

Topology and Homotopy

Stanislas Rohart

Laboratoire de Physique des Solides

CNRS/Université Paris-Saclay, France

Introduction: Homeomorphism

Topology aim at classify objects in classes where objects can be transformed one to another using a continuous deformation

Definition: Homeomorphism \approx

Two objects are homeomorph ($S_1 \approx S_2$) if there is a continuous transformation from one to another

Introduction: Homeomorphism in solid state physics Example of dislocations With 2 opposite dislocations

Introduction: Objectives of the algebraic topology

How to define formaly the topological difference? How to define formally a hole? Can we define topologically invarient quantitites?

Outline

- 1. Introduction: homeomorphism
- 2. How to catch a topological defect or texture
- 3. Homotopy and homotopy group
- 4. Geometrical space and order parameter space
- 5. Topological defects and topologically stable configurations

How to catch a topological defect

The prey and the hunter rule A contour surronds the defect to catch it.

Applications of the hunter's rule to dislocations

Outline

- 1. Introduction: homeomorphism
- 2. How to catch a topological defect or texture
- 3. Homotopy and homotopy group
- 4. Geometrical space and order parameter space
- 5. Topological defects and topologically stable configurations

Homotopies

1. Properties of contours Explanation for 1D contours γ dans un espace \mathcal{E}

Definition: Path $\gamma_{\chi_0\chi_1}$

 $\gamma_{x_0x_1}$: [0,1] \mapsto \mathcal{E} is a continuous application of [0,1] over the space \mathcal{E} so that $\gamma(0) = x_0$ and $\gamma(1) = x_1$

Definition: Closed path or contour γ in x_0

 $\gamma: [0,1] \mapsto \mathcal{E}$ is a continuous application of [0,1] over the space \mathcal{E} so that $\gamma(0) = \gamma(1) = x_0$

Definition: Homotopy ~

 γ_1 and γ_2 are homotope ($\gamma_1 \sim \gamma_2$) if is there is a continous transformation from one to another.

Definition: Class of contour [y] $\forall \gamma_1 \text{ and } \gamma_2 \in [\gamma], \gamma_1 \sim \gamma_2$

Definition: Composition .

If $\gamma \sim \gamma$

The composition γ_1 , γ_2 of two contours is a contour. The composition commutes: γ_1 , $\gamma_2 \sim \gamma_2$, γ_1 Additionnal property : $[\gamma_1, \gamma_2] = [\gamma_1], [\gamma_2]$

Independence on the starting point

In a continuous space, there is always a path $\gamma_{x_0x_1}$ that links to points. A contour γ starting from x_0 is homotope to a contour $\gamma' = \gamma_{x_1x_0}$. γ . $\gamma_{x_0x_1}$ starting from x_1

<u>Neutral contour</u> A neutral contour c is such that $\forall \gamma, \gamma, c \sim \gamma$. If $\gamma \sim c$, then γ is neutral.

Reverse contour
$$\forall \gamma, \exists \gamma^{-1}$$
 so that $\gamma, \gamma^{-1} = c$.
If $\gamma \sim \gamma^{-1}$ then $\gamma \sim c$

Homotopy group

Definition: Homotopy group

The homotopy group is the group of the classe of paths

Dimension of
$$\pi_1(\mathcal{E}) = \{ [\gamma] \}$$
 Ensemble of class of contour in \mathcal{E} Space or volume

Special case: If $\forall \gamma$ in $\mathcal{E}, \gamma \sim c$ (or $\gamma \in [c]$), the homotopy group $\pi_1(\varepsilon) = \{ [c] \}$ contains a single element. It is said to be trivial.

