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Introduction: magnetic textures

Ferromagnets can be composed
of single magnetic domains or 
complex spin textures.

Pierre Weiss

Stripes stabilized by 
DMI + dipolar
interaction in magnetic
multilayer

Complex spin texture in PdNi nanostructure 
stabilized by strain relief induced anisotropy
and dipolar interactions

[Chauleau, SR PRB 2011]

Textured magnetic ground state
• Induced by crystal microstructure
• Induced by micromagnetic energy balance

Metastable excitations => solitonic textures
• Vortex cores
• Magnetic domain walls
• Skyrmions
• …

Magnetic vortex in NiFe disc

Magnetic domain wall in NiFe stripe

Size from few nanometers (vortex core, out-of-plance
domain walls) to micrometers (in-plane domain walls)
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Introduction: magnetic textures
Applications sin spintronics devices

[Dussaux et al. Nature Com 2010]

[Parkin et al. Science 2008]

… and future concepts 
using new textures for 
logics, neuromorphic
and probabilistic
computing, 
cryptography…

Current induced domain wall motion
-> Race track memories (shift register) and logics

Vortex core dynamics
-> Narrow linewidth oscillators (sub GHz)

Spin-polarized current
through the magnetc
material drives excitation 
(domain wall motion, vortex 
core precession)
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Introduction: micromagnetic framework
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Dzyaloshinskii Moiya interaction

𝐸𝐷𝑀𝐼 = − Ԧ𝑑𝑖𝑗 . ( Ԧ𝑆𝑖 × Ԧ𝑆𝑗)

Requires absence of 
inversion symmetry
(lattice or interface)

Interface anisotropy

𝐸𝐼𝑛𝑡𝑒𝑟𝑓.𝑎𝑛𝑖𝑠 = −
𝐾𝑆
𝑡
(𝑚. Ԧ𝑧)

4



Spicy school on spintronics 2022

Introduction: micromagnetic framework
Bloch wall
-> Anisotropy vs. Exchange
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(image from
Bluegel)
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Why do we care about topology in magnetism ?
Do we have properties that are directly related
to topology ?

• Stability
• Dynamics
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Texture stability

We consider a soliton-like texture (domain wall, skyrmion, vortex)

-> How can we transit towards a state with a different topology ?
-> How to relate energy with topology ?

Domain wall in a stripe

Topology is held by boundary
condition

Stability requires to take the 
domain wall out of the stripe

=> Nothing interesting related
to topology

360° domain wall

𝜋1(𝕊
2) trivial topology

Stability is not related to 
topology but to specific
energy terms (DMI, 
dipolar repulsion)

Skyrmion, magnetic vortex core

𝜋2(𝕊
2) non-trivial topology

Skyrmion collapse or vortex 
core reversal goes through a 
topological defect (𝕊1 vortex 
or 𝕊2 Bloch point)
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Skyrmion

-> Chiral nanobubble

Néel Skyrmion
(stabilized by 
interface DMI)

Bloch Skyrmion
(stabilised by volume 
DMI in B20 crystals)

Order parameter space mapping:
Non trivial topology

Impossible continuous transition toward 
the ferromagnetic phase (S = 0)
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Skyrmions

First images using TEM Lorentz imaging
in Fe0.5Co0.5Si

X.Z. Yu et al. Nature 465, 901 (2010)

Interfaces stabilized skyrmions
Observed by SP-STM
Ir(111)/Fe(1ML)/Pd(1ML)

N. Romming et al. PRL 114, 177203 (2015)
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Skyrmions: energy stabilization

Transition : domain wall energy (𝜎 = 4 𝐴𝐾 − 𝜋𝐷)
+ correction terms at smal size

Dipolar coupling: flux closure between core and surrounding

Rohart and Thiaville
Phys. Rev. B (2013)
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Magnetic Vortex

Soft magnetic disc (no anisotropy): need to minimize dipolar energy

• div 𝑀 = 0

• 𝑀. 𝑛 = 0

But exchange energy divergence at the center

 Magnetization turns perpendicular over a distance Λ = 2𝐴/𝜇0𝑀𝑆
2

 Vortex core

Shinjo et al. Science 289, 930 (2000)

