c} \int_{t,\mathbf{r}} \theta \mathbf{E} \cdot \mathbf{B}$$

• Electric polarization: $\mathbf{P} = - \partial F / \partial \mathbf{E}$, $\mathbf{P} = \frac{e^2}{4\pi^2 \hbar c} \ \theta \ \mathbf{B},$

• Magnetization: $\mathbf{M} = - \partial F / \partial \mathbf{B}$ $\mathbf{M} = \frac{e^2}{4\pi^2 \hbar c} \ \boldsymbol{\theta} \ \mathbf{E}$

Linear magneto electric coupling

•
$$\alpha = \frac{\partial M_i}{\partial E_i} = \frac{\partial P_i}{\partial B_i}$$

= $\frac{e^2}{4\pi^2 \hbar c} (\theta = \pi) \frac{1}{\mu_0^2 c} \simeq 24.3 \text{ ps/m}$

Magneto-electric (antiferromagnetic) materials (Cr₂O₃): $\alpha \simeq 0.7$ ps/mx

Topological electronics ?

Topological field-effect transistors

- Surface states + bulk states -> reduce the thickness
- 3.5-nm-thick Bi₂Se₃ FET
- Low energy consumption but slow

M. Gilbert, Comm. Phys. (2021) Zhu, H. et al. Sci. Rep.(2013)

Topological electronics ?

Topological magneto-electric effect inductors

- high-performance, small-footprint, on-chip inductors
- Hall effects current around the ferromagnetic islands: concentrate magnetic flux, high inductance

(d)

	Cut-off	Inductance
Inductor	Frequency (GHz)	(nH/mm ²)
LF Copper ⁶	0.2	1700
RF Copper ¹	6	282
CNT ¹⁰	150	23.2
Graphene ⁷	150	636
Topological Inductor	1000	930

M. Gilbert, Comm. Phys. (2021)

Philip, T. M. & Gilbert, M. Sci. Rep. (2017)

Outline

2D topological insulators

- Edge states versus bulk: the Quantum Hall Effect example
- Modified electrodynamics and quantized Hall response in 2D

3D topological insulators

- Surface properties
- Modified electrodynamics in 3D: magneto-electric effects
- (A choice of some) consequences

3D topological semimetals

- Recap of topological properties: anomalous Hall effect
- Modified electrodynamics
- Non-reciprocity of electrodynamics: consequences on optical and thermal properties

Weyl, Dirac, and band crossings

- Weyl point: Linear Crossing between Two Bands in D=3 Iocally Bloch Hamiltonian = Weyl Hamiltonian $H(\mathbf{K} + \mathbf{q}) = \chi \hbar v_F (q_x \sigma_x + q_y \sigma_y + q_z \sigma_z)$ with a chirality $\chi = \pm 1$
 - come by pair of opposite chirality

- Dirac point: Linear Crossing between Four Bands in D=3
 - Iocally Bloch Hamiltonian = massless Dirac Hamiltonian

$$H(\mathbf{k} = \mathbf{K} + \mathbf{q}) = \begin{pmatrix} H_{\text{Weyl}}(\chi = +1, \mathbf{q}) & 0 \\ 0 & H_{\text{Weyl}}(\chi = -1, \mathbf{q}) \end{pmatrix}$$

... Old subject revisited recently

W. C. Herring, Accidental Degeneracy in the Energy Bands of Crystals (1937)

Topological Properties of a Weyl point

- Weyl point: Linear Crossing between Two Bands in D=3 Iocally Bloch Hamiltonian = Weyl Hamiltonian $H(\mathbf{K} + \mathbf{q}) = \chi \hbar v_F (q_x \sigma_x + q_y \sigma_y + q_z \sigma_z)$ with a chirality $\chi = \pm 1$
 - come by pair of opposite chirality
 - Focus on states $\psi_{-}(\mathbf{k})$ below the crossing

 - Weyl point = Berry monopole

Topological Properties of a Weyl point

- Weyl point: Linear Crossing between Two Bands in D=3 Iocally Bloch Hamiltonian = Weyl Hamiltonian $H(\mathbf{K} + \mathbf{q}) = \chi \hbar v_F (q_x \sigma_x + q_y \sigma_y + q_z \sigma_z)$ with a chirality $\chi = \pm 1$
 - come by pair of opposite chirality
 - Focus on states $\psi_{-}(\mathbf{k})$ below the crossing

 - Weyl point = Berry monopole (analog of Dirac monopole)

