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1 Introduction

The de�nition, description of properties and classi�cation of (topological) spin liquids has
recently made great progress, after many understandable trial and error in the �rst years
of this recent domain. It seems easy to get lost in the twists and turns of string networks,
cohomology groups, anyons and other fractional excitations, in the distinction between sym-

metry enhanced or protected phases, all this submitted to various gauge transformations,
allowing to introduce projective symmetry and invariance gauge groups. This is due to the
wealth of mathematical theories related to this notion of topological phase. This is without
considering the collection of models supposed to explain all this to us: the Kitaev model,
the toric code (also by Kitaev), the Haldane chain, the Rokhsar and Kivelson point and
other dimer models... In this lecture, I try to introduce all this vocabulary, without entering
too much into the details, but giving tools to go further if you need, and precise enough
de�nitions and intuition (in the good sense). Then, we will focus on the Z2 spin liquids.

This is the �rst version (before the lecture) than I plan to amend after it.
Thanks in advance to all those wo want to make comments.

1.1 Spin models

First of all, we are concerned with topological phases of spin models describing particles on
a lattice. The lattice can represent a crystal (particules are electrons hopping on the sites),
or an optical lattice (particules are fermionic or bosonic atoms)[7]. The interactions can be
of many types. A quite general two-spin interaction Hamiltonian is:

H =
∑
i,j

(
Jz
ijS

z
i S

z
j + Jx

ijS
x
i S

x
j + Jy

ijS
y
i S

y
j +Dij · (Si ∧ Sj)

)
−
∑
i

hi · Si, (1)

where (Sx
i , S

y
i , S

z
i ) are the three components of the spin operator Si on site i. The total spin

S on a site is a half integer (S = 1/2, 1, ... such that S2
i = S(S + 1)). hi is a local magnetic

�eld. S → ∞ corresponds to the classical limit where spins operators are replaced by three
dimensional vectors on the S2 sphere1.

In the single orbital Hubbard model with real t and Coulomb interaction U , the large-U
limit leads to the simple Heisenberg model. But in more evolved and realistic models, multi-
orbitals require to take into account crystal �elds and spin-orbit, resulting in a whole zoo
of possible spin interactions. We have illustrated this here with an anisotropic interaction
(Jx

ij, J
y
ij, J

z
ij), together with a Dzyaloshinskii-Moriya (DM) interaction (the vector Dij),

where the �nal spin operators are in fact pseudo-spin. DM results from the absence of some
symmetries according to rules presented in [33], and often implies frustration[42] A special
case of anisotropy is the Heisenberg-Kitaev interaction, where the dominant term among Jz

ij,
Jx
ij and J

y
ij depends on the link direction, on a lattice where links can be divided in three

1To better understand the classical limit, think that fully polarized spin states form an overcomplete
basis for any �nite S, but that their scalar product tends to zero when S increases. This is formalized in the
coherent spin state representation.
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equivalent sets. The limit of only only one non-zero interaction on each of the three types of
links is the Kitaev model[18], famous for having an exact ground state formulation in term
of Majorana fermions and anyonic excitations (see later).

Other interactions are still possible when S > 1/2: we can have spin anisotropies as
(Sz

i )
2, nematic interactions as (Si · Sj)

2, leading to many new phases as studied for example
in [41]. More than two-particle interactions can also exist whatever the spin, as for example
(Si · Sj)(Sk · Sl) (multi-spin exchange interactions), that have been studied a lot on the
triangular lattice[32, 10].

1.2 Phases of spin models

As strongly interacting models, the set of eigenstates of spin models is not formed by tensor
product of single particle ground states, nor continuously connected to such states (this is
only true for non or weakly-interacting systems). The most well-known such non-interacting
system is graphene, belonging to the large family of topological insulators. However, spin
models can be related to topological insulators via emergent quasi-particles and emergent
models.

The most interesting spin models (from our point of view) are the frustrated ones, where
elementary terms of the Hamiltonian are in competition. Widely used examples are the
classical antiferromagnetic triangle or the J1 − J2 square (with Ising spins or any other type
of spins as XY or Heisenberg). In quantum models, competition between interactions favor
superposition of states expressed in the local basis. As a trivial (unfrustrated) example
of superposition, the ferromagnetic S = 1/2 dimer (i.e. two sites labelled 1 and 2) has
unentangled ground states that are all the triplet states

|ψF (a, b)⟩ =
1√

|a|2 + |b|2
(a |↑⟩1 + b |↓⟩1)⊗ (a |↑⟩2 + b |↓⟩2), (2)

with a and b complex, while the antiferromagnetic ground state is the unique singlet state:

|ψAF ⟩ =
1√
2
(|↑↓⟩ − |↓↑⟩). (3)

Frustration leads to more or less exotic quantum ground states as compared with ferro-
magnetic or Néel orders (see top of Fig. 1):

� Other types of long-range spin orders are simple generalization of ferromagnetic or Néel
orders to more sublattices. They can also be obtained in classical spin models and the
linear spin wave approximation is a nice way to introduce quantum �uctuations.
Various symmetry can be broken in such ground states, that are restored via a phase
trnasition either at zero (as generally expected for continuous symmetries in dimension
d ≤ 2 according to the Mermin-Wagner theorem) or at �nite temperature (as the well
known Ising transition). Notably, continous spins (for example Heisenberg classical
spins) can give rise to �nite temperature phase transition even in 2 spatial dimensions
when they order in such a way that discrete lattice symmetries are broken, or the
time-reversal symmetry (as for example the cuboc2 and octahedral orders of Fig. 1).
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Figure 1: Top: ferromagnetic and antiferromagnetic orders on the square lattice. Bottom:
examples of exotic long-range magnetic order on the kagome lattice. From left to right: the√
3×

√
3, the cuboc2 and the octahedral order.