Ex: 2D plane $\mathbb{P} = \mathbb{R}^2$: $\pi_1(\mathbb{P})$ is trivial

Degree $deg(\gamma)$ of a contour: number of tour around the circle. $deg(\gamma) \in \mathbb{Z}$

Properties

- $\deg(c) = 0$
- $\deg(\gamma) = -\deg(\gamma^{-1})$
- $\deg(\gamma_1, \gamma_2) = \deg(\gamma_1) + \deg(\gamma_2)$

The degree is called **topological invarient** $n = \deg(\gamma)$

Example: $\mathbb{S}^1 = \mathbb{C}_{|z|=1}$ $z \in \mathbb{S}^1 \to z = e^{i\theta}$

Any contour γ is homotope to $\gamma_n(t) = e^{2i\pi nt}$ with $t \in [0,1]$ et $n \in \mathbb{Z}$

$$\deg(\gamma) = n = \frac{1}{2\pi} \oint_{\gamma} dz = \int_{0}^{1} n dt = n$$

Any contour is defined by its degree or topological invarient

We can build **the classes of contour** $[\gamma_n]$ such that all the contours of the class share the same degree n.

$$\pi_1(\mathbb{S}^1) = \{ [\gamma_n], n \in \mathbb{Z} \}$$

Since \mathbb{Z} fully defines the homotopy group (isomorphism between { $[\gamma_n], n \in \mathbb{Z}$ } and \mathbb{Z}) the homotophy group is usually written using the group of topological invariants:

$$\pi_1(\mathbb{S}^1) = \mathbb{Z}$$

The composition operation between contours becomes an addition in $\ensuremath{\mathbb{Z}}$

 $deg(\gamma_1, \gamma_2) = deg(\gamma_1) + deg(\gamma_2)$ $n(\gamma_1, \gamma_2) = n(\gamma_1) + n(\gamma_2)$

Vortex and antivortex

Hunter's rule: d' + r = d - 1

The defect is puntual d' = 0Space is 2D d = 2

Contour is r = 1 (circle) Described by an angle $\phi (0 \rightarrow 2\pi)$ Homotopy group of the sphere \mathbb{S}^2 1. First group $\pi_1(\mathbb{S}^2)$

Any contour is homotope to a single point (neutral contour):

The homotopy group is trivial

$$\pi_1(\mathbb{S}^2) = \{c\} = 0$$

Homotopy group of the sphere \mathbb{S}^2 2. Second group $\pi_2(\mathbb{S}^2)$

A contour corresponds to a compact surface

This contour is homotope to a point Trivial or neutral element.

First non trivial element: the sphere is fully covered.

$$\pi_2(\mathbb{S}^2) = \mathbb{Z}$$

Topological invarient: nb of time the sphere is wrapped.

Homotopy group of the sphere \mathbb{S}^2 2. Second group $\pi_2(\mathbb{S}^2)$

Example of a Bloch point (magnetic monopole)

We consider Heisenberg spin: they live on \mathbb{S}^2 (two angles θ and ϕ)

Hunter's rule: d' + r = d - 1

The defect is puntual d' = 0Space is 3D d = 3

Contour is r = 2 (sphere)

The spin texture found on the spherical contour corresponds to a portion of the S^2 .

Around the Bloch point, all the spin orientations are found. The spin S^2 sphere is fully covered.

 $n = \pm 1$

First description: Feldtkeller Z. Angew. Phys. (1965)

Homotopy group of the spheres \mathbb{S}^p

General results:

 $\pi_n(\mathbb{S}^p) = 0 \text{ if } n < p$

$$\pi_n(\mathbb{S}^p) = \mathbb{Z}$$
 if $n = p$

topological invarient:
$$\frac{1}{|\mathbb{S}^p|} \int_{\gamma_n} ds$$

(number of time the sphere is covered)

