

Topological Quantum Chemistry

Hands-on-session

Aussois GDR School, May 2024

Maia G. Vergniory & Mikel Iraola

Bloch states $\psi_k(r) = e^{ikr}u_k(r)$ are defined for periodic boundary conditions Define localized **Wannier States** :

$$
\left|\varphi(R)\right\rangle = \oint_{BZ} \frac{dk}{2\pi} e^{-ikR} \left|\psi_k\right\rangle = \oint_{BZ} \frac{dk}{2\pi} e^{-ik(R-r)} \left|u_k\right\rangle
$$

D. Vanderbilt "Berry phases in electronic structure theory "

Definition of a Wannier function :

$$
|W_R\rangle = \frac{a}{2\pi} \int_0^{2\pi/a} d\mathbf{k} e^{i\mathbf{k} \cdot \mathbf{r}} |\psi_{\mathbf{k}}\rangle
$$

$$
|\psi_{\mathbf{k}}\rangle = \sum_{\mathbf{R}} e^{i\mathbf{k} \cdot \mathbf{r}} |W_R\rangle
$$

If $|\psi_{\mathbf{k}}(x)|$ is a smooth function of k, then $|W_R\rangle(x)$ is a localized function centred near R

1. WFs with different R are periodic images of one another

2. WFs form an orthonormal set

$$
\langle \, W_{R'} \vert \, W_R \rangle = \delta_{R R'}
$$

3. WFs span the **same subspace** of the Hilbert space as is spanned by the **Bloch wave functions** from which they are constructed

Let it be P_n the projector operator onto band n

$$
\hat{P}_n = \frac{a}{2\pi} \int_{BZ} |\psi_{nk}\rangle \langle \psi_{nk}| = \sum_R |W_R\rangle \langle W_R|
$$

From this also follows that the total charge density ρ_n in a band n is

$$
\rho_n = - e\langle r | \hat{P}_n | r \rangle = - e \frac{V_{cell}}{(2\pi)^3} \int_{BZ} |\psi_{nk}(r)|^2 d^3k = - e \sum_R |W_{nR}(r)|^2
$$

4. Matrix elements between of operators between Wannier functions

 $\langle W_{n0} | H | W_{nR} \rangle = E_{nR}$

 $\langle W_{n0} | \mathbf{r} | W_{nR} \rangle = \mathbf{A}_{nR}$

Fourier transform coefficients of the Berry connection An(k)

5. The centers of Wannier are related to the Berry phase.

 $\mathbf{\bar{r}} = \langle W_{n0} | \mathbf{r} | W_{n0} \rangle$

$$
\bar{\mathbf{r}} = \frac{V_{cell}}{(2\pi)^3} \int_{BZ} A_n(\mathbf{k}) d^3 \mathbf{k} = \frac{V_{cell}}{(2\pi)^3} \int_{BZ} \langle u_{n\mathbf{k}} | i \nabla u_{n\mathbf{k}} \rangle d^3 \mathbf{k}
$$

In 1D

$$
\bar{\mathbf{x}} = \frac{a}{2\pi} \int_0^{2\pi/a} \langle u_{nk} | i \partial_k u_{nk} \rangle dk = a \cdot \frac{\gamma}{2\pi}
$$

Berry phase evolving from 0 to 2 π , would just correspond to a Wannier center evolving from x=0 to x=1

MAX PLANCK INSTITUTE
OR CHEMICAL PHYSICS OF SOLIDS **FOR**

 k_{x}

 $\bar{\mathbf{y}}(k_x) = \langle W_{nk_x} | y | W_{nk_x} \rangle dk$

$$
\gamma(k_x)^{(y)} = \int_0^{2\pi/b} i \langle u | \partial_{k_y} u \rangle dk y_y
$$

$$
\bar{\mathbf{y}}(k_x) = b \frac{\gamma(k_x)}{2\pi}
$$

At each k_x find 1D WF along y, and their centers

At each k_x find 1D WF along y, and their centers

Bloch wavefunction

Wannier function (Localized in x and y)

Topological obstruction

MAX PLANCK INSTITUTE
FOR CHEMICAL PHYSICS OF SOLIDS

Topological obstruction

MAX PLANCK INSTITUTE
FOR CHEMICAL PHYSICS OF SOLIDS

Rx

ky

Atomic Limit

Bloch states $\psi_k(r) = e^{ikr}u_k(r)$ are defined for periodic boundary conditions Define localized **Wannier States** :

$$
|\varphi(R)\rangle = \oint_{BZ} \frac{dk}{2\pi} e^{-ikR} |\psi_k\rangle = \oint_{BZ} \frac{dk}{2\pi} e^{-ik(R-r)} |u_k\rangle
$$

Vanderbilt and Soluyanov PRB (2011)

orbital + atomic site + lattice

Each arrangement/orbital determines symmetry (irrep + wyckoff position + space group)

atomic limit = EBR

parameter and py of PRR An EBR describes a set of Wannierizable bands

1K I $\overline{}$ J. Zak PRL (1980), Michel and Zak PRB (1999), Michel and Zak Phys. Rep. (2001)

orbital + atomic site + lattice

Each arrangement/orbital determines symmetry (irrep + wyckoff position + space group)