In these spin orders that break spin rotational symmetry, zero-energy modes are
present: the Goldstone modes. On the �nite size spectrum of quantum models (ob-
tained by exact diagonalization) they induce a tower of state collapsing as 1/N with
N the number of sites[29].

� Other types of long-range orders are not related to the spin orientation, but to more
complex order parameters, implying more than 2-spin correlations. For example, ne-
matic (or quadrupolar) spin orders[41] are characterized by 4-spin correlations, valence
bond crystals (VBC) by dimer-dimer correlations.
VBC have been proposed as ground states of the kagome antiferromagnet[43] (Fig. 2,
left), even if other phase are now expected. The ground state on the Shuriken lattice[3]
has been determined to be a pinwheel VBC (Fig. 2, middle). Models have also been
especially designed as two-dimensional generalizations of the Majumdar-Gosh S = 1/2
spin chain (where the two ground states are the singlet-dimer coverings, breaking the
translational symmetry) to present VBC ground states[13].

� Finally, the remaining phases do not break any symmetry. They divide into gapless (or
algebraic) and gapped phases. Among the gapped phases, we distinguish symmetry
enhanced (or topological) spin liquids from symmetry protected phases (or trivial, or
cooperative paramagnets) according to their entanglement properties (long or short
range). We are now going to precise this distinction in the next section.

A useful remark on these various phases is that they distinguish themselves by their low
temperature spectrum (see Fig. 3).

� A trivial paramagnet will have a unique gapped ground state (left).
� A state breaking some symmetry will become degenerate in the thermodynamic limit,
revealing the various way to break it: a �nite degeneracy with a gap for a discrete
symmetry (middle), against an in�nity of state and gapless modes for a continuous
symmetry (due to Goldstone modes) (right).
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Figure 2: Example of valence bond crystals on the kagome (left, Singh and Huse 2008[43]) and
Shuriken (middle, Astrakhantsev et al 2021[3]) lattices. Pinwheel and lopp-6 VBC are two
concurrent patterns. Blue and magenta links represent strong dimer (meaning here singlet)
density, that breaks the lattice translational symmetry. Right: pictorial representation of
the wave function[3].

� A gapless state breaking no symmetry is a critical state (gapless spin liquid) (right).
� The only remaining cases are gapped degenerate phases (depending on the topology:
topological degeneracy) breaking no symmetry: these are the topological spin liquids
(middle).

This is related to the Lieb-Schultz-Mattis-Hastings theorem[37, 36, 15], stating that
a system with a half-odd integer spin in the unit cell, with short range interactions, global
U(1) symmetry, with periodic boundary conditions in a direction and translational invariance
in the same direction cannot have a gap and a unique ground state (in other words, it cannot
be a SPT state).

Note that this theorem does not forbid the existence of topological spin liquids on lattices
with an integer spin per unit cell. For example, the toric code on the honeycomb lattice (see

Gapless

EGS∆ = 0

Gapped non degenerate

EGS

∆ ̸= 0

Gapped degenerate

EGS

∆ ̸= 0

Figure 3: The three possible types of spectrum.
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Sec. 5.2) is a well know example of Z2 spin liquid.

2 Classi�cations of gapped phases of matter

In this section, we have no energetic con�guration, but only consider physical states (eventual
ground states of future Hamiltonians) on a lattice. The classes obtained only depend on
the Hilbert space. A symmetry group G can act on these states, and the action of these
symmetries will be considered in a second time.

2.1 Without any symmetry

We �rst consider a model without taking care of the possible symmetries of states (like spin-
rotational symmetry, time-reversal, lattice symmetries)... We just have a Hilbert space and
a lattice. What are the possible phases in such an apparently boring system ? I follow here
the line of Chen at al[9, 8] to answer this question.

States can be deformed by local unitary (LU) transformations. Doing so, we identify
equivalence classes of states. The trivial class contains all short-range entangled states
(SRE). Among them are the direct product states of local con�gurations.

In contrast, all the other classes are topological orders, possessing long-range entan-
glement (LRE). Note that several classes of LRE can be obtained without any symmetry,
and without having de�ned any Hamiltonian.

2.1.1 Tensor categories classify long-range entangled states

LRE states can be classi�ed using unitary modular tensor categories, with the milestone
article of Levin and Wen[25]. Even if we do not enter the details of this mathematical theory,
it is useful to be aware of the relation between it and the existence of fractional excitations
of several types and gauge symmetries.

For each category, a representative (renormalization ground �xed-point) Hamiltonian (a
string-net model) can be constructed, acting in a Hilbert space of string networks that we
now de�ne. This space is generated by orthogonal string con�gurations: wave functions
speci�ed by a value between 0 (no string) and N (the number of string types) for each
oriented lattice link. The strings have to verify branching rules: only some sets of strings
are allowed to meet at a vertex. The ground state in this space is further constrained by a
6-index object F ijk

lmn, where i, j, k, l, m and n are string types and the quantum dimensions: a
set of positive integers di=1..N . F and d relate coe�cients of all allowed string con�gurations
in the ground state.

Now, imagine that we break a string of type a by inserting the trivial string 0. We break
the fusion rules and are out of the initially allowed Hilbert space. We have created two
fractional particles, called anyons in 2 dimensions. They will be discussed in more details
later on.
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Figure 4: From [8]. States related by LU transformation are equivalent and allow to de�ne
di�erent classes or phases (left). When some symmetries are imposed, subclasses appear
(right).

2.2 With symmetries

We now de�ne a symmetry group G. Each class of the section 2.1 (SRE and LRE phases)
now divides into subclasses according to the respect or not of these symmetries. Group
theory allows to label them with subgroups of G (preserved symmetries). But this labeling
is not enough, as the newly allowed LU transformations between equivalent states have
to respect the symmetries. Thus, di�erent phases can have the same symmetry and the
same type of short or long-range entanglement (they were equivalent before introducing the
symmetries) but now belong to di�erent classes. In SRE as in LRE, the subclasses labeled
by G itself (phases breaking no symmetry) have a special role: those from SRE and LRE are
dubbed respectively symmetry protected topological (SPT) and symmetry enriched
topological (SET) phases.

