

Topological magnetic textures

Stanislas Rohart

Laboratoire de Physique des Solides

CNRS/Université Paris-Saclay, France

Spicy school on spintronics 2022

Introduction: magnetic textures

Ferromagnets can be composed of single magnetic domains or complex spin textures.

Pierre Weiss

Textured magnetic ground state

- Induced by crystal microstructure
- Induced by micromagnetic energy balance

Stripes stabilized by DMI + dipolar interaction in magnetic multilayer

ORSAY

[Chauleau, SR PRB 2011]

Complex spin texture in PdNi nanostructure stabilized by strain relief induced anisotropy and dipolar interactions

Metastable excitations => solitonic textures

- Vortex cores
- Magnetic domain walls
- **Skyrmions**
- …

Magnetic vortex in NiFe disc

Magnetic domain wall in NiFe stripe

Size from few nanometers (vortex core, out-of-plance domain walls) to micrometers (in-plane domain walls)

Spicy school on spintronics 2022

Introduction: magnetic textures Applications sin spintronics devices

Current induced domain wall motion

-> Race track memories (shift register) and logics

 0.0

0.72

0.74 0.76 0.78 0.80 0.82 Frequency (GHz) [Dussaux et al. Nature Com 2010] **… and future concepts using new textures for logics, neuromorphic and probabilistic computing, cryptography…**

Introduction: micromagnetic framework

Introduction: micromagnetic framework

Why do we care about topology in magnetism ? Do we have properties that are directly related to topology ?

- Stability
- Dynamics

Texture stability

We consider a soliton-like texture (domain wall, skyrmion, vortex)

-> How can we transit towards a state with a different topology ?

-> How to relate energy with topology ?

Topology is held by boundary condition

Stability requires to take the

domain wall out of the stripe

=> Nothing interesting related to topology

360° domain wall

 $\pi_1(\mathbb{S}^2)$ trivial topology

Stability is not related to topology but to specific energy terms (DMI, dipolar repulsion)

Skyrmion, magnetic vortex core

Skyrmion collapse or vortex core reversal goes through a topological defect (\mathbb{S}^1 vortex or \mathbb{S}^2 Bloch point)

 $\pi_2(\mathbb{S}^2)$ non-trivial topology

Skyrmion

-> Chiral nanobubble

Néel Skyrmion (stabilized by interface DMI)

Bloch Skyrmion (stabilised by volume DMI in B20 crystals)

Order parameter space mapping: Non trivial topology

 \Rightarrow Impossible continuous transition toward the ferromagnetic phase $(S = 0)$

Skyrmions

First images using TEM Lorentz imaging in $Fe_{0.5}Co_{0.5}Si$

X.Z. Yu et al. Nature 465, 901 (2010)

Interfaces stabilized skyrmions Observed by SP-STM Ir(111)/Fe(1ML)/Pd(1ML)

N. Romming et al. PRL 114, 177203 (2015)

Spicy school on spintronics 2022

Skyrmions: energy stabilization

Dipolar coupling: flux closure between core and surrounding

Transition : domain wall energy ($\sigma = 4\sqrt{AK} - \pi D$) + correction terms at smal size

Rohart and Thiaville Phys. Rev. B (2013)

Magnetic Vortex

Soft magnetic disc (no anisotropy): need to minimize dipolar energy

- div $\vec{M} = 0$
- $\vec{M} \cdot \vec{n} = 0$

Fig. 2. MFM image of an array of permalloy dots 1 μ m in diameter and 50 nm thick.

Shinjo et al. Science 289, 930 (2000)

But exchange energy divergence at the center

 \Rightarrow Magnetization turns perpendicular over a distance $\Lambda = \sqrt{2A/\mu_0 M_S^2}$

 \Rightarrow Vortex core

Beware: magnetic vortex leaves on \mathbb{S}^2 . It is not a XY (or \mathbb{S}^1) vortex (no topological defect at the center) In topology, it can be refered to as a *meron*

Magnetic Vortex: topology

Homotopy group : $\pi_2(\mathbb{S}^2)$

Sphere is covered once : $|n| = \frac{1}{2}$ 2

Topology depends on the vortex core orientation p and vorticity W (topology of te periphery) $n_{\pi_2(\mathbb{S}^2)}=pW=\pm$ 1 2

Stability of topological textures

- Colapse of skyrmions and vortex core switching require a change in topology

=> Requires the injection of a magnetic defect (\mathbb{S}^1 vortex or \mathbb{S}^2 Bloch point $\cfrac{1}{2}$

Finite colapse energy can be evidenced in simulations at finite temperatures

 \Rightarrow Example of a skyrmion in a Co monolayer on Pt(111) Simulation at the atomic scale

Finite life time: Arrhenius low for the survival statistics $t_{survival} = \exp -t/\tau$ and $\tau = \tau_0 \exp \Delta E / k_B T$ $\tau = 0.2$ ns, $\Delta = 27$ meV

Spicy school on spintronics 2022

ORSAY

Rohart et al. Phys. Rev. B 2016 14

The topological problem doesn't exist at the atomic scale

Colapse path calculation Nuged elastic band micromagnetics

Can we understand the stability from micromagnetics arguments?