•
$$\oint_{\partial BZ} F_{-}(\mathbf{k}) = 0$$

• Weyl points come by pair $n_{-} = \pm 1$ of opposite chirality

Topological Properties of a Weyl point

- Weyl point: Linear Crossing between Two Bands in D=3 Iocally Bloch Hamiltonian = Weyl Hamiltonian $H(\mathbf{K} + \mathbf{q}) = \chi \hbar v_F (q_x \sigma_x + q_y \sigma_y + q_z \sigma_z)$ with a chirality $\chi = \pm 1$
 - come by pair of opposite chirality
 - Chern number around the Weyl point: $n_{-}(\mathbf{K}) = \frac{1}{2\pi} \oint_{-} F_{-}(\mathbf{k}) = \chi$
 - Time Reversal Symmetry : $n_{(\mathbf{K})} = + n_{(-\mathbf{K})}$
 - Parity: $n_{(K)} = -n_{(-K)}$
 - Weyl point: break either P or T
 - P breaking Weyl semimetal: at least 4 Weyl points
 - T breaking Weyl semimetal: at least 2 Weyl points

+1

 $+\mathbf{K}$

[Wan et al, (2011), Hosur et al, 2013]

2 Weyl points: Linear Crossing between **Two Bands** in **D=3**

Iocally Bloch Hamiltonian = Weyl Hamiltonian

 $H(\mathbf{K} + \mathbf{q}) = \chi \hbar v_F (q_x \sigma_x + q_y \sigma_y + q_z \sigma_z)$

with a chirality $\chi = \pm 1$

come by pair of opposite chirality

2 Weyl points: Linear Crossing between **Two Bands** in **D=3**

- Iocally Bloch Hamiltonian = Weyl Hamiltonian $H(\mathbf{K} + \mathbf{q}) = \chi \hbar v_F (q_x \sigma_x + q_y \sigma_y + q_z \sigma_z)$ with a chirality $\chi = \pm 1$
- come by pair of opposite chirality
- Chern number around the Weyl points:

$$n_{-}(1/2) = \frac{1}{2\pi} \oint_{\mathcal{S}} F_{-}(\mathbf{k}) = \pm 1$$

 S_1

Chern number around the Weyl points:

$$n_{-}(1/2) = \frac{1}{2\pi} \oint_{\mathcal{S}} F_{-}(\mathbf{k}) = \pm 1$$

Consider 2D Bloch Hamiltonian $H_{2D}(k_x, k_y, k_z)$ at fixed k_z : 2 bands with a gap

•
$$\mathscr{C}_{(k_z)} = \frac{1}{2\pi} \oint_{k_x, k_y} F_{(k)} \in \mathbb{Z}$$

Brillouin Zone (Bulk)

Chern number around the Weyl points:

$$n_{-}(1/2) = \frac{1}{2\pi} \oint_{\mathcal{S}} F_{-}(\mathbf{k}) = \pm 1$$

Consider 2D Bloch Hamiltonian $H_{2D}(k_x, k_y, k_z)$ at fixed k_z : 2 bands with a gap

•
$$\mathscr{C}_{(k_z)} = \frac{1}{2\pi} \oint_{k_x, k_y} F_{(\mathbf{k})} \in \mathbb{Z}$$

• Difference $\mathscr{C}_{-}(k'_z) - \mathscr{C}_{-}(k'_z) = n_{-}(2)$

Brillouin Zone (Bulk)

Chern number around the Weyl points:

$$n_{-}(1/2) = \frac{1}{2\pi} \oint_{\mathcal{S}} F_{-}(\mathbf{k}) = \pm 1$$

Consider 2D Bloch Hamiltonian $H_{2D}(k_x, k_y, k_z)$ at fixed k_z : 2 bands with a gap

•
$$\mathscr{C}_{(k_z)} = \frac{1}{2\pi} \oint_{k_x, k_y} F_{(k)} \in \mathbb{Z}$$

• Difference $\mathscr{C}_{-}(k_{7}') - \mathscr{C}_{-}(k_{7}') = n_{-}(2)$

- $\mathscr{C}'_{-} \mathscr{C}_{-} = -1$
- $\mathcal{C} \mathcal{C}' = 1$

Brillouin Zone (Bulk)