All the phases introduced in this two last sections are pictorially represented on Fig. 4.

2.2.1 Symmetry protected topological (SPT) phases

SPT phases can be labeled by d+ 1 group cohomology classes[8, 28] (de�nition in App.
A of [5]). The most well know examples of SPT phase are

� the Haldane S = 1 chain, protected by SO(3) spin rotation symmetry: it has fractional
edge mode, despite no ground state degeneracy and no long-range entanglement.

� the topological insulators[14] or topological superconductors, that are classi�ed in ten
discrete symmetry classes corresponding to the ten Altland�Zirnbauer classes of ran-
dom matrices (1997)[1] (so-called ten-fold way, or K-theory), and band theory with
Chern numbers.

Here are examples of SPT phases in 2 dimensional magnetic models (also called cooper-
ative or trivial paramagnets[21]):

� The S = 1/2 Shastry-Sutherland model with two Heisenberg exchanges J and J ′ (see
Fig. 5) has a unique ground state of dimers on the J ′ links when J ≳ 0.675J [44,
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Figure 5: The Shastry Sutherland model, with two Heisenberg exchange parameters J and
J ′. For J ≳ 0.675J ′, the ground state is a tensor product of dimers on the J ′ links.

11]. From the magnon point of view, this is a bosonic topological insulator with
topologically protected chiral edge modes of triplon excitations[27],

� The transverse Ising model on the kagome lattice, shown to be smoothly connected to
the high �eld state as soon as the �eld is non-zero[35].

� In [23], two simple models with an Ising symmetry are constructed and studied in great
details, one being a trivial and the other a non-trivial SPT phase.

2.2.2 Symmetry enriched topological (SET) phases

They respect all the symmetries of the model, and possess long-range entanglement. As
before introducing symmetries, the insight of tensor categories remains valid, but a sup-
plementary classi�cation has to be determined inside each category, implying projective
symmetry classi�cation.

These phases are the focus of this lecture, and still more speci�cally, topological Z2 spin
liquids. Topological (Z2 or not) spin liquids (or equivalently gapped spin liquids) are before
all spin liquids[40, 21, 4], that are roughly de�ned as gapped states breaking no symmetry
down to zero temperature. But this de�nition does not allow to distinguish the SPT phases
as the two examples given in Sec. 2.2.1. More precise and equivalent de�nitions are, as for
any SET phase::

� states with non-local fractional excitations (partons), that are anyons in 2d (Sec. 3)
� states with a non-zero topological entanglement entropy γ (Sec. 4)
� states with a topological degeneracy.

We focus here on gapped Z2 spin liquids[12]. Several Mott insulators are candidates: the
J1 − J2 square lattice near J2 = J1/2, the J1 − J2 triangular lattice near J2 = J1/10, the
kagome antiferromagnet (but more probably a gapless spin liquid).

We will give the example of two very simple models of Z2 spin liquids, before entering in
the more precise SET classi�cation for more realistic spin models. Before that, the de�nitions
of anyons and topological entanglement entropy are given.
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Figure 6: Graphical representation of the F (left) and R (right) symbols de�ning anyons,
from [16].

3 Fractional quasi-particles, anyons

The �rst question that arise is the precise de�nition of quasiparticles (QP) and anyons and
of their properties in a gapped system with a short-range interactions Hamiltonian H. We
limit ourselves here to abelian fractional quasiparticles theory and use the de�nitions given
in[16].

The �rst data that characterize a model is the set of QP types {a, b, ...}. In 2 dimensions,
the QP are called anyons, and can be di�erent from bosons or fermions. In 3 dimensions,
only bosons and fermions are allowed. Moreover, in 2 dimensions, their mutual statistics can
be non trivial, while they are triial in three dimensions.

We consider the set of Hamiltonians H+V on the in�nite plane (this condition is required
to have the possibility of a unique QP, sending the other to in�nity), where V is a local
perturbation. The ground states obtained for all possible V form equivalence classes up
to local unitary transformations. We get as many equivalence classes as QP, including the
trivial one 1 corresponding to the class of the ground state. V can be seen as a trapping
potential for a QP. Another denomination used is superselection sectors, to refer to these
equivalence classes of states, with the trivial superselection sector for the vacuum (no QP).

Secondly, the fusion rules indicate what QP type c is obtained by merging a pair of QP
a and b. For abelian QP, the fusion rules are simply of type a× b = ab = c.

In two dimensions, the F -symbol inform on the way an anyon abc splits in three a, b and
c, depending on the steps (�rst ab and c or a and bc), as pictorially described in Fig. 6 left
and lastly, the R-symbol indicates the exchange statistics of mutual anyons (Fig. 6 right):

|1⟩ = F (a, b, c) |2⟩ , |1⟩ = R(a, b) |2⟩ . (4)

Some examples of anyons:
� The best studied example (both theoretically and experimentally) is the Laughlin state
in the fractional quantum Hall system at the �lling ν = 1/3, with abelian anyons with
exchange phase ϕ = π/3 and electric charge e = ±1/3.

� The more detailed example of non-abelian anyons occurs in the fractional quantum
Hall system at the �lling ν = 5/2[34].
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Figure 7: Phase diagram of the Kitaev model Eq. (5).

� Kitaev model[18] de�ned on the honeycomb lattice, with exchange that depend on the
three possible link orientation and couple the x, y or z components.