Spicy school on spintronics 2022

[Buttner et al. Sci. Rep. (2018)] 16

Can we understand the stability from micromagnetics arguments?

Micromagnetics can estimate the energies with a good accuracy. For the energy barrier, the errors are propagating and the accuracy is poor

Stabilization of topological textures skyrmion colapse in thick samples

Collapse occurs via a Bloch (true 0D defect) point rather than a vortex (1D diffect in a thick sample)

From *Topological defect-mediated skyrmion annihilation in three dimensions* Birch et al. Comm. Phys. 4, 175 (2021)

See also Milde et al. *Unwinding of a skyrmion lattice by magnetic monopoles* Science 340, 1076 (2013)

Stabilization of topological textures vortex core reversal

Switching the vortex core modifies the topology from $S=\frac{1}{2}$ $\frac{1}{2}$ to $S=-\frac{1}{2}$ $\frac{1}{2}$.

Fig. 2. MFM image of an array of permalloy dots 1 μ m in diameter and 50 nm thick.

Shinjo et al. Science 289, 930 (2000)

$$
\text{Thick problem } (t > \Lambda = \sqrt{2A/\mu_0 M_S^2}):\,
$$

magnetization is not constant along the z direction.

Vortex core switching is not homogeneous: nucleation of a Bloch point.

Thiaville et al. PRB 67, 094410 (2003)

Images from R. Dittrich http://magnet.atp.tuwien.ac.at/gallery/bloch_point/index.html

Stabilization of topological textures vortex core reversal

Switching the vortex core modifies the topology from $S=\frac{1}{2}$ $\frac{1}{2}$ to $S=-\frac{1}{2}$ $\frac{1}{2}$.

Thiaville et al. PRB 67, 094410 (2003) Images from R. Dittrich http://magnet.atp.tuwien.ac.at/gallery/bloch_point/index.html

Spicy school on spintronics 2022

Dynamics: basis of magnetization dynamics

Intergration over space: texture dynamics

Thiele equation

 $\mathbf{G} \times \mathbf{v} - \alpha D \mathbf{v} + \mathbf{F}_{STT} = 0$

Thiele equation

Integrated over the whole space assuming no deformation

Ref. STT I. M. Miron *et al. Nature*, 476 (2011).

Spicy school on spintronics 2022

Dynamics of topological textures Thiele equation

$$
\vec{G} \times \vec{v} - \alpha \overline{\overline{D}} \vec{v} + \vec{F}_{ext} + \vec{F}_{STT} = \vec{0}
$$

Gyrotropic deflection Dissipation External potential Current induced force

$$
\vec{G} = -\frac{\mu_0 M_S t}{\gamma_0} 4\pi n_{\pi_2(S^2)} \vec{Z}
$$
\n
$$
\vec{F}_T = -\mu_0 M_S \int (\vec{m} \times \vec{T}) \cdot \frac{\partial \vec{m}}{\partial \vec{R}} d^2r
$$
\n
$$
D_{ij} = \frac{\mu_0 M_S t}{\gamma_0} \int \left(\frac{\partial \vec{m}_0}{\partial i} \cdot \frac{\partial \vec{m}_0}{\partial j}\right) d^2r
$$
\n
$$
\vec{F}_{ext} = -\frac{\delta E}{\partial \vec{R}}
$$

- The gyrotropic force evidences the role of topology on the dynamics. Only pertinent for $\pi_2(\mathbb{S}^2)$
- The dissipation describes the energy loss ($P = -\vec{F}_{diss}$. $\vec{v} \propto -|\vec{v}|^2$ < 0)

Spicy school on spintronics 2022

Dynamics of topological textures - Vortex core

$$
\vec{G} \times \dot{\vec{R}} - \alpha D \dot{\vec{R}} + \vec{F}_{conf} = \vec{0}
$$