Beware: magnetic vortex leaves on 𝕊2. 
It is not a XY (or 𝕊1) vortex (no topological defect at the center)
In topology, it can be refered to as a meron
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Magnetic Vortex: topology

Mapping

Homotopy group : 𝜋2(𝕊
2)

Sphere is covered once : 𝑛 =
1

2

Topology depends on the vortex core orientation 𝑝 and vorticity 𝑊 (topology of te periphery)

𝑛𝜋2 𝕊2 = 𝑝𝑊 = ±
1

2
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Stability of topological textures

- Colapse of skyrmions and vortex core switching require a change in topology

Core orientation

Boundary condition at infinity
(skyrmion surrounding)

Core orientation

Fixed boundary condition 
at nanostructure edge

Skyrmion colapse Vortex core switching

=> Requires the injection of a magnetic defect (𝕊1 vortex or 𝕊2 Bloch point)13
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Stabilization of topological textures
skyrmion colapse
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Finite colapse energy can be evidenced in simulations at finite temperatures

 Example of a skyrmion in a Co monolayer on Pt(111)
Simulation at the atomic scale

Finite life time: Arrhenius low for the survival statistics
𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = exp−𝑡/𝜏 and 𝜏 = 𝜏0 expΔ𝐸/𝑘𝐵𝑇
𝜏 = 0.2 ns, Δ = 27 meV
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Stabilization of topological textures
skyrmion colapse

The topological problem doesn’t exist at the atomic scale
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Initial state (skyrmion)
𝑛𝜋2 𝕊2 = 1

Saddle point
𝑛𝜋2 𝕊2 ~0

Colapse path calculation
Nuged elastic band micromagnetics

Rohart et al. Phys. Rev. B 2016 15
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Stabilization of topological textures
skyrmion colapse

Can we understand the stability from micromagnetics arguments?
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Skyrmion energy
=> Calculation with
micromagnetic
framework

Saddle point
 Only a few atoms in the skyrmion core
Prevent from using the micromagnetic hypothesis

Micromagnetic energy

𝐸 = 2𝜋𝑡ඵ 𝐴
𝑑𝜃

𝑑𝑟

2

+
sin2 𝜃

𝑟2
− 𝐷

𝑑𝜃

𝑑𝑟
+
cos𝜃 sin 𝜃

𝑟
+ 𝐾 sin2 𝜃 − 𝜇0𝐻𝑑 . 𝑀 𝑟 𝑑𝑟

~ ∝ skyrmion core volume

~ ∝ skyrmion radius
~ ∝ skyrmion radius at large radius
~ 4𝜋𝐴𝑡𝑛𝜋2 𝕊2 at small sizes1

Colapse saddle point configuration: energy is dominated by the exchange 
whose energy cannot vanish due to topology

𝐸𝑠𝑎𝑑𝑑𝑙𝑒 ≈ 4𝜋𝐴𝑡|𝑛𝜋2 𝑆2 | = 4𝜋𝐴𝑡

1 [Belavin and Poliakov JETP Lett 22, 245 (1975)]
[Buttner et al. Sci. Rep. (2018)] 16
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Stabilization of topological textures
skyrmion colapse
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Micromagnetics can estimate the 
energies with a good accuracy.
For the energy barrier, the errors are 
propagating and the accuracy is poor

Can we understand the stability from micromagnetics arguments?
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Stabilization of topological textures
skyrmion colapse in thick samples

Collapse occurs via a Bloch (true 0D defect) point 
rather than a vortex (1D diffect in a thick sample)

From Topological defect-mediated
skyrmion annihilation in three
dimensions
Birch et al.  Comm. Phys. 4, 175 (2021)

See also Milde et al. Unwinding of a 
skyrmion lattice by magnetic monopoles
Science 340, 1076 (2013)
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Stabilization of topological textures
vortex core reversal

Switching the vortex core modifies the topology from 𝑺 =
𝟏

𝟐
to 𝑺 = −

𝟏

𝟐
.

Thick problem (𝑡 > Λ = 2𝐴/𝜇0𝑀𝑆
2): 

magnetization is not constant along the 𝑧 direction.

Vortex core switching is not homogeneous: nucleation of a Bloch point.