H = −Jx
∑
x-links

Sx
j S

x
k − Jy

∑
y-links

Sy
j S

y
k − Jz

∑
z-links

Sz
jS

z
k . (5)

For each hexagonal plaquette p = 123456, an operatorWp is found that commutes with
the Hamiltonian, and with other such operators. Thus, solving H reduces to solving
its reduction to a each eigenspaces of Wp.
This more simple problem itself reduces to solving a model on non-interacting Majorana
fermions, giving the phase diagram of Fig. 7
The gapped phase is qualitatively similar to the toric code phase, obtained via a map-
ping from perturbation theory in the case Jz ≫ Jx, jy (or permutations).
On the other side, the gapless phase acquires a gap in the presence of a magnetic �eld,
and a non trivial spectral Chern number ν = ±1 (depending on the direction of the
magneitc �eld), associated to the existence of gapless edge modes.

4 Topological entanglement entropy

Let a system in a wave function |Ψ⟩. Its density matrix is simply ρ = |Ψ⟩ ⟨Ψ| and we have
a pure state (entropy Trρ ln ρ = 0).

The von Neumann entanglement entropy between two regions A and B = A (Fig. 8) of
smooth boundaries is:

S(A) = −TrAρA ln ρA, ρA = TrBρ, (6)

For most ground states (and speci�cally for gapped ground states), the dominant behavior
of S(A) follow the area law:

S(A) ∼ s0L, (7)
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B

A
AB

C

Figure 8: Left: Subsystem A of a larger subsystem AB.
Right: the topological entanglement entropy γ can be calculated by linear combinations of
the entanglement entropies of subsystems A, B, C, AB, AC, BC and ABC.

with L the length of the boundary between A and B and s0 is a non universal term. The
term area comes from the dimension 3, where the dominant term is s0A, with A the area of
the boundary of the sybsystem. In 2 dimension, this is a perimeter law, however, the use is
to keep the 3d denomination.

The next subdominant term is noted γ and called the topological entanglement en-
tropy. It takes only quantized values and depends on the topological phase:

S(A) = s0L− γ + o(1). (8)

The negative sign indicates that the state has a long-range entanglement that provides more
information (less entropy) than in a non-topological phase.

γ enlights the fact that the topological properties of a phase is independent on its Hamil-
tonian or on its excitations (dynamical properties), but only depend on the wave function.
In two paper published simultaneously[19, 24], a clever way to determine γ despite its sub-
dominant character is explained: it consist in a combination of the entanglement entropy of
several subsystems (see Fig. 8). Consider

Stopo = SABC − SAB − SCB − SCA + SA + SB + SC , (9)

the term coming from the perimeters cancels, and only −γ remains.
The topological entanglement entropy can be related to the number and the nature of

the anyons, or equivalently, to the number and nature of strings in the associated string-net
model:

γ = lnD2, (10)

with D the so-called total quantum dimension of the topological order. It is 1 for a topolog-
ically trivial phase, and verify the two following equalities, to be carefully distinguished:

D =
∑
i

d2i =

√∑
α

d2α, (11)

The �rst sum concerns string net models (for abelian theories, it is simply the number of
string types plus one), while the second sum is for anyon theories (for abelian theories, it is
the number of superselection sectors).
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Figure 9: De�nition of winding numbers Wx and Wy on bipartite and non-bipartite lattices
(from [22]).

5 Topological Z2 spin liquids in toy models

5.1 Example 1: the resonating valence bond phase

The resonating valence bond (RVB) phase was introduced in 1976 by Anderson[2] and pro-
posed to describe the ground state on the triangular antiferromagnetic lattice (later shown
to be wrong). States with exactly one dimer per site towards one of the nearest neighbors
represent a tensor product of singlets. They do not generate the whole spin Hilbert space
(missing for example magnetized states, and not even the S = 0 sector (however, they form
an overcomplete basis in this sector when long-range dimers are allowed). Moreover, they
are not orthogonal. However, the approximation of an orthonormal basis of dimer states
allows to de�ne tractable models of dimers with a rich physics.

The Rokhsar and Kivelson model Only con�gurations with one (neither zero nor more)
dimer emanating from each site are allowed (closed packed dimer con�gurations) and form
an orthogonal basis. The Hamiltonian is:

HRK =
∑

plaquettes

[
−J

(∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣)+ V
(∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣)] .

(12)
The model has initially been de�ned on a square lattice, but it was then extended to other
lattices. The �rst term in the Hamiltonian is a kinetic term (or resonant, at the origin of
the term RVB), and the second a potential term.

Winding numbers The con�guration space on a torus divides into winding sectors, la-
beled by two winding numbers Wx and Wy. They are obtained on a bipartite lattice by
assigning a positive direction to links from sublattice A to B on the square lattice, and sum-
ming the contributions of dimers on a reference loop in the x and y directions (see Fig. 9). We
verify that any local move (�ip of dimers long a loop as in Fig. 10) conserve these numbers,
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Figure 10: Local operators consist in �ip of dimers around loops (from [30]: occupied and
empty links are exchanged. ).

that are in Z. This implies that the Hamiltonian does not mix topological sectors: winding
numbers are good quantum numbers.

On a non-bipartite lattice, only the parity of the number of dimers crossing the reference
loops has a meaning, and Wx, Wy ∈ Z2.

Phase diagram The J = V point (called the RK point) is soluble, as the Hamilonian
rewrites as a sum of projectors:

HRK =
∑

plaquettes

(∣∣ 〉
−
∣∣ 〉) (〈 ∣∣− 〈 ∣∣) . (13)

The RVB state

|RV B⟩ = 1√
Nc

∑
c

|c⟩ , (14)

is the sum of all dimer con�gurations in a given winding sector (Wx,Wy). It is an eigenstate
of zero energy and consequently, it is a ground state. On the square lattice, we obtain an
extensive number of ground states (one in each winding sector), but on the triangular lattice,
we get a degeneracy of 4, typical of a Z2 spin liquid. Another di�erence between these two
lattices is the nature of the dimer-dimer correlations in the RVB state: they are algebraic
on the square lattice, against exponentially decreasing on the triangular (same calculation
and result as for T = ∞).