Gyrotropic force: $n_{\pi_2(S^2)}=\frac{1}{2}$ $\frac{1}{2}$ so $\vec{G} = -\frac{\mu_0 M_S t}{\gamma_0}$ γ_0 $2\pi \vec{z} = G \vec{z}$ Dissipation: For an isotropic core $D_{xx} = D_{yy} = D$

The vortex core is centered at equilibrium due to the dipolar couplings, so the confinement force can be given by $\vec{F}_{conf} = -\kappa \vec{R}$ with $\kappa \propto \mu_0 M_S^2$

The trajectory is a circle (or a damped spiral)

Undamped motion :

$$
\begin{cases}\n-G\dot{Y} - \kappa X = 0 \\
G\dot{X} - \kappa Y = 0\n\end{cases}
$$
 leads to
$$
\begin{cases}\n\ddot{X} + \omega^2 X = 0 \\
\ddot{Y} + \omega^2 Y = 0\n\end{cases}
$$

If offset from the center, the vortex core rotates (precesses) around the dot center at gyration frequency $\omega = \kappa/G$

Dynamics of topological textures - Vortex core

Spicy school on spintronics 2022

ORSAY

[Van Waeyenberge et al. Nature 444, 461 (2006)]

Dynamics of topological textures - Skyrmion

$$
\vec{G} \times \vec{v} - \alpha \overline{\overline{D}} \vec{v} + \vec{F}_T = \vec{0}
$$

Gyrotropic force: $n_{\pi_2(S^2)} = 1$ so $\vec{G} = -\frac{\mu_0 M_S t}{\gamma_0}$ γ_0 $4\pi \vec{z} = G\vec{z}$ Dissipation: For an isotropic skyrmion $D_{xx} = D_{yy} = D$ SOT Force: $\vec{F}_{SOT}\propto j\theta_H\cos\phi\vec{x}$

The motion is not along the current direction (skyrmion Hall effect):

$$
\text{Velocity } |v| = \left|\frac{F_{SOT}}{G}\right| \frac{1}{\sqrt{1+\rho^2}}
$$
\n
$$
\text{Angle } \rho = \frac{v_y}{v_x} = \frac{G}{\rho D}
$$

Deflection depends on the sign of the gyrovector. It can be reversed by switching the core polarization or by switching the winding number (skyrmion -> antiskyrmion)

Dynamics of topological textures - Skyrmion

Deflection of skyrmions in Pt/Co/Au based system. *[Mallick et al. Phys. Rev. Appl. 2022]*

Spicy school on spintronics 2022

Deflection of skyrmions in Ta/CoFeB/TaOx system. [Jiang et al. *N. Phys. 2017*]

Dynamics of topological textures - Skyrmion random walk

 $\vec{G} \times \vec{v} - \alpha D \vec{v} + \vec{F}_{thermal} = \vec{0}$

The skyrmion is moved by a random force, due to thermal fluctuation.

For an isotropic skyrmion $\langle X^2(t)\rangle = \langle Y^2(t)\rangle = 2Dt$ with D the diffusion constant.

Spicy school on spintronics 2022

Dynamics of topological textures - Antiferromagnetic systems

Coupling two skyrmions with opposite core polarity

 $\mathbf{G} \times \mathbf{v} - \alpha D \mathbf{v} + \mathbf{F}_{SOT} = 0$

Dynamics of topological textures - Antiferromagnetic systems

Skyrmions in synthetic antiferromagnets: 2 AF coupled Co layers

- No gyrotropic deflection
- Increased velocity

V.T. Pham et al. Science 384, 6693 (2024)

Conclusion

- Topology in magnetic textures is particularly relevant for 0D textures ($\pi_2(\mathbb{S}^2)$ homotopy group)
- Topological transition are complex and are dominated by the exchange energy
- Topology of 0D textures has important consequences on the dynamics (gyrotropic effects)

Main references:

E. Feldtkeller, *Continuous and singular micromagnetic configurations* Z. Angew. Phys. 19, 530 (1965) A.A. Thiele, *Steady-state motion of magnetic domains*, Phys. Rev. Lett. 30, 230 (1973) A.A. Thiele, *Applications of the gyrocoupling vector and dissipation dyadic in the dynamics of magnetic domains*, J. Appl.

Phys. 45, 377 (1974)

Main review paper:

H.B. Braun, *Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons*, Adv. Phys. 61, 1 (2012)

A. Thiaville, J. Miltat and S. Rohart *Magnetism and topology* in *Magnetic skyrmions and their applications* Elsevier (2021)

PEPR SPIN

