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1 Preliminary exercises to do before the school

1.1 Tight binding model for 1d chain.
Let?s consider a chain of N identical atoms with only one orbital per atom φn(~r), label |φn〉, separated by the
same distance a/2. We will consider the unit cell containing 2 atoms of length a, whose orbitals will be |φ2m〉
and |φ2m+1〉, with m indexing the considered cell. The reason for this 2 atoms per unit cell is that we will
consider 2 different hopping integrals between the atoms of the same cell and between neighboring cells :

〈φ2m| Ĥ |φ2m+1〉 = 〈φ2m+1| Ĥ |φ2m〉 = −t (1− δ)
〈φ2m| Ĥ |φ2m−1〉 = 〈φ2m−1| Ĥ |φ2m〉 = −t (1 + δ)

〈φ2m| Ĥ |φ2m〉 = ε0
〈φ2m+1| Ĥ |φ2m+1〉 = ε1

(1)

All the other terms are considered null. The physical origin of this difference in hopping parameter can be an
unequal distance between identical atoms (in this case ε0 = ε1) or just 2 different atoms per cell (ε0 6= ε1). We
will take the total wave function as a linear combination of the local orbital : Ψ =

∑
m

αm |φ2m〉+βm |φ2m+1〉.

We recall the Bloch theorem : in a spatially periodic system of period ~T the total wavefunction is decomposed
in Ψ(~r) = u(~r)ei

~k.~r with u(~r + ~T ) = u(~r) a periodic function.

1. What are the limit of the Brillouin zone for a unit cell of length a ?
Solution.
The Brillouin zone is ]0 : 2π

a ] or ] − π
a : π

a ]. Be careful that one of the boundary is exluded from the
Brillouin zone as it is actually the same point and you don’t want to count this point twice.

2. Using the periodicity of the system, calculate Ψ(x+ a) as a function of φ2m(x) and φ2m+1(x).
Solution.
From translational symmetry :

φ2m(x+ a) = φ2m−2(x)
φ2m+1(x+ a) = φ2m−1(x)

Ψ(x+ a) =
∑
m

αmφ2m(x+ a) + βmφ2m+1(x+ a)

=
∑
m

αmφ2m−2(x) + βmφ2m−1(x)

=
m′=m−1

∑
m′

αm′+1φ2m”(x) + βm′+1φ2m′+1(x)

(2)

3. Using the block theorem, find the expression of Ψ(x+ a) as function of Ψ(x)

Solution.
From Bloch theorem :
Ψ(x) = u(x)eikx with u(x+ a) = u(x)
Then Ψ(x+ a) = Ψ(x)eika

4. Comparing the two expressions of Ψ(x+a), deduce the relation between αm+1 and αm or βm+1 and βm
Solution.
αm+1 = eikaαm and αm+1 = eikaβm

5. Calculate the term < φ2n|H|Ψk > (φ2n being one orbital of the first atom of the unit cell, labelled with an
even index 2n), first using the Schrödinger equation to make appear Ek, the energy of the wavefunction
Ψk, and secondly expanding |Ψk > to make appear the hopping integrals of the kind 〈φ2m| Ĥ |φ2m+1〉
that we will replace by the corresponding value (see Eq. 1). By comparing the two methods, derive the
first equation relating Ek, αn, βn, t and δ.
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Solution.

< φ2n|H|Ψk > = Ek < φ2n|Ψk >= Eke
ikaαn

=
∑
m

αm < φ2n|H|φ2m > +βm < φ2n|H|φ2m+1 >

Non zero term when m=n or m=n-1
= αn < φ2n|H|φ2n > +βn < φ2n|H|φ2n+1 > +βn−1 < φ2n|H|φ2n−1 >
= αnε0 + βn(−t(1− δ)) + βne

−i1ka(−t(1 + δ))

⇒ (Ek − ε0)αn + βn
[
t(1− δ) + t(1 + δ)e−ika

]
= 0

(3)

6. Apply the same method for the term < φ2n+1|H|Ψk > (φ2n+1 being one orbital of the second atom of
the unit cell, labelled with an odd index 2n+ 1) to find a second equation.
Solution.

< φ2n+1|H|Ψk > = Ek < φ2n+1|Ψk >= Eke
ikaβn

=
∑
m

αm < φ2n+1|H|φ2m > +βm < φ2n+1|H|φ2m+1 >

Non zero term when m=n or m=n+1
= αn < φ2n+1|H|φ2n > +αn+1 < φ2n+1|H|φ2n+2 > +βn < φ2n+1|H|φ2n+1 >

= αn(−t(1− δ)) + αne
i1ka(−t(1 + δ)) + βnε1

⇒ (Ek − ε1)βn + αn
[
t(1− δ) + t(1 + δ)eika

]
= 0

(4)

7. Using the two equations, find the two eigenvalues Ek.
Solution.[

(Ek − ε0)
[
t(1− δ) + t(1 + δ)e−ika

][
t(1− δ) + t(1 + δ)eika

]
(Ek − ε1)