Hall effect
$$\perp \mathbf{b}$$

$$\sigma_{xy} = -\left(\#k_z \in [\mathbf{K}, \mathbf{K}']\right) \frac{e^2}{h}$$

$$= -\frac{2b}{2\pi/L} \frac{e^2}{h}$$

4

Magneto-electric effects in Weyl semi-metals

Electrodynamics of an insulator

Standard Maxwell Lagrangian (isotropic): $\mathscr{L}_0 = \frac{\epsilon_0}{2} \mathbf{E}^2 - \frac{1}{2\mu_0} \mathbf{B}^2 - \rho \phi + \mathbf{j} \cdot \mathbf{A}$ • Action $\mathcal{S} = \int d^2 \mathbf{r} dt \, \mathcal{L}$ • $\frac{\delta \mathcal{S}}{\delta \phi} = 0 = -\rho + \epsilon_0 \, \nabla \cdot \mathbf{E}$ • $\frac{\delta \mathcal{S}}{\delta A} = 0 = \mathbf{j} + \epsilon_0 \, \dot{\mathbf{E}} - \frac{1}{\mu_0} \nabla \times \mathbf{B}$

Axion electrodynamics

• Modified Lagrangian: $\mathscr{L}_{\theta} = 2\alpha \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{\theta}{2\pi} \mathbf{E} \cdot \mathbf{B}$

with $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c}$ the fine structure constant

Time Reversal Symmetry

• Time Reversal symmetry: $\theta = -\theta \pmod{2\pi}$

- * Topological Insulator: $\theta = \pi$
- * Standard Insulator: $\theta = 0$

In magnetic materials (no Time Reversal) symmetry): θ arbitrary, and depends on \mathbf{r}, t

Magnetic Weyl semimetal:

• For a single Weyl pair: $\theta(\mathbf{r}) = 2\mathbf{b} \cdot \mathbf{r}$

Magneto-electric effects in Weyl semi-metals

Electrodynamics of an insulator

Standard Maxwell Lagrangian (isotropic): $\mathscr{L}_0 = \frac{\epsilon_0}{2} \mathbf{E}^2 - \frac{1}{2\mu_0} \mathbf{B}^2 - \rho \phi + \mathbf{j} \cdot \mathbf{A}$ • Action $\mathcal{S} = \int d^2 \mathbf{r} dt \, \mathscr{L}$ • $\frac{\delta S}{\delta \phi} = 0 = -\rho + \epsilon_0 \nabla \cdot \mathbf{E}$ • $\frac{\delta S}{\delta A} = 0 = \mathbf{j} + \epsilon_0 \dot{\mathbf{E}} - \frac{1}{\mu_0} \nabla \times \mathbf{B}$

Axion electrodynamics

• Modified Lagrangian: $\mathscr{L}_{\theta} = 2\alpha \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{\theta}{2\pi} \mathbf{E} \cdot \mathbf{B}$

with $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c}$ the fine structure constant

•
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} - 2c\alpha \nabla \left(\frac{\theta}{2\pi}\right) \cdot \mathbf{B}$$

•
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \partial_t \mathbf{E} + \frac{2\alpha}{c} \nabla \left(\frac{\theta}{2\pi}\right) \times$$

If θ is inhomogeneous: Maxwell eq. Modified !

Magneto-electric effects in Weyl semi-metals

Electrodynamics of an insulator

Standard Maxwell Lagrangian (isotropic): $\mathscr{L}_0 = \frac{\epsilon_0}{2} \mathbf{E}^2 - \frac{1}{2\mu_0} \mathbf{B}^2 - \rho \phi + \mathbf{j} \cdot \mathbf{A}$ • Action $\mathcal{S} = \int d^2 \mathbf{r} dt \, \mathscr{L}$ • $\frac{\delta S}{\delta \phi} = 0 = -\rho + \epsilon_0 \nabla \cdot \mathbf{E}$ • $\frac{\delta S}{\delta A} = 0 = \mathbf{j} + \epsilon_0 \dot{\mathbf{E}} - \frac{1}{\mu_0} \nabla \times \mathbf{B}$

Axion electrodynamics

• Modified Lagrangian: $\mathscr{L}_{\theta} = 2\alpha \sqrt{\frac{\epsilon_0}{\mu_0}} \frac{\theta}{2\pi} \mathbf{E} \cdot \mathbf{B}$

with $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c}$ the fine structure constant

•
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} - 2c\alpha \left(\frac{\mathbf{b}}{\pi}\right) \cdot \mathbf{B}$$

• $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \partial_t \mathbf{E} + \frac{2\alpha}{c} \left(\frac{\mathbf{b}}{\pi}\right) \times \mathbf{E}$

• For a single Weyl pair: $\theta(\mathbf{r}) = 2\mathbf{b} \cdot \mathbf{r}$

Nonreciprocity

A nonreciprocal system is defined as a system that exhibits different transmitted fields when its source and detector are exchanged