Shinjo et al. Science 289, 930 (2000)

Normal vortex state : 
magnetization is perpendicular to 
minimize exchange energy

Vortex with Bloch point: magnetic moment are 
all almost in plane, mean magnetization is zero
at the core

Thiaville et al. PRB 67, 094410 (2003)
Images from R. Dittrich http://magnet.atp.tuwien.ac.at/gallery/bloch_point/index.html
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Stabilization of topological textures
vortex core reversal

Switching the vortex core modifies the topology from 𝑺 =
𝟏

𝟐
to 𝑺 = −

𝟏

𝟐
.

Thiaville et al. PRB 67, 094410 (2003)
Images from R. Dittrich http://magnet.atp.tuwien.ac.at/gallery/bloch_point/index.html
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𝜕𝒎

𝜕𝑡
= −𝛾0 𝒎×𝑯eff + 𝛼 𝒎×

𝜕𝒎

𝜕𝑡
+ 𝜏STT

Dynamics: basis of magnetization dynamics

Ferromagnetic dynamics

Landau-Lifshitz-Gilbert (LLG) equation:

Precession Damping Spin transfert torque

𝑮 × 𝒗 − 𝛼𝐷𝒗 + 𝑭𝑺𝑻𝑻 = 0

Thiele equation
Integrated over the whole space assuming no 

deformation

L. Landau and E. Lifshitz. Phys. Z. sowjetunion 8 153 (1935).

Ref. STT

I. M. Miron et al. Nature, 476 (2011).

FM

A.A. Thiele. Phys. Rev. Lett., 30, (1973).

Spin
Current

Intergration over space: texture dynamics

Thiele equation
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Dynamics of topological textures
Thiele equation

Ԧ𝐺 × Ԧ𝑣 − 𝛼ന𝐷 Ԧ𝑣 + Ԧ𝐹𝑒𝑥𝑡 + Ԧ𝐹𝑆𝑇𝑇 = 0

Ԧ𝐹𝑇 = −𝜇0𝑀𝑆න 𝑚 × 𝑇 .
𝜕𝑚

𝜕𝑅
𝑑2𝑟

Ԧ𝐹𝑒𝑥𝑡 = −
𝛿𝐸

𝜕𝑅

Gyrotropic deflection Dissipation External potential Current induced force

Ԧ𝐺 = −
𝜇0𝑀𝑆𝑡

𝛾0
4𝜋 𝑛𝜋2 𝕊2 Ԧ𝑧

𝐷𝑖𝑗 =
𝜇0𝑀𝑆𝑡

𝛾0
ඵ

𝜕𝑚0

𝜕𝑖
.
𝜕𝑚0

𝜕𝑗
𝑑2𝑟

• The gyrotropic force evidences the role of topology on the dynamics. Only pertinent for 𝜋2 𝕊2

• The dissipation describes the energy loss (𝑃 = − Ԧ𝐹𝑑𝑖𝑠𝑠. Ԧ𝑣 ∝ − Ԧ𝑣 2< 0)
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Dynamics of topological textures
- Vortex core

Ԧ𝐺 × ሶ𝑅 − 𝛼𝐷 ሶ𝑅 + Ԧ𝐹𝑐𝑜𝑛𝑓 = 0

Gyrotropic force:𝑛𝜋2(𝑆2) =
1

2
so Ԧ𝐺 = −

𝜇0𝑀𝑆𝑡

𝛾0
2𝜋 Ԧ𝑧 = 𝐺 Ԧ𝑧

Dissipation: For an isotropic core 𝐷𝑥𝑥 = 𝐷𝑦𝑦 = 𝐷

The vortex core is centered at equilibrium due to the dipolar couplings, 

so the confinement force can be given by Ԧ𝐹𝑐𝑜𝑛𝑓 = −𝜅𝑅 with 𝜅 ∝ 𝜇0𝑀𝑆
2

Undamped motion : 

ቊ−𝐺
ሶ𝑌 − 𝜅𝑋 = 0

𝐺 ሶ𝑋 − 𝜅𝑌 = 0
leads to ቊ

ሷ𝑋 + 𝜔2𝑋 = 0
ሷ𝑌 + 𝜔2𝑌 = 0

If offset from the center, the vortex core rotates (precesses) 
around the dot center at gyration frequency 𝜔 = 𝜅/𝐺

