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Wannier states associated with R are 
localized, but gauge dependent.

Bloch states                                are defined for periodic boundary conditions
Define localized Wannier States :
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Definition of a Wannier function : 
 

Wannier functions

|WR⟩ =
a

2π ∫
2π/a

0
dkeik⋅r |ψk⟩

|ψk⟩ = ∑
R

eik⋅r |WR⟩

If               is a smooth function of k,  
then                is a localized function centred near R 
 

|ψk⟩(x)
|WR⟩(x)

D. Vanderbilt “Berry phases in electronic structure theory “ 



Properties of a Wannier function : 
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Figure 4.1: A sketch of amplitudes of Wannier functions in a 1D crystal. Solid
curve refers to the home unit cell; dashed curves refer to periodic images in the
neighboring cells.

The potential effectiveness of WFs in problems with localized electronic charge

can be seen from the following consideration. Define the Wannier charge centers

(WCC) to be the centers of mass of WFs:

r̄n = ⟨0n|r̂|0n⟩. (4.2)

If WFs are good candidates for a useful real-space description of solids, the loca-

tion of the WCC should be close (at least in some sense) to the center of mass of

the electronic density of a real material. Besides, the amplitude of a WF should

fall off away from the WCC [100, 101], as is the case for the density of a localized

charge distribution.

In principle, the WFs of Eq. (4.1) can be tuned to satisfy the above conditions,

since as defined they are not unique. Indeed, as discussed in Sec. 3.1, any set of

Bloch-like states |ψnk⟩ that span the occupied space of the problem can be used to

construct WFs. In fact, it is generally necessary to apply a U(N ) transformation

of the form (3.5) to the Hamiltonian eigenstates in order that the resulting Bloch-

like states (and their phases) are smooth functions of k. However, having done so,

there is still a large gauge freedom associated with the application of a subsequent

U(N ) gauge rotation that is smooth in k. In general, the localization properties

and the locations of the WCCs will be different for different choices of |ψnk⟩.

1. WFs with different R are periodic images of one another

|W−a⟩ |W0⟩ |Wa⟩

Wannier functions



2. WFs form an orthonormal set

⟨WR′￼|WR⟩ = δRR′￼

3. WFs span the same subspace of the Hilbert space as is spanned by 
the Bloch wave functions from which they are constructed

Properties of a Wannier function : 
 

Wannier functions



 Let it be      the projector operator onto band n

̂Pn =
a

2π ∫BZ
|ψnk⟩⟨ψnk | = ∑

R

|WR⟩⟨WR |

From this also follows that the total charge density     in a band n is

Pn

ρn = − e⟨r | ̂Pn |r⟩ = − e
Vcell

(2π)3 ∫BZ
|ψnk(r) |2 d3k = − e∑

R

|WnR(r) |2

ρn

Properties of a Wannier function : 
 

Wannier functions



Properties of a Wannier function : 
 

⟨Wn0 |H |WnR⟩ = EnR

⟨Wn0 |r |WnR⟩ = AnR

r̄ = ⟨Wn0 |r |Wn0⟩

4. Matrix elements between of operators between Wannier 
functions 

5. The centers of Wannier are related to the Berry phase.

Wannier functions

Fourier transform coefficients of the Berry connection An(k)



Properties of a Wannier function : 
 

In 1D

r̄ =
Vcell

(2π)3 ∫BZ
An(k)d3k =

Vcell

(2π)3 ∫BZ
⟨unk | i∇unk⟩d3k

x̄ =
a

2π ∫
2π/a

0
⟨unk | i∂kunk⟩dk = a ⋅

γ
2π

Berry phase evolving from 0 to 2   , would just correspond to a 
Wannier center evolving from x=0 to x=1