] [
α0

β0

]
=

[
0
0

]
⇒ (Ek − ε0)(Ek − ε1)− t2

[
(1− δ) + (1 + δ)e−ika

] [
(1− δ) + (1 + δ)eika

]
= 0

⇒ (Ek − ε0)(Ek − ε1)− t2
∣∣(1− δ) + (1 + δ)e−ika

∣∣2 = 0

⇒ (Ek − ε0)(Ek − ε1)− t2
∣∣∣(1− δ)ei ka

2 + (1 + δ)e−i
ka
2

∣∣∣2 = 0

⇒ (Ek − ε0)(Ek − ε1)− 4t2
[
cos2(

ka

2
) + δ2sin2(

ka

2
)

]
= 0

Rewriting :(Ek − ε0)(Ek − ε1) = (Ek − εm)2 −∆ε2

with : εm = ε1+ε0
2 the mean value, and ∆ε = ε1−ε0

2 the deviation from the mean value

⇒ (Ek − εm)2 = ∆ε2 + 4t2
[
cos2(

ka

2
) + δ2sin2(

ka

2
)

]
⇒ E±k = εm ±

√
∆ε2 + 4t2

(
cos2(

ka

2
) + δ2sin2(

ka

2
)

)

(5)

8. Plot the two bands, and calculate the gap to show that it depends only on ∆ε and δ, and that it vanishes
when ∆ε = δ = 0.
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Solution.

The gap at the zone boundary is ∆ = 2
√

∆ε2 + 4t2δ2

1.2 Tight binding model for 1d chain : second quantization formalism.
We will see now how to write the same system using second quantization. In second quantization, we think
in term of the occupation of the sites with creation and annihilation operators that add or remove electrons
on specific site. For example, the operator c†i will add an electron on the site i and c†i ci counts the number of
electron on the site i. For our 1d chain model, we can consider two sublattices : the atoms on A (corresponding
to the 2m) and the atoms on B (corresponding to 2m+ 1). The previous Hamitonian can be rewritten :

Ĥ =

N∑
m

[
ε0c
†
A,mcA,m + ε1c

†
B,mcB,m + t(1− δ)c†A,mcB,m + t(1 + δ)c†B,mcA,m+1 + h.c.

]
(6)

where the sum is made over N unit cells, the third term being the hopping parameter between atoms of the
same unit cell and the fourth term is the hopping parameter between first neighbours of different unit cells.
The h.c. stands for the hermitian conjugate of these two terms so that the total Hamiltonian si hermitian.
Here h.c. stands for t(1− δ)c†B,mcA,m + t(1 + δ)c†A,m+1cB,m and means that hopping from A,m to B,m is the
same as hopping from B,m1 to A,m.

9. Transform the Hamitlonian from real space to momentum space using the relations :

cA,m =
1√
N

∑
k

e−i
~k.~rmcA,k, c†A,m =

1√
N

∑
k

ei
~k.~rmc†A,k

cB,m =
1√
N

∑
k

e−i
~k.~rmcB,k, c†B,m =

1√
N

∑
k

ei
~k.~rmc†B,k

(7)

and show that it can take the following form :

Ĥ =
∑
k

(
c†k,A c†k,B

)( ε0 t(1− δ) + t(1 + δ)eika

t(1− δ) + t(1 + δ)e−ika ε1

)(
ck,A
ck,B

)
(8)
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Solution.
Let’s start with the first two term :

N∑
m

ε0c
†
A,mcA,m =

1

N

∑
k

N∑
m

ε0e
i~k.~rmc†A,ke

−i~k.~rmcA,k =
∑
k

ε0c
†
A,kcA,k

N∑
m

ε1c
†
B,mcB,m =

1

N

∑
k

N∑
m

ε1e
i~k.~rmc†B,ke

−i~k.~rmcB,k =
∑
k

ε1c
†
B,kcB,k

(9)

For the third term we have :

N∑
m

t(1− δ)c†A,mcB,m =
1

N

∑
k

N∑
m

t(1− δ)ei~k.~rmc†A,ke
−i~k.~rmcB,k

=
∑
k

t(1− δ)c†A,kcB,k
1

N

N∑
m

ei
~k.~rme−i

~k.~rm

=
∑
k

t(1− δ)c†A,kcB,k

(10)

and the hermitian conjugate :

N∑
m

t(1− δ)c†B,mcA,m =
1

N

∑
k

N∑
m

t(1− δ)ei~k.~rmc†B,ke
−i~k.~rmcA,k

=
∑
k

t(1− δ)c†B,kcA,k
1

N

N∑
m

ei
~k.~rme−i

~k.~rm

=
∑
k

t(1− δ)c†B,kcA,k

(11)

For the fourth term we have :

N∑
m

t(1 + δ)c†B,mcA,m+1 =
1

N

∑
k

N∑
m

t(1 + δ)ei
~k.~rmc†B,ke

−i~k.~rm+1cA,k

=
∑
k

t(1 + δ)c†B,kcA,k
1

N

N∑
m

ei
~k.~rme−i

~k.~rme−ika

=
∑
k

t(1 + δ)c†B,kcA,ke
−ika

(12)

and the hermitian conjugate :