On the square lattice, the RK point is thus a critical ground state, unstable to any
perturbation (see Fig. 11). It separates a staggered phase (with no �ippable plaquettes)
from a columnar or plaquette phase for a negative strong potential term. On a number of
bipartite lattices in d ≥ 3, including the cubic lattice, the RK point is part of a Coulomb
phase (or U(1) RVB).

In contrast ,on non-bipartite lattices in two and higher dimensions, including the 2d
triangular[31] and 3d fcc, the RK point is part of a Z2 gapped RVB liquid phase[31], sepa-
rating as previously a columnar and staggered phase with still an intermediate VBC phase.
This time, the V = J point is not critical, and the transition is �rst order (the RVB state is
gapped).
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Figure 11: Phase diagram of the RK model (12) on non-bipartite (top) and bipartite lattices
(bottom)[45]).

Figure 12: Dimer con�gurations with fractional excitations spinons and holons in a QDM
model (from [6]).

Finally, for a number of 2d bipartite lattices, including the square and honeycomb, the
RK point is a special critical point separating di�erent crystalline phases. A nice review on
quantum dimer models is here[30].

Fractional excitations We may now have to enlarge our Hilbert space (and add a term in
the Hamiltonian to penalize the new states: the properties discussed before are unchanged).

We allow to break a dimer (a singlet) into a triplet. Two quasiparticles are created, with
no charge and a spin 1/2. They are called spinons (see Fig. 12).

Still another possible excitation on non-bipartite lattices is a vison is a vison localized
on a site i, of wave function is a sum over state in a winding sector with ± signs (see Fig. 13:

|V ⟩ =
∑
c

(−1)nc |c⟩ . (15)

Note that this does not seem to enlarge the basis.
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Figure 13: Left: a vison on a non bipartite lattice, with a string going from site i to in�nity
(from [30]. Right: moving a spinon around a vison changes the sign of the state.

We can also authorize the removal of two electrons belonging to a dimer ij. We get two
sites with no dimer, creating a new type of quasiparticle with a charge but no spin, called a
holon (see Fig. 12). But this excitation belongs to the same class as a spinon: we can see
it simply because both excitations are wore by a site. If we send far apart a holon of a pair,
and create a pair of spinons near the remaining holon, a local change in the con�guration
gives a unique spinon. This is obtained by merging a holon and a spinon on neighboring sites
into a dimer. Still another way to see it is that creating and annihilating a pair of visons or
holons, and annihilating them after a topologically non trivial loop move swap the dimers
along the loop in both cases.

The way we enlarge the Hilbert space (with holons or spinons) is not fundamental. By
the same way, it seems that the Hilbert space was not enlarged by visons, but the choice of
the basis is arbitrary. We could have chosen as a basis the only four ground states, which
would have require to enlarge it to have visons.

With loop operators, it is possible to separate the two quasiparticles far one from each
other without any energy cost: they are said to be decon�ned. When con�nement occurs
(through spinon condensation), it breaks the spin liquid phase and form crystalline phases
like the staggered or columnar ones[39].

5.2 Example 2: the toric code

The toric code model[20] (designed by Kitaev, but be aware that there are several Kitaev
models !). It consists in S = 1/2 spins living on the edges of a square lattice, on a torus.
These model is well described and analyzed for example in [12].

For each vertex v and face p, we consider the operators (see Fig. 14):

As =
∏

j∈star (s)

σx
j , Bp =

∏
j∈boundary (p)

σz
j . (16)

They commute with each other

[As, As′ ] = [Bp, Bp′ ] = [As, Bp] = 0
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Figure 14: Left: stars and plaquettes on a toric square lattice. Right: string operators. t
changes the sign of two As operators at z, whereas t

′ changes the sign of two Bp operators
ar x. Pictures from [20].

and have eigenvalues ±1 with equal multiplicity. We verify easily that the product over all
stars

∏
sAs and over all plaquettes

∏
pBp are both equal to one. Each sector of �xed As

and Bp has dimension 4.
The Hamiltonian:

Htc = −Ke

∑
s

As −Km

∑
p

Bp (17)

with Ke, Km > 0 thus has a gapped ground state with degeneracy 4, with As = Bp = 1 for
any star s and plaquette p.

Fractional excitations Two elementary excitations e and m arise naturally:
� by applying σz

i on a bond i, we change the sign of As on two sites and create a pair of
excitations (say electronic charges e). When we apply

∏
t σ

z
i on an open string between

sites of the lattice, we similarly create two e particule, at the end of the string (see
Fig. 14). Applying this product on a loop around one of the two direction of the torus
gives a new ground state.

� by applying σx
i on a bond i, we change the sign of Bp on two plaquettes and create a pair

of excitations (magnetic charges m). When we apply
∏

t′ σ
x
i on links perpendiculars to

an open string between sites of the dual lattice (centers of square), we similarly create
two m particule, at the end of the string (see Fig. 14). Applying this product on a
loop around one of the two direction of the torus gives a new ground state.

Two e particles can be exchanged without changing the phase of the wave function: they
are bosons. It's the same for the m quasiparticles. However, the mutual statistics of electric
and magnetic charges is semionic, as the state changes sign after one is moved around the
other (see Fig. 16 right): they are mutual semions.

A third and last elementary excitation (with the trivial one 1) is the e−m bound state
ϵ. Due to the exchange statistics between e and m, ϵ is a fermion and changes the wave
function sign when turning around a e or m particle.
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Fusion rules The way two particles merge to give a new one are given by the fusion rules:

e× e = m×m = ϵ× ϵ = 1× 1 = 1,

e× 1 = e, m× 1 = m, ϵ× 1 = ϵ, (18)

e×m = ϵ, e× ϵ = m, m× ϵ = e.

Ground state degeneracy Creating a pair of electric (or magnetic) charges e (or m) at a
point and annihilating them after moving one around a topologically non trivial loop of the
torus gives distinct but same energy states. When doing this in an eigenstate, for e, m and
ϵ, we get four degenerate states as already obtained by a counting of same energy states.