π

Wannier functions



Hybrid Wannier 
functions

Real-space unit cell Reciprocal-space unit cell
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Hybrid Wannier 
functions

ky

kx

At each kx find 1D WF along y, and their centers 

ȳ(kx) = ⟨Wnkx
|y |Wnkx

⟩dk

γ(kx)(y) = ∫
2π/b

0
i⟨u |∂ky

u⟩dkyy

ȳ(kx) = b
γ(kx)
2π



Hybrid Wannier 
functions

ky

kx

At each kx find 1D WF along y, and their centers 

ȳ(kx) = ⟨Wnkx
|y |Wnkx

⟩dk
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Fig. 3.7 a The Berry phase γ as a function kx for an example system with C = 1. b Because both
kx and γ are periodic, the Chern number can be seen as the winding number of the Berry phase
around a torus

Ci
part. mod 1 = 1

2π

∫

∂Si
A (k).dk mod 1 = γ∂Si

2π
mod 1, (3.13)

where the modulus comes from the fact that the Berry phase is defined only modulo
2π . Sincewe imposed thatCi

part. must bemuch smaller than one, we can still uniquely
determine its value from γ∂Si /2π by adding an integer that minimizes the absolute
value. Since the top and bottom parts of ∂Si cancel out due to periodicity, we can
write the Berry phase as

γ∂Si = γpi+1 − γpi , (3.14)

where pi and pi+1 are the paths at either side of the segment Si , as shown in Fig. 3.6b.
The Berry phase can also be understood as a function of kx , since each path pi is
given by a fixed kx . Because both γ and kx are periodic, the Berry phase describes
a line on a torus, as shown in Fig. 3.7. The winding number of this line around the
torus is exactly the Chern number [15]. In other words, the Chern number can be
calculated by continuously tracking the Berry phase on lines of constant kx as it goes
across the Brillouin zone. In practice, enforcing this continuity is a difficult task and
is the goal of the convergence options discussed in Sect. 3.2.4.

3.1.2.3 Wilson Loop and Hybrid Wannier Charge Centers

The problem of calculating the Chern number is now reduced to calculating the Berry
phase for closed loops in the Brillouin zone. This can be done by calculating the so-
called Wilson loop [16] W (C). The Wilson loop can be understood as a matrix that
maps the states at a starting point k0 along the loop onto their images after parallel
transport along C . For a discretization {k0, . . . ,kn−1,kn = k0} of the path C , the
Wilson loop can be approximated as [12, 16]

W (C) = Mk0,k1 · . . . · Mkn−1,kn , (3.15)

yc

kx
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Hybrid Wannier 
functions

Bloch wavefunction

|ψ(kx, ky)⟩ |W(Rx, Ry)⟩

HWF

HWF |hkx
(Ry)⟩

|hky
(Rx)⟩

Wannier function 
(Localized in x and y)
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given by a fixed kx . Because both γ and kx are periodic, the Berry phase describes
a line on a torus, as shown in Fig. 3.7. The winding number of this line around the
torus is exactly the Chern number [15]. In other words, the Chern number can be
calculated by continuously tracking the Berry phase on lines of constant kx as it goes
across the Brillouin zone. In practice, enforcing this continuity is a difficult task and
is the goal of the convergence options discussed in Sect. 3.2.4.

3.1.2.3 Wilson Loop and Hybrid Wannier Charge Centers

The problem of calculating the Chern number is now reduced to calculating the Berry
phase for closed loops in the Brillouin zone. This can be done by calculating the so-
called Wilson loop [16] W (C). The Wilson loop can be understood as a matrix that
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transport along C . For a discretization {k0, . . . ,kn−1,kn = k0} of the path C , the
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(0) |y |hkx
(0)⟩ = ∑

Rx

eikxRx⟨w(0,0) |y |w(Rx,0)⟩
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Atomic Limit
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Each arrangement/orbital determines symmetry 
representations in Brillouin zone

s (or pz) orbitals

px and py orbitals
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Γ K M Γ

Real space vs momentum space

orbital + atomic site + lattice
(irrep + wyckoff position + space  group)