N∑
m

t(1 + δ)c†A,m+1cB,m =
1

N

∑
k

N∑
m

t(1 + δ)ei
~k.~rm+1c†A,ke

−i~k.~rmcA,k

=
∑
k

t(1 + δ)c†A,kcB,k
1

N

N∑
m

ei
~k.~rme−i

~k.~rmeika

=
∑
k

t(1 + δ)c†A,kcB,ke
ika

(13)

So the Hamiltonian writes :

Ĥ =
∑
k

ε0c
†
A,kcA,k + ε1c

†
B,kcB,k

= +t(1− δ)c†A,kcB,k + t(1− δ)c†B,kcA,k + t(1 + δ)c†B,kcA,ke
−ika + t(1 + δ)c†A,kcB,ke

ika
(14)

So we have :

Ĥ =
∑
k

(
c†k,A c†k,B

)( ε0 t(1− δ) + t(1 + δ)eika

t(1− δ) + t(1 + δ)e−ika ε1

)(
ck,A
ck,B

)
(15)
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10. Rewrite the Hamiltonian matrix :

h =

(
ε0 t(1− δ) + t(1 + δ)eika

t(1− δ) + t(1 + δ)e−ika ε1

)
(16)

in the Pauli matrix basis and the identity, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
and σ0 =(

1 0
1 1

)
Solution.

h = εmσ0 + ∆εσz + (t(1− δ) + t(1 + δ)cos(ka))σx + (t(1 + δ)sin(ka))σy (17)

11. Once the Hamiltonian is in the form h = ~Dk.~σ + εkσ0, the eigenvalues are given by E±k = εk ± | ~Dk|.
Calculate the eigenvalues.
Solution.

E±k = εm ±
√

∆ε2 + (t(1− δ) + t(1 + δ)cos(ka))
2

+ (t(1 + δ)sin(ka))
2

= εm ±
√

∆ε2 + 4t2cos2(
ka

2
) + 4t2δ2sin2(

ka

2
)

(18)

1.3 Tight binding model for 2d square lattice in second quantization
We consider now a square lattice in 2 dimension (x and y) of parameter a, with one atom per unit cell and
one orbital per atom. In second-quatization, we can write the Hamiltonian :

Ĥ =

N∑
m,n

[
ε0c
†
m,ncm,n − tc†m,ncm+1,n + tc†m,ncm,n+1 + h.c.

]
(19)

where (m,n) refers to the coordinate of the unit cell (and thus the atom) and −t (t>0) the hopping parameter
between first neighbour atoms.

12. Transform the Hamitlonian from real space to momentum space using the relations :

cm,n =
1√
N2

∑
k

e−i
~k.~rm,nck, c†m,n =

1√
N2

∑
k

ei
~k.~rm,nc†k (20)
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Solution.
Let’s start with the first term :

N∑
m,n

ε0c
†
m,ncm,n = − 1

N2

∑
k

N∑
m

N∑
n

ε0e
i~k.~rm,nc†ke

−i~k.~rm,nck =
∑
k

ε0c
†
kck (21)

For the second term we have :

N∑
m,n

−tc†m,ncm+1,n = − 1

N2

∑
k

N∑
m

N∑
m

tei
~k.~rm,nc†ke

−i~k.~rm+1,nck

=
∑
k

−tc†kcke
i~k.~rm,ne−i

~k.~rm,ne−ikxa

=
∑
k

−tc†kcke
−ikxa

(22)

and the hermitian conjugate :

N∑
m,n

−tcm+1,nc
†
m,n = − 1

N2

∑
k

N∑
m

N∑
m

tei
~k.~rm+1,nc†ke

−i~k.~rm,nck

=
∑
k

−tc†kcke
i~k.~rm,ne−i

~k.~rm,neikxa

=
∑
k

−tc†kcke
ikxa

(23)

For the third term we have :

N∑
m,n

−tc†m,ncm,n+1 = − 1

N2

∑
k

N∑
m

N∑
m

tei
~k.~rm,nc†ke

−i~k.~rm,n+1ck

=
∑
k

−tc†kcke
i~k.~rm,ne−i

~k.~rm,ne−ikya

=
∑
k

−tc†kcke
−ikya

(24)

and the hermitian conjugate :

N∑
m,n

−tcm,n+1c
†
m,n =

1

N2

∑
k

N∑
m

N∑
m

tei
~k.~rm,n+1c†ke

−i~k.~rm,nck

=
∑
k

−tc†kcke
i~k.~rm,ne−i

~k.~rm,neikya

=
∑
k

−tc†kcke
ikya

(25)

So we have ultimately :
Ĥ =

∑
k

−2t [cos(kxa) + cos(kya)] c†kck (26)

13. Draw the Fermi surface for Ek < 0, Ek = 0 and Ek > 0.

7



Solution.
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