1K I J. Zak PRL (1980), Michel and Zak PRB (1999), Michel and Zak Phys. Rep. (2001) $\overline{}$. $\overline{}$

orbital + atomic site + lattice

Each arrangement/orbital determines symmetry (irrep + wyckoff position + space group)

SEPARATE

1K I J. Zak PRL (1980), Michel and Zak PRB (1999), Michel and Zak Phys. Rep. (2001) $\overline{}$. $\overline{}$

Crystal Structure

{

230 Space-Groups

Ingredients:

- unit lattice translations (Z^3)
- point group operations (rotations, reflections)
- non-symmorphic (screw, glide)
- orbitals
- atoms in some lattice positions

Consider one lattice site:

Consider one lattice site:

Consider one lattice site:

Orbitals at **q** transform under a rep, ρ , of G_q Site-symmetry group, G_q, leaves **q** invariant $\{C_3|01\}$, $\{m_1\neq 00\} \approx C_3$ and at \bm{q} transform under a rep, $\bm{\mu}$, or $\bm{\alpha}$

$$
\begin{array}{c|c}\n\text{Rep} & \text{E C}_3 \text{ M } \overline{\text{E}} \\
\hline\n-\overline{\overline{\Gamma}_6} & 2 \quad 1 \quad 0 \quad -2\n\end{array}
$$

 \mathbf{q} must also have an atom atom atom at each site in the orbit of \mathbf{q} *{g*q*|g* 2 *G}*. *Character table for the double-valued representation of C3v*

The *g*↵ furnish the following coset decomposition of *G*:

Consider one lattice site:

- Orbitals at **q** transform under a rep, ρ , of G_q Site-symmetry group, G_q, leaves **q** invariant $\{C_3|01\}$, $\{m_1\neq 00\} \approx C_3$ and at \bm{q} transform under a rep, $\bm{\mu}$, or $\bm{\alpha}$
- the Bravais of ϵ G_a (cosset represe $\frac{1}{2}$ is dependent of the unit cell, where $\frac{1}{2}$ in an orbit "Wyckoff position" {C₂I00},{EI00} Elements of space group g ∉ G_q (cosset representatives) move sites general position 12*f*, corresponding to the orbit of a generic (2) ︷ **q' ^q**

Elementary band representations (EBRs)

 $\overline{\Gamma}_6$ induced in C_{6v}

electron bands sitting at pz orbitals in Wyckoff 2b in Wall paper group 17

dimension of this band representations = connectivity in the Brillouin zone $\overline{}$ (b) $\overline{}$ ($\sum_{i=1}^{n} a_i$

axis also. We haven't computed the representation for the 6-axis, but we can obtain it

MAX PLANCK INSTITUTE
FOR CHEMICAL PHYSICS OF SOLIDS

(ρ ↑ *G*) ↓ G_k

 $\rho_G^{\varGamma}=\bar{\varGamma}_7\oplus\bar{\varGamma}_9$ $\frac{1}{8}$

Table 1.5 Table of characters of the group C_{6v}

C_{6v}	$\overline{}$. .	\sim $+$ しっ	C_2, C_2	C_6^{\pm}	m_{11}	$m_{1\bar{1}}$	$\overline{}$ \boldsymbol{E}	$\overline{C_2^{\pm}}$	\bar{c}^{\pm}
P_G							—⊿	$\overline{}$ ∼	
			U	$\sqrt{2}$ \sim \sim \sim			$\overline{}$	$\overline{}$	$\overline{}$
				$\overline{}$ \vee		J	$\overline{}$ ∼	$\overline{}$	$\sim -\sqrt{2}$
		$\overline{}$	C				$\overline{}$	∠	

All possible connection between maximal and non-maximal kvectors

> **k**_i $(u_1) = k_1$ **k**_i (**u**₂)=**k**₂

for each max. **k** in ***k** and **k**ⁱ non-maximal

Topological Quantum Chemistry Transformation. As a band of the property **Topological Quantum Chemistry**

k *·* p theory allows us to deduce the symmetry and degeneracy of energy bands in a small neighborhood near these points - the

FRESH TWIST ON
TOPOLOGY

Topological Quantum Chemistry Transformation. As a band of the property **Topological Quantum Chemistry**

along these lines in two topological lines in the left, we obtain a graph with one connected component, in the left, we obtain a graph with one connected component, in the left, we obtain a graph with one connected compone that in this phase graphene is a symmetry-protected semimetal; the α symmetry-protected bands coincide bands coin that in this phase graphene is a symmetry-protected seminary functions for the four connected bands connected bands coincide semi-protected semi-protected bands connected bands coincide (2017) with the atomic orbital Wannier functions. In contrast, the graph on the right has two disconnected components, c Nature (2017)

RhSi

Topological Quantum Chemistry

Ę,3

Thank you!