Equivalent string-net model This model is an example of string-net model from Levin
and Wen[25] mentioned in Sec. 2.1.1, even if the connection with string-net models is not
apparent at this stage. To see it, we depart from the state with all spins up, denoted |↑⟩.
This is clearly an eigenstate for all Bp of eigenvalues 1. Now, acting on this state with the
projector on eigenstates ofAs with eigenvalues 1:

|Ψ⟩ ∝
∏
s

(1 + As) |↑⟩ (19)

conserves all Bp = 1 and projects on a ground state |Ψ⟩. If we consider that a state
with σx =↓ is occupied by a string, and σx =↑ by no string, then this ground state is the
superposition of all closed string con�gurations on the square lattice, and we get a string
model with N = 1.

Entanglement entropy We can calculate exactly this γ term in the toric code model[24],
using the expression of a ground state as the superposition of all loop con�gurations (19).
We chose as boundary a loop crossing L links and no site. We can decompose the states into∑

l |Ψout
l ⟩ |Ψin

l ⟩, where l runs over all string con�gurations on the L links of the boundary.
Any con�guration with an even number of links is allowed (their number is 2L−1). We have
written our state such that its density matrix

∑
l |Ψout

l ⟩ |Ψin
l ⟩ ⟨Ψout

l | ⟨Ψin
l | is diagonal (as the

|Ψout
l ⟩ |Ψin

l ⟩ are orthogonal). The reduced density matrix is
∑

l |Ψin
l ⟩ ⟨Ψin

l |, and as all wave
functions have the same weights, its entropy is ln(2L−1) = L ln 2− ln 2. We have determined
that γ = ln 2, as expected from Eq. (11), for a string model with d0 = d1 = 1, and an anyon
theory with 4 superselection sectors.

Note that any combination of the four ground states would have given the same γ.

Remark: this very simple model can be related to the so-called Z2 model, or Z2 lattice-
gauge theory[24]. Its Hamiltonian is −Km

∑
pBp, and the Hilbert space only consists in

As = 1 states. Only the m quasi-particles exist and are called visons.
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Figure 15: Calculation of the entanglement entropy of the area inside the blue loop for a
loop con�guration (from [24]).

6 Symmetry enhanced Z2 spin liquids using Schwinger

boson mean-�eld theory

In this last section, we add the constraint that the spin model possesses some symmetries
and explore the consequences in a speci�c approach: the Schwinger boson mean-�eld theory,
that allow to describe Z2 spin liquids.

After the toy models introduced previously, we would like to treat models that describe
common Mott insulators. Typically, the Heisenberg model;

H =
∑
⟨i,j⟩

JijSi · Sj. (20)

where spins have S = 1/2. This model is not soluble in the presence of frustration, and
many tools have been developed to handle it:

� Exact diagonalisations are very interesting as they give access to the low energy
spectrum with all quantum numbers (using the irreducible representations of the sym-
metry group). They allow to study the broken symmetries. However, they are limited
to small sizes (less than 50 in the total spin 0 sector).

� Quantum Monte-Carlo simulations are quasi-exact in classical spin systems, but
present the sign problem (statistical weight of the sampled con�gurations that can
be negative) in the presence of frustration in quantum systems. For spin models, two
largely used methods[17] are Stochastic Series Expansions (SSE) and world-line Monte-
Carlo methods using for example worms algorithms to update the con�gurations.

� A large family consists in the tensor network methods. Variational states are stored
under the form of for example Matrix Product States (MPS) or Projected Entangled
Pair States (PEPS), are optimized to approximate the ground state using Density
Matrix Renormalization Group (DMRG) for MPS, imaginary time evolution or other
techniques for PEPS[38].

We now detail the Schwinger boson mean-�eld theory, and its fermionic analog with
Abrikosov fermions.
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6.1 The parton construction

We want to be able to describe fractionalized quasi-particles (or partons) and rewrite the
Hamiltonian in terms of spinons. They are S = 1/2 chargeless particules, that can only be
created in pairs. In non-topological phases, they are con�ned: they do not exist alone, as the
energy to separate them is in�nite. In a topological phase, we say the phase in decon�ned,
and spinons are free. We can chose bosonic (b†iσ, biσ) or fermionic (fiσ, f

†
iσ) operators, creating

or annihilating spinons of spin σ =↑, ↓ on site i. The spin operators are

2Sz
i = b†i↑bi↑ − b†i↓bi↓ = ni↑ − ni↓

S+=Sx + iSy = b†↑b↓,

S−=Sx − iSy = b†i↓bi↑.

This rewrite more compactly:

Si =
1

2
ψ†σ⃗ψ (21)

where

ψ =

(
bi↑
bi↓

)
for bosons, ψ =

(
f †
i↑
fi↓

)
for fermions. (22)

For future use, we can determine all possible quadratic operators on a link ij that are
invariant by a global spin rotation. These are generated for bosons by the four operators
Aij, A

†
ij, Bij and B

†
ij de�ned by:

Aij =
1

2
(bi↑bj↓ − bi↓bj↑)

Bij =
1

2
(b†i↑bj↑ + b†i↓bj↓),

(similar operators exist for the fermions).
The Hamiltonian in terms of spinons is quartic (terms as b†bb†b) and can be written using

A and B operators:

H =
∑
⟨i,j⟩

Jij(: B
†
ijBij : −A†

ijAij), (23)

The Hilbert space of spinons is larger that the spin space. We have to respect the
constraint on the spinon number per site:

n↑ + n↓ = 1. (24)

We have a new model, with local G = U(1) gauge transformations for bosons:

g : bjσ → eiθjbjσ, θi ∈ R. (25)

Actually, for fermions, the local gauge group is G = SU(2):

g : Ψj →MiΨi, Ψj =

(
f↑j f↓j
f †
↓j −f †

↑j

)
, Mj ∈ SU(2). (26)
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6.2 The mean-�eld approximation