	π1	π2	π3	π4	π ₅	π ₆	π7	π8	π9	π 10	π ₁₁	π 12	π ₁₃	π ₁₄	π ₁₅
S 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S1	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z 3	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	Z 2	Z ₂	Z ₁₂	Z 2	Z 2	Z 3	Z 15	Z ₂	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	Z 2	Z 2	Z × Z ₁₂	Z ₂ ²	Z ₂ ²	Z ₂₄ × Z ₃	Z 15	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ⁵
S ⁵	0	0	0	0	z	Z 2	Z 2	Z ₂₄	Z ₂	Z ₂	Z 2	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z ₂
S 6	0	0	0	0	0	z	Z 2	Z 2	Z ₂₄	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	Z ₂	Z 2	Z ₂₄	0	0	Z 2	Z ₁₂₀	Z 2 ³
S 8	0	0	0	0	0	0	0	z	Z 2	Z ₂	Z ₂₄	0	0	Z ₂	Z × Z ₁₂₀

A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002 and online available at http://www.math.cornell.edu/ ~hatcher).

Graph source: Wikipedia

Homotopy group of the torus \mathbb{T}^2

The torus corresponds to the multiplication of two circles

$$\mathbb{T} = \bigcup_{x \in \mathbb{S}^1} \mathbb{S}^1_x \approx \mathbb{S}^1 \times \mathbb{S}^1$$
$$\pi_1(\mathbb{T}) = \mathbb{Z} \times \mathbb{Z}$$

Topological invarient: (n_1, n_2)

Bonus question: Homotopy group of a sphere with many holes

GDR Meeticc

Outline

- 1. Introduction: homeomorphism
- 2. How to catch a topological defect or texture
- 3. Homotopy and homotopy group
- 4. Geometrical space and order parameter space
- 5. Topological defects and topologically stable configurations

Projection of the geometrical space over the order parameter space

1. Easy situation: the sample has the same geometry as the order parameter space.

Ex: soft magnetic ring

The dipolar interaction forces the magnetization along the ring (\vec{m} . $\vec{n} = 0$). Magnetization is S^1 -like

Magnetic force microscopy images of NiFe magnetic ring J.Y. Chauleau (LPS, 2011)

Projection of the geometrical space over the order parameter space

2. The geometrical and order parameter spaces are different

Isomorphism is possible if boundary conditions are uniform

 ⇒ Follow the path and look to its trace on the order parameter space.
⇒ The trace is a contour of the same dimension as the geometrical space

Look for $\pi_d(\mathbb{S}^p)$ homotopy group

- *d*: geometrical space dimension
- *p*: order parameter space dimension

 $\mathbb{R}^3 \rightarrow \mathbb{S}^2$???

 $\mathbb{R}^1 \to \mathbb{S}^1$

We consider a 1D space \mathbb{R}^1 with some spins \mathbb{S}^1 \Rightarrow We look to the trace of the order parameter on \mathbb{S}^1 when we move along \mathbb{R}^1 .

It corresponds to the development performed to fine the topological invarient of S^1 .

The homotopy group is analogue to the homotopy group $\pi_1(\mathbb{S}^1)=\mathbb{Z}$

Example: 360° domain wall

The topological invarient is the (signed) number of 360° turns

If
$$\vec{S}(x) = (\cos \theta(x), \sin \theta(x))$$

$$n = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{d\theta}{dx}(x) dx = \frac{1}{2\pi} \int_{\theta(-\infty)}^{\theta(+\infty)} d\theta$$

A 360° domain wall in S^1 cannot collapse Collapse require new degree of freedom (change the norm of the spin or S^2 spins)

Same work using Heisenberg spins S^2 \Rightarrow We look to the trace of the order parameter on S^2 when we move along \mathbb{R}^1 .