ሶ
𝑅

Ԧ𝐺 ×
ሶ
𝑅Ԧ𝐹𝑐𝑜𝑛𝑓

The trajectory is a circle (or a damped spiral)
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Dynamics of topological textures
- Vortex core

Ԧ𝐺 × ሶ𝑅 − 𝛼𝐷 ሶ𝑅 + Ԧ𝐹𝑐𝑜𝑛𝑓 = 0

𝑛𝜋2(𝑆2) =
1

2
𝑛𝜋2(𝑆2) = −

1

2

[Van Waeyenberge et al. Nature  444, 461 (2006)]

Switching of the vortex core by exciting the gyromode
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Dynamics of topological textures
- Skyrmion

Ԧ𝐺 × Ԧ𝑣 − 𝛼ന𝐷 Ԧ𝑣 + Ԧ𝐹𝑇 = 0

Gyrotropic force: 𝑛𝜋2(𝑆2) = 1 so Ԧ𝐺 = −
𝜇0𝑀𝑆𝑡

𝛾0
4𝜋 Ԧ𝑧 = 𝐺 Ԧ𝑧

Dissipation: For an isotropic skyrmion 𝐷𝑥𝑥 = 𝐷𝑦𝑦 = 𝐷

SOT Force:  Ԧ𝐹𝑆𝑂𝑇 ∝ 𝑗𝜃𝐻 cos𝜙 Ԧ𝑥

The motion is not along the current direction (skyrmion Hall effect):

Velocity 𝑣 =
𝐹𝑆𝑂𝑇

𝐺

1

1+𝜌2

Angle 𝜌 =
𝑣𝑦

𝑣𝑥
= 𝐺/𝛼𝐷

Deflection depends on the sign of the gyrovector. 
It can be reversed by switching the core polarization or by switching
the winding number (skyrmion -> antiskyrmion)

Ԧ𝐹𝑆𝑂𝑇

Ԧ𝑣
Ԧ𝐺 × Ԧ𝑣

𝛼𝐷 Ԧ𝑣
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Dynamics of topological textures
- Skyrmion

Deflection of skyrmions in Pt/Co/Au based system.
[Mallick et al. Phys. Rev. Appl. 2022]

Deflection of skyrmions in Ta/CoFeB/TaOx system.
[Jiang et al. N. Phys. 2017] 26
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Dynamics of topological textures
- Skyrmion random walk

Ԧ𝐺 × Ԧ𝑣 − 𝛼𝐷 Ԧ𝑣 + Ԧ𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 0

The skyrmion is moved by a random force, due to thermal fluctuation.

For an isotropic skyrmion 𝑋2(𝑡) = 𝑌2(𝑡) = 2𝒟𝑡 with 𝒟 the diffusion constant.

𝒟 = 𝑘𝐵𝑇
𝛼𝐷

𝐺2 + 𝛼𝐷 2

Consequence: skyrmions diffuse less due to their topology
[Miltat et al. Phys. Rev. B 2019]
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Dynamics of topological textures
- Antiferromagnetic systems

[Panigrahy et al. Phys Rev. B 2022]

𝑮 × 𝒗 − 𝛼𝐷𝒗 + 𝑭𝑺𝑶𝑻 = 0

𝑮 =
𝑀𝑆𝑡

𝛾0
4𝜋𝑃

P=1

P=−1
𝑭𝑺𝑶𝑻

A
F

 

co
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g

𝑭𝑺𝑶𝑻
x

y

Coupling two skyrmions with opposite core polarity
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Dynamics of topological textures
- Antiferromagnetic systems
Skyrmions in synthetic antiferromagnets:
2 AF coupled Co layers

- No gyrotropic deflection
- Increased velocity

V.T. Pham et al.
Science 384, 6693 (2024)
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Conclusion

- Topology in magnetic textures is particularly relevant for 0D textures (𝜋2(𝕊
2) homotopy group)

- Topological transition are complex and are dominated by the exchange energy
- Topology of 0D textures has important consequences on the dynamics (gyrotropic effects)
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