𝝘 K M

𝝘1

𝝘4

K3

M4

M1

An EBR describes a set of Wannierizable bands 

Elementary Band  Representations (EBRs)

atomic limit = EBR

J. Zak PRL (1980), Michel and Zak PRB (1999), Michel and Zak Phys. Rep. (2001)
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“we present the topologically global concepts 
necessary for the proof” 
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TOPOLOGICAL
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Michel and Zak believed elementary bands could not be gapped

“we present the topologically global concepts 
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Ingredients:
• unit lattice translations (𝚭3)

• point group operations (rotations, reflections)
• non-symmorphic (screw, glide)
• orbitals
• atoms in some lattice positions

{

230
Space-Groups

Crystal Structure



Orbitals at q transform under a rep, 𝝆, of Gq

q

pz

G = ∪(g  ) (Gq⋉𝚭3)
𝛂 𝛂 

Site-symmetry group, Gq, leaves q invariant {C3|01}, {m11|00}

(1)(2)

(1) ≈ C3v

3

organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g 2 G that acts in real space by r ! Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,
{gq|g 2 G}.

Definition 1. The set of symmetry operations, g 2 G,

that leave the site q fixed is called the stabilizer group
or site-symmetry group of q, and is denoted Gq ⌘

{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups

are conjugate are said to lie in the same Wycko↵ posi-
tion. Given a site in the Wycko↵ position, the number

of sites in its orbit that lie in a single unit cell defines

the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by

Gq↵ ⌘ {g↵hg�1
↵

|h 2 Gq} (1)

e1

e2

(a)

1a
2b 2b

3c

3c 3c

(b)

FIG. 1. Lattice basis vectors (a) and Wycko↵ positions (b)
of the hexagonal lattice. The (maximal) 1a, 2b and 3c Wyck-
o↵ positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal
if there exists a finite group H 6= Gq, such that Gq ⇢

H ⇢ G. A site-symmetry group that is not non-maximal

is maximal. A Wycko↵ position containing q is maxi-

mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0

6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this

{C3|01}

C3

e2 {m11|00} {C2|?}

Consider one lattice site: 

Elementary band 
representations (EBRs)
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are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal
if there exists a finite group H 6= Gq, such that Gq ⇢

H ⇢ G. A site-symmetry group that is not non-maximal

is maximal. A Wycko↵ position containing q is maxi-

mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0

6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this
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Orbitals at q transform under a rep, 𝝆, of Gq

Consider one lattice site: 

Site-symmetry group, Gq, leaves q invariant {C3|01}, {m11|00}(1) ≈ C3v

3

organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g 2 G that acts in real space by r ! Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,
{gq|g 2 G}.

Definition 1. The set of symmetry operations, g 2 G,

that leave the site q fixed is called the stabilizer group
or site-symmetry group of q, and is denoted Gq ⌘

{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups

are conjugate are said to lie in the same Wycko↵ posi-
tion. Given a site in the Wycko↵ position, the number

of sites in its orbit that lie in a single unit cell defines

the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by
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are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.
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in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.
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each site symmetry group, Gq, fits into the space group,
G. To this end, we define:
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even though Gq 6⇢ Gq0 . For example, in P6mm, taking
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1

3, ⌃̄
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5 . (Interchanging �̄8 and �̄9 also results in a valid disconnected energy graph

as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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1.7 Subducing the Band Representation

We have by now obtained the band representation for spinless and spinful graphene.
We will focus now on spinful graphene, since it is the one that can display topologi-
cal properties. We will subduce now the representation at different, high-symmetry
points in the first Brillouin Zone. In this case, we will study the points Γ, K and M
(see Fig. 1.5).

We proceed as before; first, find the character of the representation for the elements
of the little group. Then, see if the representation is irreducible or not, to see if bands
cross at that point. Then, we will study how we can connect those bands.