The order parameter space is partially covered The homotopy group is analogue to the homotopy group $\pi_1(\mathbb{S}^2) = 0$

Example: 360° domain wall

 \Rightarrow Adding a new degree of freedom removes the topological protection

$\mathbb{R}^2 \to \mathbb{S}^2$: Magnetic skyrmions

The topological invarient is the number of time the unit sphere is covered

$$n = \frac{1}{4\pi} \iint \vec{m} \cdot \left(\frac{\partial \vec{m}}{\partial x} \times \frac{\partial \vec{m}}{\partial y}\right) d^2 r$$

For a centrosymmetric texture:

$$n = \frac{1}{4\pi} \int \sin\theta \frac{d\theta}{dr} dr \int \frac{d\phi}{d\varphi} d\varphi = pW$$

 $\begin{array}{l} 2p = m_z(r=0) - m_z(r=\infty) \\ p \in \{-1,0,1\} \end{array}$

Winding number W $W \in \mathbb{Z}$ (topological invariant in $\pi_1(\mathbb{S}^1)$

- Topology does not depend on the chirality
- Néel and Bloch skyrmions belong to the same homotopy class

$\mathbb{R}^2 \to \mathbb{S}^2$: Magnetic skyrmions and topological elements

Collapse of a skyrmion

The collapse requires a topological defect

• Vortex for a 2D skyrmion

Topology changes requires to locally cancel the order parameter \Rightarrow Escape of 2D sphere S^2 on the 2D ball \mathbb{B}^2 [$\pi_2(\mathbb{B}^2) = 0$]

$\mathbb{R}^2 \to \mathbb{S}^2$: Magnetic skyrmions

Skyrmions are obtained in situations with an absence of inversion symmetry Dzyaloshinskii Moriya interaction fixes the chirality and therefore the topology

In Bulk crystals: Bloch skyrmions

[Yu et al. Nature (2010)]

In ultrathin films with structural absence of inversion symmetry: Néel skyrmions

[Boule et al. Nature Nano 2016]

$\mathbb{R}^3 \to \mathbb{S}^2$: Hopfions

Space dimension is smaller than order parameter space: \Rightarrow Isospins are lines in \mathbb{R}^3 . Uniform condition at infinity \Rightarrow Isospins are circles Trivial situation

 $\Rightarrow \mathbb{R}^3 \approx \mathbb{S}^2 \times \mathbb{S}^1$

Homotopy group $\pi_3(\mathbb{S}^2)$?

 $\pi_3(\mathbb{S}^2) = \mathbb{Z}$

n = 1

 $\mathbb{R}^3 \to \mathbb{S}^2$: Hopfions

Projection of the space over the order parameter space Case of non-uniform boundary conditions

The space **partially** wraps the order parameter space Boundary conditions are fixed by some energy => new topological solution

-1D: domain wall Topological even with Heisenberg spins

For XY spins (e.g. strong DMI, in plane anisotropy), topological difference between chiralities since magnetization in bound to a single circle S^1

Projection of the space over the order parameter space Case of non-uniform boundary conditions

-2D space with Heisenberg spins: micromagnetic vortex (or meron)

-> Boundary condition: $\vec{m} \cdot \vec{n} = 0$ (magnetostatic charge minimization) -> Dot center: $\vec{m} = \pm \vec{z}$ (exchange energy minimization)

(image from Benjamin Pigeau, Inst. Néel)

Topology depends on the vortex core orientation p and vorticity W

$$n = pW = \pm \frac{1}{2}$$

Outline

- 1. Introduction: homeomorphism
- 2. How to catch a topological defect or texture
- 3. Homotopy and homotopy group
- 4. Geometrical space and order parameter space
- 5. Topological defects and topologically stable configurations

Concluding remark: topological defects and topologically stable structures Ex: in $\pi_2(S^2)$

Bloch point: topological defect

- Order parameter not defined at the defect
- Vanishing size
- Exchange energy diverges
- Stable by itself: is destroyed by a defect of opposite topological number

Skyrmion: topologically stable structure

- Order parameter always defined
- Finite size
- Finite exchange energy
- Can collapse through a topological defect

Homotopy group with *n* holes.

Genre 1 (tore): \mathbb{Z}^2 Genre 2: \mathbb{Z}^6 Genre 3: \mathbb{Z}^{13} Genre 4: \mathbb{Z}^{29} Genre 5: \mathbb{Z}^{61}