To get a soluble quadratic Hamiltonian, we use a mean-�eld decoupling:

bbbb= (bb− ⟨bb⟩)(bb− ⟨bb⟩) + ⟨bb⟩bb+ bb⟨bb⟩ − ⟨bb⟩⟨bb⟩.
≃⟨bb⟩bb+ bb⟨bb⟩ − ⟨bb⟩⟨bb⟩ (27)

Applied to Eq.(23):

HMF =
∑
⟨i,j⟩

Jij

(
⟨B†

ij⟩Bij + ⟨Bij⟩B†
ij − ⟨A†

ij⟩Aij − ⟨Aij⟩A†
ij

−|⟨Bij⟩|2 + |⟨Aij⟩|2
)
−
∑
i

λi(ni − 1), (28)

The last term is related to the constraint, with a Lagrange multiplier. We de�ned a Hamil-
tonian depending on complex link parameters Aij and Bij and real site parameters λi. We
call these parameters an ansatz.

HMF =
∑
⟨i,j⟩

Jij

(
B∗
ijBij + BijB

†
ij −A∗

ijAij −AijA
†
ij − |Bij|2 + |Aij|2

)
−
∑
i

λi(ni − 1).(29)

The Hamiltonian can be written under a matricial form:

HMF = v†Mv + ϵ0,

with v† = (b†↑1, . . . , b
†
↑N , b↓1, . . . , b↓N), M a 2N × 2N matrix, N the number of sites and ϵ0 a

constant.
It can be solved using a Bogoliubov transformation to express the Hamiltonian in the

diagonal form

HMF =
∑
jσ

ϵj b̃
†
σj b̃σj + ϵ̃0. (30)

Let M̃ be the diagonal matrix with coe�cients ϵi and J the matrix J =

(
1Ns 0
0 −1Ns

)
.

We de�ne ṽ† = (b̃†↑1, . . . , b̃
†
↑Ns

, b̃↓1, . . . , b̃↓Ns) where the b̃σj are bosonic operators charac-

terized by a matrix P such that v = P ṽ. If P obeys PJP † = J , the bosonic character of
the b̃ is preserved. Together with the condition that P †MP = M̃ is diagonal (this is not a
standard matrix diagonalization, since P is not unitary), we get our transformation.

6.3 The possible phases of the ground state

We now have a problem of non interacting bosons. What type of phase can we obtain on a
periodic two dimensional lattice ?

� If at least one of the ϵj < 0, then the ansatz is unphysical.
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(a) Antiferromagnetic triangular lattice with long-range order.

(b) Antiferromagnetic kagome lattice with one of the possible spin liquid ground state (small
gap).

Figure 16: Dynamical structure factor S(q, ω) (space-time Fourier transform of spin-spin
correlation functions ⟨S(i, t) · S(i = 0, t = 0)⟩ and the Static (equal time) structure factor
S(q) =

∫∞
0

dω
2π
S(q, ω), obtained by Schwinger boson mean-�eld theory

� If one or several ϵi are zero, then we have a Bose condensation. At least one of the b̃
mode is �lled (this does not change the energy, but is required to verify the constraint),
corresponding to non-zero ⟨b⟩ and to a magnetic long range order. Note that the gap
only closes in the thermodynamic limit for antiferromagnets (in 1/N , as for the initial
spin model). The dynamical structure factor calculated in such a state is very similar
to the results expected from inelastic neutron scattering experiments (see Fig. 16 for
the example of the antiferromagnetic triangular lattice), with Bragg peaks and magnon
bands.

� If all the ϵi are non zero, then we get a unique ground state, even in the thermodynamic
limit. It is the vacuum of the b̃ (but not of the b) as seen from Eq. (30). In this case,
we say that we describe a Z2 spin liquid phase of no symmetry is broken by the ansatz.
Spin rotational symmetry has been respected by construction. It remains to take care
of the lattice symmetries.

The careful reader may be perturbed by the assertion that a Z2 spin liquid on a torus
has a simple ground state degeneracy. Where is the expected 4-fold degeneracy ?

By �xing the ansatz, we have imposed the �ux sector (equivalent of the winding sector
for the QDM model): the mean-�eld breaks the local gauge symmetry. However, some
gauge symmetry remain, forming the Invariance Gauge Group (IGG): the group of gauge

21



transformations that do not modify the Ansatz. We will come back to it later on. Quantities
de�ned on loops as products of AA†AA†...A† are gauge invariant. Their phases are called
�uxes. The two expected types of quasiparticles are the spinons, e�ectively present by
construction and the visons, which are π A-�uxes on elementary plaquettes. To create a
pair of visons on adjacent plaquettes separated by a link ij, we change Aij → −Aij. Doing
so on a string crossing links (and no site) around the lattice annihilate the visons after moving
around the lattice. It does not change any local quantity but changes the �ux sector, and
the energy of both states are the same in the thermodynamic limit.

There is another way of understanding this construction. We have implicitly supposed
periodic boundary conditions for bosons: biσ = bi+Lex/yσ. But antiperiodic boundary con-
ditions in a direction means in fact also periodic boundary conditions for spins. However,
it changes the �ux on any topologically non trivial loop around the lattice in this direc-
tion. This is equivalent to changing the sign of Aij (and Bij) on a loop crossing links in the
perpendicular direction.

6.4 The projective symmetry groups

Two ansatze are equivalent if they are related by a gauge transformation. It is equivalent to
say that gauge invariant quantities are the same in both ansatze.

Suppose that we have an ansatz such that all gauge invariant quantities are invariant
by lattice symmetries X . Applying such a symmetry X ∈ X sends it to a gauge equivalent
ansatz. Let's call gX ∈ G a gauge transformation such that uX = gXX does not modify
the ansatz (there are as many such gauge transformations as elements in the IGG). The uX
form a projective representation of the symmetry group, called the projective symmetry
group (PSG) of the ansatz.