C. Caloz et al, Phys. Rev. Applied (2018)

Sound nonreciprocity

Standard Zeeman effect

Acoustic Zeeman effect

Acoustic circulator: 3-port implementation of acoustic Zeeman device

[R. Fleury et al, Science (2014)

Mechanical nonreciprocity

2D topological mechanical metamaterial. For clarity, the image difference between the deformed and initial geometries have been overlaid on the bottom half of the pictures

Equilibrium

- Vanishing net exchange of energy with environment
- Black body radiation set by T

Equilibrium

- Vanishing net exchange of energy with environment
- Black body radiation set by T
- **Kirchoff law** (1860): absorptivity $\alpha(\omega, \mathbf{k})$ and emissivity $\epsilon(\omega, \mathbf{k})$ are equal, $\alpha(\omega, \mathbf{k}) = \epsilon(\omega, \mathbf{k})$
- valid away from equilibrium

Equilibrium

- Vanishing net exchange of energy with environment
- Black body radiation set by T
- **Kirchoff law** (1860): absorptivity $\alpha(\omega, \mathbf{k})$ and emissivity $\epsilon(\omega, \mathbf{k})$ are equal, $\alpha(\omega, \mathbf{k}) = \epsilon(\omega, \mathbf{k})$
- valid away from equilibrium

Optical non-reciprocal materials

- Assymptotic Assym
- Increase of solar cell's efficiency
- Passive radiative cooling under direct sunlight

Optical non-reciprocal materials

- Assymptotic Assym
- Increase of solar cell's efficiency
- Passive radiative cooling under direct sunlight

Solar irradiance Ś

Optical non-reciprocal materials are rare

- Typically magneto-optical materials
- Manifests itself as a asymmetric dielectric
- Measure non-reciprocity through $\gamma = \frac{|\epsilon|}{|\epsilon|}$
- * For magneto-optical materials, $\gamma \simeq \frac{\omega_c}{\omega}$ with the cyclotron frequency $\omega_c = \frac{eB}{m^*}$

Magnetic Weyl semimetals

Potential for $\gamma \sim 1$ at optical frequencies (giant non-reciprocity)

Cheng Guo et al, eLight (2023)

$$e \text{ tensor: } \epsilon^T \neq \epsilon$$
$$-\epsilon^T |$$
$$+\epsilon^T |$$

• For $B \sim 1$ T, $\omega_c \sim 1$ THz, we get $\gamma \sim 10^{-3} - 10^{-2}$ at optical frequencies (weak non-reciprocity)

Giant optical non-reciprocity

Dielectric tensor for a magnetic Weyl semimetal with b $\parallel z$

Giant optical non-reciprocity

Dielectric tensor for a magnetic Weyl semimetal with b $\parallel z$

• From
$$\epsilon_D(\omega) = \epsilon_b(\omega) + \frac{i}{\omega}\sigma(\omega)$$

We get $\epsilon = \begin{pmatrix} \epsilon_D & i\epsilon_a & 0\\ -i\epsilon_a & \epsilon_D & 0\\ 0 & 0 & \epsilon_D \end{pmatrix}$, typical form of $\epsilon_a(\omega) = \frac{2b}{2\pi}\frac{1}{\omega}\frac{e^2}{h}$ (anomalous quantum

From Kubo formula:

$$\sigma_{D}(\omega) = \frac{e^{2} k_{F}}{h 6} \left[\Omega\Theta(\Omega - 2) + \frac{i}{\pi} \left(\frac{4}{\Omega} - \Omega \ln \frac{4\epsilon_{C}^{2}}{|\Omega^{2} - 4|} \right) \right] \text{ with }$$

 $\Omega = \hbar(\omega + i\tau^{-1})/E_F$, $\epsilon_c = E_C/E_F$ (cut-off)

Non-reciprocity $\gamma \simeq |\epsilon_a/\epsilon_D| \sim 1$ over wide frequency range

O. V. Kotov and Y. E. Lozovik, PRB (2018)

a gyrotropic medium

Surface Plasmon polariton

- Collective electromagnetic and electron-charge excitations confined to the surface of a metal or semiconductor
- Fields of the form $\mathbf{E} = \mathbf{E}_0 e^{iq_x x + q_y y} e^{-i\omega t} e^{-\kappa |z|}$