1.7.1 Γ Point

The little group at this point is the full point group, C6v. This a common property
for all BZs of all space groups. This group contains 3-axis. 2-axis, planes, and 6-
axis also. We haven’t computed the representation for the 6-axis, but we can obtain it
from the representations of 2- and 3-axis by combining them (e.g., a 6-axis is a 2-axis
minus a 3-axis). Doing this way, we can write the character for this representation
(Table1.5):

Just by inspection of the table, we get that the representation is reducible, in fact
(Table1.6):

ρΓ
G = Γ̄7 ⊕ Γ̄8 (1.33)
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3 C̄±

6

ρΓ
G 4 2 0 0 0 0 −4 −2 0

Γ̄7 2 1 0 −
√
3 0 0 −2 −1

√
3

Γ̄8 2 1 0
√
3 0 0 −2 −1 −

√
3

Γ̄9 2 −2 0 0 0 0 −2 2 0

30

(a) (b)

FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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1.7 Subducing the Band Representation

We have by now obtained the band representation for spinless and spinful graphene.
We will focus now on spinful graphene, since it is the one that can display topologi-
cal properties. We will subduce now the representation at different, high-symmetry
points in the first Brillouin Zone. In this case, we will study the points Γ, K and M
(see Fig. 1.5).

We proceed as before; first, find the character of the representation for the elements
of the little group. Then, see if the representation is irreducible or not, to see if bands
cross at that point. Then, we will study how we can connect those bands.

1.7.1 Γ Point

The little group at this point is the full point group, C6v. This a common property
for all BZs of all space groups. This group contains 3-axis. 2-axis, planes, and 6-
axis also. We haven’t computed the representation for the 6-axis, but we can obtain it
from the representations of 2- and 3-axis by combining them (e.g., a 6-axis is a 2-axis
minus a 3-axis). Doing this way, we can write the character for this representation
(Table1.5):

Just by inspection of the table, we get that the representation is reducible, in fact
(Table1.6):

ρΓ
G = Γ̄7 ⊕ Γ̄8 (1.33)

Fig. 1.5 First Brillouin
Zone for graphene
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
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to adjacency matrix A2
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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Number of PEBRs without SOC Number of PEBRs with SOC Examples

1 1 Graphene, Bismuthene, Cu3SbS4

1 2 Bi1� square nets, Cu2SnHgSe4
2 2 Bi2Se3, KHgSb

TABLE I. Summary of topological phase transitions between a system without SOC to a TI with SOC, for BRs
induced from up to two irreps of the site-symmetry group of occupied WPs. When there is a single EBR in the
first column, the system is necessarily a semimetal without SOC – these materials become TIs for arbitrarily small SOC. The
first column gives the number of PEBRs directly straddling the Fermi level without SOC (per spin). The second column shows
how this number of band representations changes when SOC is turned on.
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FIG. 1. Schematic: how our theory applies to graphene with SOC. We begin by inputting the orbitals (|pz "i, |pz #i)
and lattice positions relevant near the Fermi level. Following the first arrow, we then induce an EBR from these orbitals, which
subduces to little group representations at the high symmetry �,M and K points, shown here as nodes in a graph. Standard
k ·p theory allows us to deduce the symmetry and degeneracy of energy bands in a small neighborhood near these points - the
di↵erent colored edges emanating from these nodes. The graph theory mapping allows us to solve the compatibility relations
along these lines in two topologically distinct ways. On the left, we obtain a graph with one connected component, indicating
that in this phase graphene is a symmetry-protected semimetal; the Wannier functions for the four connected bands coincide
with the atomic orbial Wannier functions. In contrast, the graph on the right has two disconnected components, corresponding
to the topological phase of graphene by Def. 1. The spin up and spin down localized Wannier functions for the valence band
are localized on distinct sites of hexagonal lattice, and so break TR-symmetry in real space[8].
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