Two gauge equivalent ansatze have two di�erent PSG, that are said to be equivalent. All
the possible classes of PSG can be determined using only the symmetry group properties
and the knowledge of the IGG, called the algebraic PSG, and mathematically given by the
second cohomology group H2(X , IGG). We are going to detail how this can be done.
The �rst such classi�cation was for fermions[47] and then bosons[46]. Before, we go back to
the IGG.

The most general IGG is Z2: changing all b or f operators to their opposite obviously
let the A and B operators unchanged. However, in some cases, the IGG is enlarged to U(1).
This occurs on bipartite lattices, where only A are non-zero (only B is a non interesting case
as condensation always occurs). Then, changing the phase by θ on a sublattice and −θ on
the other does the work. We focus here on a Z2 IGG.

We take the example of a triangular lattice, with symmetries generated by translations
T1 and T2, rotations R6 and axial symmetry σ (see Fig. 17).

T1 : (r1, r2)→ (r1 + 1, r2) (31a)

T2 : (r1, r2)→ (r1, r2 + 1) (31b)

R6 : (r1, r2)→ (r1 − r2, r1) (31c)

σ : (r1, r2)→ (r2, r1). (31d)
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T1

T2 R6

σ

Figure 17: Symmetries on a triangular lattice.

The relations that allow to write any product of transformation in an ordered way are:

T1T2= T2T1 (32a)

σ2= I (32b)

R6
6= I (32c)

T1R6=R6T −1
2 (32d)

T2R6=R6T1T2 (32e)

T1σ=σT2 (32f)

R6σR6=σ. (32g)

Each of these relations will give us a constraint on the transformations in the algebraic PSG,
as they each give a di�erent way to apply the identity, i.e. an element of the IGG.

We begin by the �rst constraint, coming from T1T2 = T2T1. As T1T2T −1
1 T −

2 = I, the
successive application of PSG elements associated to the four translations on the left must
send the ansatz to itself: it must belong to the IGG.

g1T1g2T2T −1
1 g−1

1 T −1
2 g−1

2 ∈ IGG. (33)

In terms of e�ects on the phase of partons, it becomes:

ϕ1(r) + ϕ2(T −1
1 r)− ϕ1(T −1

2 r)− ϕ2(r) = p1π, (34)

with p1 = 0 or π and ϕX(r) is the phase of the gauge transformation gX on site r.
We can further simplify this result as we only want a speci�c PSG in each equivalence

class. Thus, we can apply a gauge transformation G to the ansatz chosen especially to cancel
some phases in the last equation. If gXX was in the PSG of the initial ansatz, GgXXG

−1 is
in the new PSG. In other words, the e�ect of a gauge transformation G on the PSG is:

ϕX(r) → ϕG(r) + ϕX(r)− ϕG(X
−1(r)). (35)

Step by step (by increasing x), we can determine a gauge transformation that cancels all
ϕ1(r):

ϕG(x, y) = −
x∑

i=0

ϕ1(i, y). (36)
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With periodic boundary conditions, we have
∑L−1

i=0 ϕ1(i, y) = 0 and no correction is needed

when crossing the link L − 1, 0. For antiperiodic boundary conditions,
∑L−1

i=0 ϕ1(i, y) = π,
and ϕ1(0, y) cannot be cancelled but has to be π.

We �x periodic boundary consitions and �x ϕ1(r) = 0. Eq. (34) is now

ϕ2(x− 1, y)− ϕ2(x, y) = p1π, (37)

that is solved as
ϕ2(x, y) = ϕ2(0, y) + p1πx (38)

To simplify ϕ2, we de�ne a new gauge transformation:

ϕG(x, y) =
x∑

i=0

ϕ1(i, y) +

y∑
j=0

ϕ2(0, j). (39)

that has the same e�ect as previously on ϕ1 but now, remove the �rst term in Eq. (38).
Finally, the Z2-PSG containing T1 and T2 on the triangular lattice (also true on the square

lattice) divide into two equivalence classes depending on p1:

ϕ1(x, y) = 0, ϕ2(x, y) = p1 π y. (40)

The same calculations can be performed for all equations in (32). For completness, I
give the result for ϕR6 where each of the previous class is still subdivided into several classes
depending on an integer k:

ϕ1(x, y) = 0, ϕ2(x, y) = p1 π y, ϕR6(x, y) = p1π
2xy + y(y + 1)

2
+ k

π

6
. (41)

7 Conclusion

We have seen the di�erent ways to classify phases depending on their entanglement proper-
ties, and to further classify them according to the symmetries they break or respect. Z2 spin
liquids have been obtained in several simple toy models without any symmetry; the Rokhsar-
Kivelson dimer model and the toric code. They allow to get simple pictures of what is an
anyon, what is entanglement entropy. Considering realistic spin model remains a challenge,
partly resolved by the projective symmetry group approach in parton constructions.

Bosonic and fermionic PSGs are related, as a fermionic spinon can be seen as a composite
particle formed by a bosonic spinon and a vison[26]. However, PSG of parton construction
do not fully classify the Z2 spin liquids. The complete classi�cation requires to consider
symmetry fractionalization as detailed in [12]. Actually, the PSGs of last section only treat
the symmetry fractionalization of one type of anyons: the spinons. To be complete, a group
cohomology class must be assigned to each anyon, with constraints from the fusion rules.

� In Chern Simons U(1) spin liquids (simu by Donna Sheng), γ = ln 2/2. Why ???? ln2
should be the minimal ?
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� simple intro to cohomology groups ?

� Can a toric code state with a e particle be a ground state ? No (not possible with
PBC). With 2 e ? Yes (we favor two positive As for example). This should statistics for
the QP that depend on the path... It breaks the local constraints. Answer: the state
without any QP are representatives of the same classe of states (LU trnasformation
can link them) and are the only one described by Chen et al.
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