- Displacement r creates polarization $\mathbf{P} = nq\mathbf{r}$
- Induces electric field $\mathbf{E} = -4\pi \mathbf{P}$
- Restoring force: $m\partial_t^2 \mathbf{r} = q\mathbf{E} = -4\pi ne^2 \mathbf{r}$ (harmonic oscillator)
- Plasma frequency: $\Omega_p^2 = \frac{4\pi ne^2}{2}$
- Quantum: plasmon

Surface Plasmon polariton

- Collective electromagnetic and electron-charge excitations confined to the surface of a metal or semiconductor
- Fields of the form $\mathbf{E} = \mathbf{E}_0 e^{iq_x x + q_y y} e^{-i\omega t} e^{-\kappa |z|}$

Surface Plasmon polariton in semi-metals

Dirac semimetal (2 overlapping Weyl cones)

Plasmon frequency:
$$\Omega_p^2 = \frac{4\alpha}{3\pi} \left(\frac{\mu}{\hbar}\right)$$

with $\alpha = \frac{e^2}{\hbar v_F \epsilon_{\infty}}$

Surface Plasmon polariton

- Collective electromagnetic and electron-charge excitations confined to the surface of a metal or semiconductor
- Fields of the form $\mathbf{E} = \mathbf{E}_0 e^{iq_x x + q_y y} e^{-i\omega t} e^{-\kappa |z|}$

Surface Plasmon polariton in semi-metals

- Dirac semimetal (2 overlapping Weyl cones)
- non-reciprocal

Surface Plasmon polariton in semi-metals

- Dirac semimetal (2 overlapping Weyl cones)
- Weyl semimetal (distance 2b between cones): non-reciprocal / reciprocal

Recap

2D topological insulators

- Edge states versus bulk: the Quantum Hall Effect example
- Modified electrodynamics and quantized Hall response in 2D

3D topological insulators

- Surface properties
- Modified electrodynamics in 3D: magneto-electric effects
- (A choice of some) consequences

3D topological semimetals

- Recap of topological properties: anomalous Hall effect
- Modified electrodynamics
- Non-reciprocity of optical and thermal properties

Topological Insulators \leftrightarrow Thermoelectricity ?

Topological Insulators : band inversion by spin-orbit 1. large spin-orbit : materials with heavy atoms 2. gap comparable with spin-orbit : small gap semiconductors

Chemical potential in the gap

* same materials, different reasons ? ...

* different range of parameters

Spin-Orbit Coupling

«relativistic correction»

$$-i\hbar \gamma^{\mu} (\partial_{\mu} + ieA_{\mu})\psi = 0$$
first relativistic correction to
$$\left(\left[\frac{p^2}{2m} + eV \right] + \frac{e\hbar}{4m^2c^2} \right] + \frac{e\hbar}{4m^2c^2} + \frac{e\hbar}{4m$$

st favored by heavy atoms (high Z) : V

preserves time reversal symmetry

PRL 112, 226801 (2014)

Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators

Yong Xu,^{1,2} Zhongxue Gan,² and Shou-Cheng Zhang^{1,2,*} ¹Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA ²ENN Intelligent Energy Group, ENN Science Park, Langfang 065001, China (Received 5 February 2014; published 2 June 2014)

Improving the thermoelectric figure of merit zT is one of the greatest challenges in material science. The recent discovery of topological insulators (TIs) offers new promise in this prospect. In this work, we demonstrate theoretically that zT is strongly size dependent in TIs, and the size parameter can be tuned to enhance zT to be significantly greater than 1. Furthermore, we show that the lifetime of the edge states in TIs is strongly energy dependent, leading to large and anomalous Seebeck effects with an opposite sign to the Hall effect. These striking properties make TIs a promising material for thermoelectric science and technology.

PHYSICAL REVIEW LETTERS

week ending 6 JUNE 2014

G

- > 2D topological insulator (for simplicity)
- bulk / edge states contribution to transport
-) two scattering times for edges states τ_1 and τ_2

Xu et al. PRL, 112 (2014)

usually increased by variations of density (nb of modes), here : variation of scattering time / mean free path $\lambda(E)$

* enhancement of seebeck coefficient

* size depe (bulk / e

endance of figure of merit
edge contribution)
$$zT = \frac{GS^2T}{K}$$

$$S = -\frac{\pi^2 k_B^2 T}{3e} \frac{\partial \ln[\bar{\mathcal{T}}(E)]}{\partial E} \bigg|_{E=E_F}$$

FIG. 4 (color online). The size dependence of (a) zT and (b) S for the 2D TI fluorinated stanene at 300 K.